• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 10
  • 9
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 102
  • 102
  • 102
  • 23
  • 22
  • 21
  • 21
  • 18
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Absolutes und nichtabsolutes Hören

Schlemmer, Kathrin B. 04 January 2006 (has links)
In der vorliegenden Arbeit wurde mit einer Reihe von Experimenten geprüft, ob sich die Tonarterinnerung von Nichtabsoluthörern durch aus der Gedächtnisforschung abgeleitete Einflussfaktoren erklären lässt. Zunächst erfolgte eine theoretische Betrachtung des Tonartgedächtnisses sowohl aus musikpsychologischer als auch aus gedächtnispsychologischer Perspektive. Die Analyse von Befunden zum „latenten“ und „echten“ absoluten Gehör zeigte, dass eine Reihe von potenziellen Einflussfaktoren auf die Tonarterinnerung betrachtet werden muss, um herauszufinden, ob es sich bei diesen beiden Phänomenen um unterschiedliche Ausprägungen derselben Fähigkeit handelt. Um den Einfluss von Faktoren der Melodien, der Melodie-Lernenden und der Art des Melodie-Lernens auf die Tonarterinnerung zu prüfen, wurden insgesamt 268 Probanden gebeten, vertraute Melodien aus dem Gedächtnis zu singen. Unabhängige Variablen waren die musikalische Expertise der Probanden, ihre Fähigkeit Töne zu benennen, die Form und die Intensität des dem Experiment vorangegangenen Melodie-Lernens sowie verschiedene Charakteristika der Melodien. Abhängige Variable war die Genauigkeit, mit der die Originaltonarten der Melodien produziert wurden. Es konnten Effekte der Hör-Häufigkeit, der musikalischen Expertise, der Tonbenennung, der Melodie-Eingängigkeit sowie ein Effekt motorischer Kontextinformationen auf die Genauigkeit der Tonarterinnerung nachgewiesen werden. Um den Häufigkeitseffekt mit einer weiteren Anforderung zu untersuchen, wurde in einem weiteren Experiment die Tonbenennungsleistung von Absoluthörern und Nichtabsoluthörern verglichen. Dabei kam die Methode der Pupillometrie zum Einsatz, um Unterschiede in der mentalen Beanspruchung beim Benennen von Tönen unterschiedlicher Klangfarbe und Tonklasse nachweisen zu können. Die Ergebnisse stützen die Annahme, dass das häufige Hören bestimmter Töne sowohl bei Absoluthörern als auch bei Nichtabsoluthörern die Tonbenennung erleichtert. Dies verweist darauf, dass auch bei der musikspezifischen Aufgabe der Tonbenennung ein so grundlegendes Prinzip des menschlichen Gedächtnisses wie die Stabilisierung von Gedächtnisinhalten durch Wiederholung zum Tragen kommt. Insgesamt weisen die Ergebnisse darauf hin, dass Tonarterinnerung ein komplexes Phänomen ist, für das eine alleinige Erklärung als „latentes absolutes Gehör“ zu kurz greift. Statt einer schwachen Ausprägung einer hochspezialisierten Fähigkeit scheint es sich eher um eine eigene Form des Erinnerns, die auf allgemeingültigen Gedächtnisprinzipien beruht, zu handeln. / In this thesis, memory for musical keys among absolute pitch nonpossessors, which is often referred to as “latent” absolute pitch, is examined. A theoretical analysis focused on existing research about “latent” and “manifest” absolute pitch. Evidence from music-psychological and general memory research as well as neuropsychological evidence was considered. The review of existing research revealed that several factors are potentially relevant for the memory of musical keys and should be considered in trying to determine whether “latent” and “manifest” absolute pitch can be described as different levels of the same ability on an “absolute pitch continuum”. To examine whether characteristics of learned melodies, of melody-learners, and of melody-learning influence memory for musical keys among absolute pitch nonpossessors, 268 participants were asked in a series of experiments to sing familiar melodies from memory. Independent variables were the musical expertise of participants, their ability to label pitches, type and intensity of melody-learning, and characteristics of the learned melodies. The accuracy with which learned melodies could be produced in the original key was the dependent variable. Results revealed that frequency of melody-learning as well as participants’ musical expertise and ability to label pitches influence the accuracy of key production. Whether or not a melody is catchy as well as the existence of different types of motor imagery are further influencing factors for the accuracy of key production. To examine the frequency-of-hearing effect in more detail, another experiment compared the pitch labeling performance of absolute pitch possessors and nonpossessors. Pupillary responses were measured in order to show differences in mental resource allocation when labeling pitches of different key colors or timbres. Results support the assumption that frequent exposure to pitches of certain key colors or timbres facilitate their labeling among both absolute pitch possessors and nonpossessors. This suggests that basic principles of human memory such as learning by frequency of exposure affect also very specific tasks such as pitch labeling. Taken together, the results suggest that memory for musical keys is a complex phenomenon which can not adequately be described as being simply a “latent” or weak form of absolute pitch. Instead, memory for musical keys can be described as a “normal” memory mechanism, influenced by factors known to influence numerous other forms of human memory.
62

Bringing very long term memories back to life / Réveiller nos mémoires les plus anciennes

Larzabal, Christelle 07 July 2017 (has links)
On pense souvent que notre mémoire nous joue des tours et nous fait défaut. Ces oublis concernent généralement des souvenirs qui ne sont pourtant pas si vieux. Alors quand il s’agit de se rappeler d’informations sensorielles auxquelles nous n’avons pas repensé depuis plusieurs dizaines d’années, pas de doute, il ne reste plus rien… Mais en est-on vraiment sûr? Et si l’information était toujours là, prête à se manifester de manière explicite -comme sous forme de rappel ou de sentiment de familiarité- pour peu que les conditions le lui permettent? A ce jour, très peu d’expériences ont été menées sur ce sujet. L’objectif de ma thèse a donc été d’apporter des premiers éléments de réponse concernant la récupération de mémoires laissées inactives. Ma recherche s’est orientée selon deux axes principaux : une première partie théorique où je montre a) qu’il n’est pas nécessaire de réactiver une trace mnésique pour la maintenir à très long-terme si elle a été suffisamment répétée et b) que la récupération explicite de cette mémoire serait possible grâce à la présentation d’informations qui cibleraient au mieux le souvenir ; une seconde partie expérimentale où je montre a) que des participants sont capables de récupérer de manière explicite des informations laissées en dormance pendant au moins une dizaine d’années et b) que cette trace mnésique pourrait être détectée sur des tracés d’Electroencéphalographie (EEG). Ainsi, et aussi étonnant que cela puisse paraître, dans des conditions favorables à leur réactivation, d’anciennes traces mnésiques que l’on croyait disparues, peuvent de nouveau surgir sous la manifestation de rappel ou de sentiment de familiarité par exemple. Ces résultats soulèvent des questions majeures concernant le stockage neuronal de cette information. / Memory plays tricks on us and fails us even for recent events. So for the retrieval of sensory information that we have not experienced for decades, surely the memories are gone without a trace, but can we be sure of this? What if the information had been there all along ready to be explicitly retrieved through recall or familiarity for example? So far, experimental evidence is lacking. The purpose of my thesis was to shed some light on the retrieval of these inactive memories. To tackle this problem I developed my research around two main axes: For the first part which is theoretical, I suggest that a) reactivations are not necessary to maintain very long-term memories if the memories were sufficiently repeated at first; b) it might be possible to retrieve explicitly remote inactive memories using specific cues; in the second part which is experimental, I show that a) within specific conditions participants are able to retrieve explicitly very long-term memories that were left inactive for decades and b) such memory traces could be found on the Electroencephalography (EEG) signals. Surprisingly, when conditions are met, remote memories that were thought to be lost can again elicit recall or familiarity. With these results, a question remains: How do neurons store such information?
63

Fractais e redes neurais artificiais aplicados à previsão de retorno de ativos financeiros brasileiros / Fractals and artificial neural networks applied to return forecasting of Brazilian financial assets

Mendonça Neto, João Nunes de 13 August 2014 (has links)
Este estudo tem como problema de pesquisa a previsão de retorno de ativos financeiros. Buscou verificar a existência de relação entre memória ou dependência de longo prazo em séries temporais fractais e erro de previsão de retornos de ativos financeiros obtida por meio de Redes Neurais Artificiais (RNA). Espera-se que séries temporais fractais com maior memória de longo prazo permitam obter previsões com menor nível de erro, na medida em que a correlação entre os elementos da série favoreça a qualidade de previsão de RNA. Como medida de memória de longo prazo, foi calculado o expoente de Hurst de cada série temporal, o qual sofreu uma transformação para atuar como um índice de previsibilidade. Para medir o erro de previsão, foi utilizada a Raiz do Erro Quadrado Médio (REQM) produzida pela RNA em cada série temporal. O cálculo do expoente de Hurst foi realizado por meio do algoritmo da análise Rescaled Range (R/S). A arquitetura de RNA utilizada foi a de Rede Neural com Atraso Alimentada Adiante (TLFN), tendo como processo de aprendizagem supervisionada o modelo de retropropagação com gradiente descendente para minimização do erro. A amostra foi composta por ativos financeiros brasileiros negociados na Bolsa de Valores, Mercadorias e Futuros de São Paulo (BM&FBovespa), especificamente ações de companhias abertas e fundos de investimentos imobiliários em um período de 10 anos. Os resultados mostraram que a relação entre as variáveis foi significativa para previsões de retornos médios diários de 126 e 252 dias úteis e não significativa para previsão de retorno de 1 dia útil. Quando a análise foi realizada em somente ativos financeiros com expoentes de Hurst persistentes, a relação foi significativa para previsão de 1 dia útil e ainda mais significativa para previsão de 126 e 252 dias úteis, não sendo significativa quando realizada a análise em somente os ativos financeiros antipersistentes. A amostra foi também particionada entre os ativos que participaram e os que não participaram do índice Bovespa (IBOVESPA) no terceiro quadrimestre de 2013. Quando analisados somente os ativos que participaram do IBOVESPA, não houve relação significativa entre as variáveis estudadas, havendo relação significativa somente quando analisados os ativos não participantes. A participação no IBOVESPA apresentou relação significativa com memória de longo prazo e não foi encontrada relação significativa dessa participação com o erro de previsão de RNA. Os resultados encontrados sugerem que o expoente de Hurst pode ser utilizado previamente para selecionar séries temporais de retornos de ativos financeiros que são mais viáveis de serem previstos, particularmente escolhendo aqueles ativos com retornos mais persistentes e que não participem do IBOVESPA. Um gestor que deseje imprimir uma administração mais ativa de seus investimentos poderia utilizá-lo para selecionar uma carteira de ativos com essas características e realizar previsões com qualidade superior ao utilizar RNA. Um investidor que execute uma administração passiva de investimentos deveria compô-la com ativos com expoentes de Hurst característicos de processos em passeio aleatório, a fim de que não seja prejudicado por movimentos não aleatórios do mercado contra os quais não esteja se protegendo. / This study has the research problem of forecasting financial assets return. It aimed to verify the existence of relationship between long-term memory or dependence in fractal time series and prediction error of financial assets returns obtained by Artificial Neural Networks (ANN). It is expected that fractal time series with larger memory could achieve predictions with lower error, since the correlation between the elements of the series favors the quality of ANN prediction. As a long-term memory measure, the Hurst exponent of each time series was calculated, which has undergone a transformation to act as an index of predictability. To measure the prediction error, the Root Mean Square Error (RMSE) produced by ANN in each time series was used. The Hurst exponent computation was conducted through the rescaled range analysis (R/S) algorithm. The ANN architecture was Time Lagged Feedforward Neural Network (TLFN), with backpropagation supervised learning process and gradient descent for error minimization. The sample was composed of Brazilian financial assets traded in the Securities, Commodities & Futures Exchange of Sao Paulo (BM&FBovespa), more specifically public companies shares and real estate investment funds. The results showed that the relationship between the variables was significant for forecasting daily average returns of 126 and 252 business days, and not significant for predicting returns of 1 business day. When the analysis was performed only in financial assets with persistent Hurst exponents, the relationship was significant for predicting returns of 1 business day and even more significant for prediction returns of 126 and 252 business days. The relationship was not significant when the analysis was performed in only antipersistent financial assets. The sample was also partitioned among the assets participating and not participating in the Bovespa Index (IBOVESPA) of the third quarter of 2013. When only assets that participated in the IBOVESPA are considered, there was no significant relationship between the variables studied, existing significant correlation only when no participants are considered. Participation in IBOVESPA showed a significant relationship with long-term memory and no significant relationship of such participation with ANN prediction error was found. The results suggest that the Hurst exponent can be used to previously select time series of financial assets returns that are most feasible to predict, particularly choosing those assets with more persistent returns and not participating in the IBOVESPA. A manager who wishes to make a more active investment management could use it to select a portfolio with these characteristics and make predictions with superior quality when using artificial neural networks. An investor who accomplishes a passive investment management should compound his portfolio with assets that follows Hurst exponents characteristic of random walk processes, so that his is not impaired by no random market movement that he is not protected.
64

Dose-Response Effects of Lithium on Spatial Memory in the Black Molly Fish.

Creson, Thomas Kyle 14 December 2002 (has links)
Lithium continues to be widely prescribed for the management of bipolar disease, yet cognitive impairment-related side effects promote noncompliance of the treatment regimen. We have introduced a novel animal model, the black molly fish, to study dose-response effects of lithium on short-term (STM) and long-term (LTM) memories. We developed a method utilizing capillary ion analysis (CIA), to measure plasma and brain lithium levels employed in our behavioral studies. We then developed an appropriate testing environment to ascertain learning capacities of these fish. We established that black mollies could adequately perform a forced-choice spontaneous alternation (SA) task used extensively in rodents as an index of spatial STM. Employing this paradigm we designed a dose-response experiment utilizing chronic lithium regimens with a wide range of dosage groups to assess STM in the black molly. Results of the experiment indicated a robust effect in which performances of all dose groups were impaired in different degrees but not dose dependently. Using the same dosing regimen, we tested subjects in a place-learning task to assess dose-response effects of lithium on spatial LTM. A variety of performance measures were analyzed presenting a consistent theme implicating significant impairment with the high dose group. CIA results for the STM and LTM experiments revealed consistent linear relationships between mean plasma and brain lithium levels and lithium dosages. We have immunolocalized a 5-HT1A-like receptor from the caudal midbrain of black mollies, an area structurally homologous to the mammalian raphe nuclei. This autoinhibitory receptor is considered to be involved in the regulation of firing of raphe serotonergic fibers and 5-HT release in terminal projection areas such as the hippocampus and frontal cortex. Downregulation of these receptors initiates excessive serotonin availability that may relieve symptoms of depression yet paradoxically impair cognition. It is unclear whether activity in the presynaptic raphe nuclei or the postsynaptic projection areas is responsible for these phenomena. Because the black molly is not equipped with postsynaptic 5-HT1A receptors it offers a unique opportunity to study the effects of lithium on the presynaptic form of the receptor without compensating effects of the postsynaptic form exhibited in the mammal.
65

RNAi-mediated knockdown of chromatin modifier proteins and their effect on long-term memory in Drosophila : a thesis presented to Massey University in partial fulfillment of the requirements for the degree of Master of Science in Genetics

Ellen, Charles January 2008 (has links)
Memory formation in Drosophila melanogaster is composed of two pathways that are genetically distinct, and functionally independent of each other. These are short-term and long-term memory. Short-term memory is a transient phenomenon, located in the cytoplasm of the neuronal cells, which requires no alteration of gene expression. The formation of long-term memory requires a change in gene expression, therefore chromatin-modifying complexes may play an integral part. The mushroom-bodies of Drosophila are a distinct bilateral brain structure and are essential for the formation and recollection of long-term memory. Therefore, an alteration in gene expression within the mushroom bodies is essential to the formation of long-term memory. Disruption of a gene within the mushroom-bodies that resulted in an alteration in the formation of long-term memory would indicate that the gene is involved in long-term memory. In order to investigate the role of the two chromatin-modifying proteins, HDACX and pr-Set7, whose role in memory function is unknown, RNA interference was used to knockdown expression of their respective mRNA. Published GAL4 lines were used to drive down expression in the mushroom bodies. The efficacy of the knockdown on levels of mRNA was measured by quantitative RT-PCR. The effect of these knockdowns on the formation of long-term memory was assayed using conditioned courtship. Additionally, the actual spatial and temporal expression of the GAL4 drivers was investigated using fluorescent proteins, and analysed using fluorescent microscopy. Both pr-set7 and HDACX appear to play a role in long-term memory function. The RNAi-induced knockdown of the individual mRNAs caused impairment in long-term memory formation, although the exact mode of action is still to be elucidated. The levels of mRNA from these knockdowns were reduced within the head, although not to the extent expected. The fluorescent microscopy analysis indicated that the expression of mushroom-body specific GAL4 drivers was more widespread than previously reported.
66

Cross-functional brain imaging of attention, memory, and executive functions : Unity and diversity of neurocognitive component processes

Marklund, Petter January 2006 (has links)
<p>The central theme of the present thesis revolves around the exploration of similarities and differences in brain activity patterns invoked by the component processes underlying mnemonic, executive and attentional functions. The primary aim was to identify and functionally characterize commonly recruited brain regions in terms of shared component processes, which has been a largely neglected area of research in cognitive neuroscience. The vast majority of functional brain imaging investigations of cognition has focused on delineating differences between cognitive functions or processes, with the purpose of isolating the unique functional neuroanatomy that underlies specific cognitive domains. By contrast, the present thesis builds on the results from three imaging studies that focused primarily on detecting commonalities in functional brain activity across different forms of memory processes. In study I, the imaging data from two positron emission tomography (PET) experiments were re-analyzed to identify common activation patterns associated with nine different memory tasks incorporated across the experiments, three each separately indexing working memory, episodic memory, and semantic memory. A generic prefrontal cortex (PFC) network involving discrete subregions of the left hemisphere located in ventrolateral (BA 45/47), dorsolateral (BA 9/44/46), and frontopolar (BA 10) sectors of PFC, as well as a midline portion of the frontal lobes, encompassing the dorsal part of the anterior cingulate cortex (ACC) (BA 24/32), was conjointly recruited across all tasks. In study II, we used a novel mixed blocked/event-related functional magnetic resonance imaging (fMRI) design, which enables separation of brain responses associated with different temporal dynamics to further investigate commonalities of neural activation across working memory, episodic memory, semantic memory, and attention/vigilance. A similar set of common PFC regions, as that discovered in Study I, was found to elicit overlapping brain activity across all memory tasks, with a subset of regions also activated in the attention/vigilance task. Furthermore, the task-induced brain activity was dissociated in terms of the temporal profiles of the evoked neural responses. A common pattern of sustained activity seen across all memory tasks and the attention task involved bilateral (predominantly right-lateralized) ventrolateral PFC (BA 45/47), and the dorsal ACC (BA 24/32), which was assumed to reflect general processes of attention/vigilance. A pattern of sustained activity elicited in all memory tasks, in the absence of attention-related activity, involved the right frontopolar cortex (BA 10), which was assumed to reflect control processes underlying task set maintenance. In addition, common transient activation evoked in the memory tasks relative to the attention task was found in the dorsolateral (BA 9/44) and ventrolateral (BA 47) PFC, the superior parietal cortex (BA 7), and cerebellum. In study III, a mixed fMRI design was used to assess the degree of common brain activity associated with increased executive demand, which was independently manipulated within episodic and working memory. Unitary control modulations involved a shared tonic executive component subserved by fronto-striatal-cerebellar circuitry, assumed to govern top-down context processing throughout task periods, and a stimulus-synchronous phasic component mediated by the intraparietal sulcus (BA 7), assumed to support dynamic shifting of the ‘focus of attention’ among internal representations. Collectively, the theoretical implications of shared neural mechanisms are discussed, with a special focus on human memory and its multifaceted relationships with attention and executive control functions. Finally, the presented imaging data are used to outline a tentative hierarchical neurocognitive model that attempts to give an account of how different unitary component processes might work together during cognitive task performance.</p>
67

Cross-functional brain imaging of attention, memory, and executive functions : Unity and diversity of neurocognitive component processes

Marklund, Petter January 2006 (has links)
The central theme of the present thesis revolves around the exploration of similarities and differences in brain activity patterns invoked by the component processes underlying mnemonic, executive and attentional functions. The primary aim was to identify and functionally characterize commonly recruited brain regions in terms of shared component processes, which has been a largely neglected area of research in cognitive neuroscience. The vast majority of functional brain imaging investigations of cognition has focused on delineating differences between cognitive functions or processes, with the purpose of isolating the unique functional neuroanatomy that underlies specific cognitive domains. By contrast, the present thesis builds on the results from three imaging studies that focused primarily on detecting commonalities in functional brain activity across different forms of memory processes. In study I, the imaging data from two positron emission tomography (PET) experiments were re-analyzed to identify common activation patterns associated with nine different memory tasks incorporated across the experiments, three each separately indexing working memory, episodic memory, and semantic memory. A generic prefrontal cortex (PFC) network involving discrete subregions of the left hemisphere located in ventrolateral (BA 45/47), dorsolateral (BA 9/44/46), and frontopolar (BA 10) sectors of PFC, as well as a midline portion of the frontal lobes, encompassing the dorsal part of the anterior cingulate cortex (ACC) (BA 24/32), was conjointly recruited across all tasks. In study II, we used a novel mixed blocked/event-related functional magnetic resonance imaging (fMRI) design, which enables separation of brain responses associated with different temporal dynamics to further investigate commonalities of neural activation across working memory, episodic memory, semantic memory, and attention/vigilance. A similar set of common PFC regions, as that discovered in Study I, was found to elicit overlapping brain activity across all memory tasks, with a subset of regions also activated in the attention/vigilance task. Furthermore, the task-induced brain activity was dissociated in terms of the temporal profiles of the evoked neural responses. A common pattern of sustained activity seen across all memory tasks and the attention task involved bilateral (predominantly right-lateralized) ventrolateral PFC (BA 45/47), and the dorsal ACC (BA 24/32), which was assumed to reflect general processes of attention/vigilance. A pattern of sustained activity elicited in all memory tasks, in the absence of attention-related activity, involved the right frontopolar cortex (BA 10), which was assumed to reflect control processes underlying task set maintenance. In addition, common transient activation evoked in the memory tasks relative to the attention task was found in the dorsolateral (BA 9/44) and ventrolateral (BA 47) PFC, the superior parietal cortex (BA 7), and cerebellum. In study III, a mixed fMRI design was used to assess the degree of common brain activity associated with increased executive demand, which was independently manipulated within episodic and working memory. Unitary control modulations involved a shared tonic executive component subserved by fronto-striatal-cerebellar circuitry, assumed to govern top-down context processing throughout task periods, and a stimulus-synchronous phasic component mediated by the intraparietal sulcus (BA 7), assumed to support dynamic shifting of the ‘focus of attention’ among internal representations. Collectively, the theoretical implications of shared neural mechanisms are discussed, with a special focus on human memory and its multifaceted relationships with attention and executive control functions. Finally, the presented imaging data are used to outline a tentative hierarchical neurocognitive model that attempts to give an account of how different unitary component processes might work together during cognitive task performance.
68

Revisiting Cognitive and Neuropsychological Novelty Effects

Poppenk, Jordan 06 December 2012 (has links)
Recent proposals have attributed a key role to novelty in the formation of new episodic memories. These proposals are based on evidence of enhanced memory and greater metabolic activity in the hippocampus in response to novel relative to familiar materials. However, such novelty effects are incongruous with long-standing observations that familiar items and lists are associated with better memory than novel ones. In four experiments, I explored possible reasons for this apparent discrepancy. In Experiment 1, I directly tested whether previously observed novelty effects were the result of novelty, discrimination demands, or both. I used linguistic materials (proverbs) to replicate the novelty effect but found it occurred only when familiar items were subject to source confusion. In Experiment 2, to examine better how novelty influences episodic memory, I used experimentally familiar, pre-experimentally familiar, and novel proverbs in a paradigm designed to overcome discrimination demand confounds. Memory was better for both types of familiar proverbs. These cognitive results indicate that familiarity, not novelty, leads to better episodic memory for studied items, regardless of whether familiarity is experimentally induced or based on prior knowledge. I also conducted two fMRI experiments to evaluate the neural correlates of the encoding of novel and familiar forms of information. In Experiment 3, I compared the neural encoding correlates of source memory for novel and familiar visual scenes using fMRI. Replicating previous neuroimaging studies, I observed an anterior novelty-sensitive region of the hippocampus specialized in novelty encoding. Unlike past studies, I also probed for familiarity-encoding regions and identified such regions in the posterior hippocampus. I replicated this pattern in Experiment 4 using proverbs as stimuli. As in Experiment 2, I found the effect held whether familiarity was based on prior knowledge or experimental induction. In both fMRI experiments, anterior and posterior hippocampal regions were functionally connected with different large-scale networks, helping to explain local variation in hippocampal functional specialization in terms of different neural contexts. Together, these experiments show that stimulus familiarity enhances episodic memory for materials, and that novelty is processed differently, not preferentially, in the hippocampus. A new model of hippocampal novelty processing is proposed.
69

Revisiting Cognitive and Neuropsychological Novelty Effects

Poppenk, Jordan 06 December 2012 (has links)
Recent proposals have attributed a key role to novelty in the formation of new episodic memories. These proposals are based on evidence of enhanced memory and greater metabolic activity in the hippocampus in response to novel relative to familiar materials. However, such novelty effects are incongruous with long-standing observations that familiar items and lists are associated with better memory than novel ones. In four experiments, I explored possible reasons for this apparent discrepancy. In Experiment 1, I directly tested whether previously observed novelty effects were the result of novelty, discrimination demands, or both. I used linguistic materials (proverbs) to replicate the novelty effect but found it occurred only when familiar items were subject to source confusion. In Experiment 2, to examine better how novelty influences episodic memory, I used experimentally familiar, pre-experimentally familiar, and novel proverbs in a paradigm designed to overcome discrimination demand confounds. Memory was better for both types of familiar proverbs. These cognitive results indicate that familiarity, not novelty, leads to better episodic memory for studied items, regardless of whether familiarity is experimentally induced or based on prior knowledge. I also conducted two fMRI experiments to evaluate the neural correlates of the encoding of novel and familiar forms of information. In Experiment 3, I compared the neural encoding correlates of source memory for novel and familiar visual scenes using fMRI. Replicating previous neuroimaging studies, I observed an anterior novelty-sensitive region of the hippocampus specialized in novelty encoding. Unlike past studies, I also probed for familiarity-encoding regions and identified such regions in the posterior hippocampus. I replicated this pattern in Experiment 4 using proverbs as stimuli. As in Experiment 2, I found the effect held whether familiarity was based on prior knowledge or experimental induction. In both fMRI experiments, anterior and posterior hippocampal regions were functionally connected with different large-scale networks, helping to explain local variation in hippocampal functional specialization in terms of different neural contexts. Together, these experiments show that stimulus familiarity enhances episodic memory for materials, and that novelty is processed differently, not preferentially, in the hippocampus. A new model of hippocampal novelty processing is proposed.
70

Influence du tempérament sur les performances d'apprentissage et de mémoire chez le cheval equus caballus : étude de sa modulation par le stress / Relationship between temperament and learning and memory performances in horses Equus caballus : modulation by stress

Valenchon, Mathilde 01 July 2013 (has links)
L’objectif de cette thèse était de caractériser les relations entre tempérament et performances cognitives chez le cheval et leur modulation par le stress. Le tempérament était évalué selon cinq dimensions: la peur, la réactivité à l’Homme, la grégarité, la sensibilité tactile et l’activité locomotrice. Les relations entre ces dimensions et les performances lors de tâches instrumentales et de mémoire de travail ont été recherchées. La dimension de peur semble particulièrement essentielle et son influence dépend du stress : elle aurait un effet positif sur les performances cognitives en cas de stress intrinsèque, c’est-à-dire lorsque la tâche est elle-même source de stress, et un effet négatif en cas de stress extrinsèque. En l’absence de facteur de stress, ces relations sont plus contrastées. Dans une moindre mesure, des relations entre performances cognitives et les autres dimensions de tempérament ont été observées. L’activité locomotrice a une influence positive sur les performances qui ne ressort qu’en présence de facteurs de stress, qu’ils soient extrinsèques ou intrinsèques. Ce travail de thèse permet de contribuer à la caractérisation des liens entre tempérament et cognition, qui est un champ d’étude en pleine expansion, et met en évidence l’importance du stress dans la compréhension ces relations. / The aim of the current thesis was to characterize the relationships between temperament and cognitive performances in horses and their modulation when influenced by stress. The temperament was evaluated considering five dimensions: fearfulness, reactivity to humans, gregariousness, tactile sensitivity and locomotor activity. The relationships between these dimensions and performances during instrumental learning tasks as well as working memory tests have been investigated. The dimension of fearfulness seems particularly important and its influence depends on the presence or absence of stressor. Fearfulness has a positive effect on performances in case of intrinsic stress, i.e. the cognitive task is the source of stress; and a negative effect in case of extrinsic stress. Without any stressor, these relationships are more contrasted. To a lesser extent, relationships between cognitive performances and the other dimensions of temperament have been found. Especially, the dimension of locomotor activity has a positive effect on performances that stands out only in presence of stressors, whether they are intrinsic or extrinsic. This thesis contributes to the characterization of links between temperament and cognition, which is a field of study in a wide expansion, and shows the importance of stress in order to understand these relations.

Page generated in 0.1144 seconds