Spelling suggestions: "subject:"cow density paritycheck modes"" "subject:"cow density paracheck modes""
21 |
Efficient Message Passing Decoding Using Vector-based MessagesGrimnell, Mikael, Tjäder, Mats January 2005 (has links)
The family of Low Density Parity Check (LDPC) codes is a strong candidate to be used as Forward Error Correction (FEC) in future communication systems due to its strong error correction capability. Most LDPC decoders use the Message Passing algorithm for decoding, which is an iterative algorithm that passes messages between its variable nodes and check nodes. It is not until recently that computation power has become strong enough to make Message Passing on LDPC codes feasible. Although locally simple, the LDPC codes are usually large, which increases the required computation power. Earlier work on LDPC codes has been concentrated on the binary Galois Field, GF(2), but it has been shown that codes from higher order fields have better error correction capability. However, the most efficient LDPC decoder, the Belief Propagation Decoder, has a squared complexity increase when moving to higher order Galois Fields. Transmission over a channel with M-PSK signalling is a common technique to increase spectral efficiency. The information is transmitted as the phase angle of the signal. The focus in this Master’s Thesis is on simplifying the Message Passing decoding when having inputs from M-PSK signals transmitted over an AWGN channel. Symbols from higher order Galois Fields were mapped to M-PSK signals, since M-PSK is very bandwidth efficient and the information can be found in the angle of the signal. Several simplifications of the Belief Propagation has been developed and tested. The most promising is the Table Vector Decoder, which is a Message Passing Decoder that uses a table lookup technique for check node operations and vector summation as variable node operations. The table lookup is used to approximate the check node operation in a Belief Propagation decoder. Vector summation is used as an equivalent operation to the variable node operation. Monte Carlo simulations have shown that the Table Vector Decoder can achieve a performance close to the Belief Propagation. The capability of the Table Vector Decoder depends on the number of reconstruction points and the placement of them. The main advantage of the Table Vector Decoder is that its complexity is unaffected by the Galois Field used. Instead, there will be a memory space requirement which depends on the desired number of reconstruction points.
|
22 |
Coding for Cooperative CommunicationsUppal, Momin Ayub 2010 August 1900 (has links)
The area of cooperative communications has received tremendous research interest
in recent years. This interest is not unwarranted, since cooperative communications
promises the ever-so-sought after diversity and multiplexing gains typically
associated with multiple-input multiple-output (MIMO) communications, without
actually employing multiple antennas. In this dissertation, we consider several cooperative
communication channels, and for each one of them, we develop information
theoretic coding schemes and derive their corresponding performance limits. We next
develop and design practical coding strategies which perform very close to the information
theoretic limits.
The cooperative communication channels we consider are: (a) The Gaussian relay
channel, (b) the quasi-static fading relay channel, (c) cooperative multiple-access
channel (MAC), and (d) the cognitive radio channel (CRC). For the Gaussian relay
channel, we propose a compress-forward (CF) coding strategy based on Wyner-Ziv
coding, and derive the achievable rates specifically with BPSK modulation. The CF
strategy is implemented with low-density parity-check (LDPC) and irregular repeataccumulate
codes and is found to operate within 0.34 dB of the theoretical limit. For
the quasi-static fading relay channel, we assume that no channel state information
(CSI) is available at the transmitters and propose a rateless coded protocol which
uses rateless coded versions of the CF and the decode-forward (DF) strategy. We
implement the protocol with carefully designed Raptor codes and show that the implementation suffers a loss of less than 10 percent from the information theoretical limit. For
the MAC, we assume quasi-static fading, and consider cooperation in the low-power
regime with the assumption that no CSI is available at the transmitters. We develop
cooperation methods based on multiplexed coding in conjunction with rateless
codes and find the achievable rates and in particular the minimum energy per bit to
achieve a certain outage probability. We then develop practical coding methods using
Raptor codes, which performs within 1.1 dB of the performance limit. Finally, we
consider a CRC and develop a practical multi-level dirty-paper coding strategy using
LDPC codes for channel coding and trellis-coded quantization for source coding. The
designed scheme is found to operate within 0.78 dB of the theoretical limit.
By developing practical coding strategies for several cooperative communication
channels which exhibit performance close to the information theoretic limits, we show
that cooperative communications not only provide great benefits in theory, but can
possibly promise the same benefits when put into practice. Thus, our work can be
considered a useful and necessary step towards the commercial realization of cooperative
communications.
|
23 |
Advanced Coding Techniques For Fiber-Optic Communications And Quantum Key DistributionZhang, Yequn January 2015 (has links)
Coding is an essential technology for efficient fiber-optic communications and secure quantum communications. In particular, low-density parity-check (LDPC) coding is favoured due to its strong error correction capability and high-throughput implementation feasibility. In fiber-optic communications, it has been realized that advanced high-order modulation formats and soft-decision forward error correction (FEC) such as LDPC codes are the key technologies for the next-generation high-speed optical communications. Therefore, energy-efficient LDPC coding in combination with advanced modulation formats is an important topic that needs to be studied for fiber-optic communications. In secure quantum communications, large-alphabet quantum key distribution (QKD) is becoming attractive recently due to its potential in improving the efficiency of key exchange. To recover the carried information bits, efficient information reconciliation is desirable, for which the use of LDPC coding is essential. In this dissertation, we first explore different efficient LDPC coding schemes for optical transmission of polarization-division multiplexed quadrature-amplitude modulation (QAM) signals. We show that high energy efficiency can be achieved without incurring extra overhead and complexity. We then study the transmission performance of LDPC-coded turbo equalization for QAM signals in a realistic fiber link as well as that of pragmatic turbo equalizers. Further, leveraging the polarization freedom of light, we expand the signal constellation into a four-dimensional (4D) space and evaluate the performance of LDPC-coded 4D signals in terms of transmission reach. Lastly, we study the security of a proposed weak-coherent-state large-alphabet QKD protocol and investigate the information reconciliation efficiency based on LDPC coding.
|
24 |
Physical-layer security: practical aspects of channel coding and cryptographyHarrison, Willie K. 21 June 2012 (has links)
In this work, a multilayer security solution for digital communication systems is provided by considering the joint effects of physical-layer security channel codes with application-layer cryptography. We address two problems: first, the cryptanalysis of error-prone ciphertext; second, the design of a practical physical-layer security coding scheme. To our knowledge, the cryptographic attack model of the noisy-ciphertext attack is a novel concept. The more traditional assumption that the attacker has the ciphertext is generally assumed when performing cryptanalysis. However, with the ever-increasing amount of viable research in physical-layer security, it now becomes essential to perform the analysis when ciphertext is unreliable. We do so for the simple substitution cipher using an information-theoretic framework, and for stream ciphers by characterizing the success or failure of fast-correlation attacks when the ciphertext contains errors. We then present a practical coding scheme that can be used in conjunction with cryptography to ensure positive error rates in an eavesdropper's observed ciphertext, while guaranteeing error-free communications for legitimate receivers. Our codes are called stopping set codes, and provide a blanket of security that covers nearly all possible system configurations and channel parameters. The codes require a public authenticated feedback channel. The solutions to these two problems indicate the inherent strengthening of security that can be obtained by confusing an attacker about the ciphertext, and then give a practical method for providing the confusion. The aggregate result is a multilayer security solution for transmitting secret data that showcases security enhancements over standalone cryptography.
|
25 |
Performance Of Pseudo-random And Quasi-cyclic Low Density Parity Check CodesKazanci, Onur Husnu 01 December 2007 (has links) (PDF)
Low Density Parity Check (LDPC) codes are the parity check codes of long block length, whose parity check matrices have relatively few non-zero entries. To improve the performance at relatively short block lengths, LDPC codes are constructed by either pseudo-random or quasi-cyclic methods instead of random construction methods. In this thesis, pseudo-random code construction methods, the effects of closed loops and the graph connectivity on the performance of pseudo-random LDPC codes are investigated. Moreover, quasi-cyclic LDPC codes, which have encoding and storage advantages over pseudo-random LDPC codes, their construction methods and performances are reviewed. Finally, performance comparison between pseudo-random and quasi-cyclic LDPC codes is given for both regular and irregular cases.
|
26 |
Reliable Communications under Limited Knowledge of the ChannelYazdani, Raman Unknown Date
No description available.
|
27 |
A Modified Sum-Product Algorithm over Graphs with Short CyclesRaveendran, Nithin January 2015 (has links) (PDF)
We investigate into the limitations of the sum-product algorithm for binary low density parity check (LDPC) codes having isolated short cycles. Independence assumption among messages passed, assumed reasonable in all configurations of graphs, fails the most
in graphical structures with short cycles. This research work is a step forward towards
understanding the effect of short cycles on error floors of the sum-product algorithm.
We propose a modified sum-product algorithm by considering the statistical dependency
of the messages passed in a cycle of length 4. We also formulate a modified algorithm in
the log domain which eliminates the numerical instability and precision issues associated
with the probability domain. Simulation results show a signal to noise ratio (SNR) improvement for the modified sum-product algorithm compared to the original algorithm.
This suggests that dependency among messages improves the decisions and successfully
mitigates the effects of length-4 cycles in the Tanner graph. The improvement is significant at high SNR region, suggesting a possible cause to the error floor effects on such graphs. Using density evolution techniques, we analysed the modified decoding algorithm. The threshold computed for the modified algorithm is higher than the threshold computed for the sum-product algorithm, validating the observed simulation results. We also prove that the conditional entropy of a codeword given the estimate obtained using the modified algorithm is lower compared to using the original sum-product algorithm.
|
28 |
Fountain codes and their typical application in wireless standards like edgeGrobler, Trienko Lups 26 January 2009 (has links)
One of the most important technologies used in modern communication systems is channel coding. Channel coding dates back to a paper published by Shannon in 1948 [1] entitled “A Mathematical Theory of Communication”. The basic idea behind channel coding is to send redundant information (parity) together with a message to make the transmission more error resistant. There are different types of codes that can be used to generate the parity required, including block, convolutional and concatenated codes. A special subclass of codes consisting of the codes mentioned in the previous paragraph, is sparse graph codes. The structure of sparse graph codes can be depicted via a graphical representation: the factor graph which has sparse connections between its elements. Codes belonging to this subclass include Low-Density-Parity-Check (LDPC) codes, Repeat Accumulate (RA), Turbo and fountain codes. These codes can be decoded by using the belief propagation algorithm, an iterative algorithm where probabilistic information is passed to the nodes of the graph. This dissertation focuses on noisy decoding of fountain codes using belief propagation decoding. Fountain codes were originally developed for erasure channels, but since any factor graph can be decoded using belief propagation, noisy decoding of fountain codes can easily be accomplished. Three fountain codes namely Tornado, Luby Transform (LT) and Raptor codes were investigated during this dissertation. The following results were obtained: <ol> <li>The Tornado graph structure is unsuitable for noisy decoding since the code structure protects the first layer of parity instead of the original message bits (a Tornado graph consists of more than one layer).</li> <li> The successful decoding of systematic LT codes were verified.</li> <li>A systematic Raptor code was introduced and successfully decoded. The simulation results show that the Raptor graph structure can improve on its constituent codes (a Raptor code consists of more than one code).</li></ol> Lastly an LT code was used to replace the convolutional incremental redundancy scheme used by the 2G mobile standard Enhanced Data Rates for GSM Evolution (EDGE). The results show that a fountain incremental redundancy scheme outperforms a convolutional approach if the frame lengths are long enough. For the EDGE platform the results also showed that the fountain incremental redundancy scheme outperforms the convolutional approach after the second transmission is received. Although EDGE is an older technology, it still remains a good platform for testing different incremental redundancy schemes, since it was one of the first platforms to use incremental redundancy. / Dissertation (MEng)--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / MEng / unrestricted
|
29 |
Generalized belief propagation based TDMR detector and decoderMatcha, Chaitanya Kumar, Bahrami, Mohsen, Roy, Shounak, Srinivasa, Shayan Garani, Vasic, Bane 07 1900 (has links)
Two dimensional magnetic recording (TDMR) achieves high areal densities by reducing the size of a bit comparable to the size of the magnetic grains resulting in two dimensional (2D) inter symbol interference (ISI) and very high media noise. Therefore, it is critical to handle the media noise along with the 2D ISI detection. In this paper, we tune the generalized belief propagation (GBP) algorithm to handle the media noise seen in TDMR. We also provide an intuition into the nature of hard decisions provided by the GBP algorithm. The performance of the GBP algorithm is evaluated over a Voronoi based TDMR channel model where the soft outputs from the GBP algorithm are used by a belief propagation (BP) algorithm to decode low-density parity check (LDPC) codes.
|
30 |
Experimental Studies On A New Class Of Combinatorial LDPC CodesDang, Rajdeep Singh 05 1900 (has links)
We implement a package for the construction of a new class of Low Density Parity Check (LDPC) codes based on a new random high girth graph construction technique, and study the performance of the codes so constructed on both the Additive White Gaussian Noise (AWGN) channel as well as the Binary Erasure Channel (BEC). Our codes are “near regular”, meaning thereby that the the left degree of any node in the Tanner graph constructed varies by at most 1 from the average left degree and so also the right degree. The simulations for rate half codes indicate that the codes perform better than both the regular Progressive Edge Growth (PEG) codes which are constructed using a similar random technique, as well as the MacKay random codes. For high rates the ARG (Almost Regular high Girth) codes perform better than the PEG codes at low to medium SNR’s but the PEG codes seem to do better at high SNR’s. We have tried to track both near codewords as well as small weight codewords for these codes to examine the performance at high rates. For the binary erasure channel the performance of the ARG codes is better than that of the PEG codes. We have also proposed a modification of the sum-product decoding algorithm, where a quantity called the “node credibility” is used to appropriately process messages to check nodes. This technique substantially reduces the error rates at signal to noise ratios of 2.5dB and beyond for the codes experimented on. The average number of iterations to achieve this improved performance is practically the same as that for the traditional sum-product algorithm.
|
Page generated in 0.1912 seconds