• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 2
  • Tagged with
  • 16
  • 16
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Contributions à la modélisation des structures minces et d'assemblages multicouches

Serpilli, Michele 13 June 2008 (has links) (PDF)
Cette thèse est divisée en deux parties: (i) la première partie concerne une nouvelle déduction purement géométrique de la cinématique des structures minces, notamment la cinématique des modèles classiques de plaque et de coque; (ii) la deuxième partie est relative à la modélisation des inclusions de grande rigidité dans un solide tridimensionnel et à la modélisation des poutres stratifiées à l'aide de la méthode des développements asymptotiques. (i) La dérivation géométrique de la cinématique des plaques et des coques est construite à partir des équations de compatibilité de Saint-Venant et de la formule intégrale de Cesàro-Volterra. L'appellation "géométrique" est due au fait qu'aucun renseignement sur la loi constitutive du matériau, sur l'équilibre et sur les forces appliquées n'a été utilisé. On considère un domaine de type plaque (ou coque) simplement connexe et on applique un développement asymptotique formel aux équations de Saint-Venant et à la formule de Cesàro-Volterra. En caractérisant les termes principaux du développement, on retrouve les hypothèses cinématiques des modèles de plaque de Kirchhoff-Love (ou Kirchhoff-Love généralisé dans le cas des coques) et de Reissner-Mindlin (ou Naghdi dans le cas des coques). (ii) La deuxième partie concerne l'étude asymptotique des conditions de transmission entre une couche mince de type coque et le solide 3D qui l'entoure. On déduit les problèmes limites dans le cas où les modules élastiques de la couche intermédiaire sont de l'ordre 1/epsilon et 1/epsilon^3 par rapport aux modules du solide 3D. De plus, on étudie le comportement asymptotique de trois différentes poutres multicouches en changeant les ordres de grandeur entre les épaisseurs de chaque couche et leurs respectifs modules élastiques.
12

Micromechanical modeling of imperfect interfaces and applications

Raffa, Maria Letizia 27 November 2015 (has links)
Le rôle crucial des interfaces solides dans les problèmes de structures dans de nombreux domaines de l'Ingénierie est désormais bien connue et c'est certainement un sujet de grand intérêt scientifique. Aujourd'hui, la modélisation analytique et numérique des interfaces structurelles représentent un défi du fait desphénomènes physiques très complexes qu'il faut prendre en compte (tels que adhésion, contact non-conforme,microfissuration, frottement, contact unilatéral) autant que le besoin d'avoir des méthodes numériques qui soient capables de traiter à la fois la faible épaisseur des zones d'interface et les sauts dans les champs physiques concernés. Cette thèse vise à développer un outil analytique cohérent et général qui soit capable de dépasser les limitations des stratégies existantes et concernant la modélisation des interfaces emph{soft} et emph{hard} caractérisées par une microfissuration évolutive. Une nouvelle approche, appelée emph{Imperfect Interface Approach} (IIA), est proposée. Elle couple de manière cohérente arguments de théorie asymptotique et techniques d'homogénéisation pour les milieux microfissurés dans le cadre de la emph{Non-Interacting Approximation} (NIA). Dans le cadre de l'élasticité linéaire, l'IIA est employée avec succès pour obtenir un ensemble de modèles d'interfaces imparfaites.En généralisant la méthode de développement asymptotique à la théorie élastique des déformations finies, un modèle d'interface soft non-linéaire a été dérivé. Comme une nouvelle application, l'IIA est appliquée afin de formuler un modèle de contact non-conforme à raideurs equivalents. Simulations numériques appliquées à la maçonnerie ont été effectuées. / The crucial role of solid interfaces in structural problems in several engineering fields is well-established and they represent certainly a scientific topic of great interest. Nowadays, analytical and numerical modeling of structural interfaces are challenging tasks, due to the complex physical phenomena to take into account (such as adhesion, non-conforming contact, microcracking, friction, unilateral contact), as well as to the need of numerical methods suitable for treating small thickness of the interface zones and jumps in the physically relevant fields.Present PhD thesis aims to develop a consistent and general analytical tool able to overcome some modeling shortcomings of available modeling strategies accounting for soft and hard interfaces, and characterized by evolving microcracking. A novel approach, referred to as emph{Imperfect Interface Approach} (IIA), is proposed. It consistently couples asymptotic arguments and homogenization techniques for microcracked media in the framework of the Non-Interacting Approximation (NIA). In the context of linear elasticity, the IIA is successfully employed to derive a set of imperfect interface. By generalizing the matched asymptotic expansion method to finite strains, a nonlinear soft interface model has been derived. As a new general application, the IIA is applied to formulate a spring-type model for non-conforming contact. Finally, numerical simulations applying the soft interface models obtained in both linear and nonlinear cases to masonry structures, are carried out, showing effectiveness and soundness of the proposed formulation.
13

Développement et utilisation de méthodes asymptotiques d'ordre élevé pour la résolution de problèmes de diffraction inverse. / On the development and use of higher-order asymptotics for solving inverse scattering problems.

Cornaggia, Rémi 29 September 2016 (has links)
L'objectif de ce travail fut le développement de nouvelles méthodes pour aborder certainsproblèmes inverses en élasticité, en tirant parti de la présence d'un petit paramètre dans ces problèmespour construire des approximation asymptotiques d'ordre élevé.La première partie est consacrée à l'identification de la taille et la position d'une inhomogénéité$BTrue$ enfouie dans un domaine élastique tridimensionnel. Nous nous concentrons sur l'étude defonctions-co^uts $Jbb(Br)$ quantifiant l'écart entre $BTrue$ et une hétérogénéité ``test'' $Br$. Unetelle fonction-co^ut peut en effet être minimisée par rapport à tout ou partie des caractéristiques del'inclusion ``test'' $Br$ (position, taille, propriétés mécaniques ...) pour établir la meilleurecorrespondance possible entre $Br$ et $BTrue$. A cet effet, nous produisons un développement asymptotique de $Jbb$en la taille $incsize$ de $Br$, qui en constitue une approximation polynomiale plus aisée à minimiser. Cedéveloppement, établi jusqu'à l'ordre $O(incsize^6)$, est justifié par une estimation du résidu. Uneméthode d'identification adaptée est ensuite présentée et illustrée par des exemples numériques portant surdes obstacles de formes simples dans l'espace libre $Rbb^3$.L'objet de la seconde partie est de caractériser une inclusion microstructurée de longueur $ltot$, modéliséeen une dimension, composée de couches de deux matériaux alternés périodiquement, en supposant que les plusbasses de ses fréquences propres de transmission (TEs) sont connues. Ces fréquences sont les valeurs propres d'unproblème dit de transmission intérieur (ITP). Afin de disposer d'un modèle propiceà l'inversion, tout en prenant en compte les effets de la microstructure, nous nous reposons sur des approximationsde l'ITP exact obtenues par homogénéisation. A partir du modèle homogénéisé d'ordre 0, nous établissonstout d'abord une méthode simple pour déterminer les paramètres macroscopiques ($ltot$ et contrastes matériaux)d'une telle inclusion. Pour avoir accès à la période de la microstructure, nous nous intéressons ensuite àdes modèles homogénéisés d'ordre élevé, pour lesquels nous soulignons le besoin de conditions aux limitesadaptées. / The purpose of this work was to develop new methods to address inverse problems in elasticity,taking advantage of the presence of a small parameter in the considered problems by means of higher-order asymptoticexpansions.The first part is dedicated to the localization and size identification of a buried inhomogeneity $BTrue$ in a 3Delastic domain. In this goal, we focused on the study of functionals $Jbb(Br)$ quantifying the misfit between $BTrue$and a trial homogeneity $Br$. Such functionals are to be minimized w.r.t. some or all the characteristics of the trialinclusion $Br$ (location, size, mechanical properties ...) to find the best agreement with $BTrue$. To this end, weproduced an expansion of $Jbb$ with respect to the size $incsize$ of $Br$, providing a polynomial approximationeasier to minimize. This expansion, established up to $O(incsize^6)$ in a volume integral equations framework, isjustified by an estimate of the residual. A suited identification procedure is then given and supported by numericalillustrations for simple obstacles in full-space $Rbb^3$.The main purpose of this second part is to characterize a microstructured two-phases layered1D inclusion of length $ltot$, supposing we already know its low-frequency transmission eigenvalues (TEs). Thoseare computed as the eigenvalues of the so-called interior transmission problem (ITP). To provide a convenient invertiblemodel, while accounting for the microstructure effects, we then relied on homogenized approximations of the exact ITPfor the periodic inclusion. Focusing on the leading-order homogenized ITP, we first provide a straightforward method torecover the macroscopic parameters ($ltot$ and material contrast) of such inclusion. To access to the period of themicrostructure, higher-order homogenization is finally addressed, with emphasis on the need for suitable boundaryconditions.
14

Développement de méthodes asymptotiques pour l'étude des interactions entre atomes froids ; détermination de longueurs de diffusion du sodium et du césium

T'Jampens, BenoÎt 17 December 2002 (has links) (PDF)
Une connaissance précise des propriétés de collision entre atomes froids est essentielle pour l'étude de la condensation de Bose-Einstein ou la formation de molécules froides. Dans ces expériences, les phénomènes importants ont lieu principalement à des distances interatomiques grandes, c'est-à-dire dans la zone asymptotique. Nous avons développé une méthode purement asymptotique qui nous permet de décrire les propriétés collisionnelles des atomes alcalins froids sans avoir recours à la partie interne des potentiels moléculaires, qui est connue avec une précision moindre. Le point clé de la méthode est l'utilisation des lignes de noeuds, qui sont des lignes joignant les noeuds des fonctions d'onde radiales successives proches du seuil de dissociation du fondamental. Dans le cadre de l'approximation de Born-Oppenheimer, l'utilisation de ces lignes de noeuds, obtenues par intégration de l'équation de Schrödinger radiale dans la zone asymptotique uniquement, fournit un moyen simple pour déterminer des longueurs de diffusion à partir des positions expérimentales de niveaux liés. La méthode a ensuite été étendue au cas des potentiels couplés. Elle apparaît comme une véritable méthode paramétrique dans laquelle quelques paramètres décrivant des lignes de noeuds bien choisies remplacent la partie interne des potentiels. Ces paramètres sont ajustés sur des résultats expérimentaux. Une fois ces paramètres connus, toutes les propriétés de collision telles que les longueurs de diffusion, les décalage en fréquence des horloges atomiques ou encore les résonnances de Feshbach induites par un champ magnétique, peuvent en principe être déduites. Cette méthode a été utilisée pour obtenir les propriétés de collision des atomes de sodium et de césium ultrafroids.
15

Asymptotic and numerical methods for fluid-structure interaction problems and applications to the materials science and engineering / Méthodes asymptotiques et numériques pour les problèmes d’interaction fluide-solide et applications en science des matériaux et en science pour ingénieur

Malakhova-Ziablova, Irina 12 February 2015 (has links)
Le but de cette thèse pluridisciplinaire est d’étudier le problème de l’interaction fluide-structure à partir du point de vue mathématique et physique. Des problèmes d’interaction d’un fluide visqueux avec une structure élastique décrivent, par exemple, des interactions entre le manteau terrestre et de la croûte terrestre, le sang et la paroi vasculaire dans un vaisseau sanguin, etc. En génie l’interaction fluide visqueux-structure apparaît lors de la formation de solution colloïdale quand un laser passe à travers le fluide influençant le substrat (ablation laser dans un liquide). Fusion sélective au laser (FSL) est utilisée pour étudier le comportement des contraintes résiduelles en dépendance des propriétés thermoélastiques et mécaniques du matériau et des formes variées des cordons rechargés. A partir du point de vue mathématique le système couplé “flux fluide visqueux – plaque mince élastique” en 3D lorsque l’épaisseur de la plaque, E, tend vers zéro, tandis que la densité et le module de Young du matériau élastique sont d’ordre 1 et E-3, respectivement, est considéré. Le solide est couché par le fluide qui occupe un domaine épais. La modélisation multi-échelle est effectuée pour la partie élastique. Le développement asymptotique complet est construit lorsque E tend vers zéro. L’existence, la régularité et l’unicité de la solution pour le problème initial sont étudiées au moyen de techniques variationnelles. La méthode de décomposition asymptotique partielle du domaine est appliquée pour le système couplé. L’erreur de la méthode est évaluée / The goal of this multi-disciplinary thesis is to study the fluid-structure interaction problem from mathematical and physical viewpoints. Viscous fluid-structure interaction problems describe, for example, interactions between the Earth mantle and the Earth crust, the blood and the vascular wall in a blood vessels, etc. In engineering viscous fluid-structure interaction appears during colloidal solution formation when a laser pierce through the fluid influencing the substrate (laser ablation in a liquid). Selective laser melting (SLM) is used to study the behavior of residual stresses depending on the thermoelastic and mechanical properties of the material and on various forms of reloaded beads. From mathematical point of view the coupled system “viscous fluid flow-thin elastic plate” in 3D when the thickness of the plate, E, tends to zero, while the density and the Young’s modulus of the plate material are of order 1 and E-3, respectively, is considered. The plate lies on the fluid which occupies a thick domain. The multi-scale modeling is performed for the elastic part. The complete asymptotic expansion is constructed when E tends to zero. The existence, the regularity and the uniqueness of the solution for the original problem are studied by means of variational techniques. The method of asymptotic partial domain decomposition is applied for the coupled system. The error of the method is evaluated
16

Etude de la signature EM bistatique d'une surface maritime hétérogène avec prise en compte des phénomènes hydrodynamiques / Study of EM bistatic signature of a heterogeneous sea surface with consideration of hydrodynamic phenomena

Ben Khadra, Slahedine 07 December 2012 (has links)
Le travail réalisé dans cette thèse s'intègre globalement dans le cadre de I'observation et la surveillance maritime.Afin d'améliorer la reconnaissance et I'identification automatique de cibles noyées dans un environnement perturbé, nous avons opté à la fusion de différentes connaissances et informations concernant une scène observée à distance par des capteurs micro-ondes. En effet, plusieurs phénomènes physiques co-existent et perturbent la propagation des ondes électromagnétiques au-dessus d'une surface et notamment au-dessus d'une surface maritime hétérogène (la réfraction due aux gradients d'indice, la rugosité de la surface de mer, les effets hydrodynamiques non linéaires du type vagues déferlantes, la présence d'objets, les polluants, sillage de navires, zones côtières, ...). Dans ce contexte, le travail présenté dans cette thèse porte sur l'étude de la signature électromagnétique (coefficients de diffusion) d'une surface maritime hétérogène avec la prise en compte des phénomènes hydrodynamiques (linéaires : vagues de capillarité et de gravité, non linéaires : vagues déferlantes). Cette estimation de la signature électromagnétique est effectuée en configuration bistatique (monostatique et propagation avant) et en bande X. L'étude complète de cette problématique est difficile. En effet, le déferlement est un processus dissipatif de l'énergie qui correspond à la dernière étape de la vie d'une vague et qui a donc le plus souvent lieu à I'approche du rivage. Ce phénomène non linéaire produit un pic de mer qui est une augmentation rapide des coefficients de diffusion et qui peut dépasser 10 dB dans une période de 100 ms. Ce pic peut conduire à des échos parasites, qui peuvent être identifiés comme des cibles virtuelles, et par la suite elles peuvent perturber le système de détection radar (fausses alarmes). Par conséquent, pour améliorer le processus de détection et pour réduire le taux de fausses alarmes, il est important de distinguer entre les cibles et les pics de mer générés par des vagues déferlantes. Ceci constitue I’une des motivations et aussi I'intérêt d'étudier la signature électromagnétique des vagues déferlantes dans différentes configurations d'observation de sorte que nous puissions facilement indiquer la présence voir I'identification des pics de mer. Pour contribuer à cette problématique, nous avons proposé une méthodologie basée sur un modèle électromagnétique hybride basé sur une combinaison d'une part de méthodes asymptotiques(SPMI utilisée dans le cadre de ce travail) pour simuler la réponse radar des vagues linéaire (vagues de capillarité et de gravité décrites via le spectre de mer d'Elfouhaily), et d'autre part de méthodes exactes (MoM, FB < Forward-Backward ) retenue dans le travail présenté dans ce manuscrit) pour calculer la réponse électromagnétique des vagues non-linéaires (profils considérés sont issus des résultats du code LONGTANK). Afìn de compléter l'étude théorique et les simulations réalisées, nous avons effectué une phase d'évaluation et de validation par des mesures de signature radar réalisées dans la chambre anéchoïque de I'Ensta Bretagne. / The work done in this thesis fits generally under the observation and maritime surveillance. To improve the detection and automatic identification of targets embedded in a noisy environment targets, we opted for the fusion of different knowledge and information regarding a remotely observed scene by microwave sensors. Indeed, several physical phenomena co-exist and interfere with the propagation of electromagnetic waves over a heterogeneous sea surface (the refraction due to the index gradients, the roughness of the sea surface, nonlinear hydrodynamic effects like waves breaking, the presence of objects, pollutants, ship wake, coastal areas,..). In this context, the work presented in this thesis focuses on the study of electromagnetic signature (diffusion coefficients) of a heterogeneous sea surface with consideration of hydrodynamic phenomena (linear: capillary and gravity waves, nonlinear: breaking waves). The electromagnetic signature is performed in bistatic configuration (monostatic and forward propagating) and in X-band. The complete study of this problem is difficult.Indeed, the breaking wave is a dissipative process of energy that corresponds to the last stage of the life of a wave and therefore has most often held in the shore. This nonlinear phenomenon produces a sea peak which is a rapid increase of the diffusion coefficients and can exceed l0 dB in a 100 ms period. This peak can lead to clutter, which can be identified as virtual targets, and then they can disrupt the detection radar system (false alarms). Therefore, to improve the detection process and reduce the false alarm rate, it is important to distinguish between targets and sea peaks generated by breaking waves. This represents one of the motivations and also the interest to study the electromagnetic signature of breaking waves in different observation configurations so that we can easily detect and identify the sea peaks. To solve this problem, we proposed a methodology based on a hybrid electromagnetic model which is on a combination of asymptotic methods (SPMI used in this work) to simulate the radar response of linear waves (capillary and gravity waves described via the Elfouhaily sea spectrum) and an exact methods, the method of moment (the FB "Forward-Backward" method is used in this work), to calculate the electromagnetic response of nonlinear waves (profiles are produced by the LONGTANK code). To complement the theoretical study and simulations, we carried out an evaluation and validation phase by measuring the radar signature of breaking wave profiles in the ENSTA Bretagne anechoic chamber.

Page generated in 0.0772 seconds