• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 197
  • 97
  • 15
  • 1
  • Tagged with
  • 309
  • 114
  • 85
  • 71
  • 68
  • 63
  • 62
  • 56
  • 52
  • 51
  • 51
  • 49
  • 47
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Méthodologies pour la modélisation des couches fines et du déplacement en contrôle non destructif par courants de Foucault : application aux capteurs souples / Methodologies for modeling thin layers and displacement in non-destructive testing by eddy currents : application to flexible sensors

Zaidi, Houda 10 December 2012 (has links)
Ce travail de thèse porte sur le développement d’outils de modélisation pour le contrôle non destructif (CND) par courants de Foucault (CF). Il existe actuellement une tendance à la mise en œuvre de capteurs souples qui représentent une solution pertinente pour inspecter des pièces ayant une surface complexe. L’objectif principal de cette thèse est l’élaboration de techniques permettant la modélisation de ce type de capteurs au sein de la méthode des éléments finis (MEF).Lors de la modélisation d’un capteur souple avec la MEF, trois problématiques se manifestent. La première concerne le maillage des milieux fins qui apparaissent dans ce type de configuration (distance capteur-pièce contrôlée, bobine plate, revêtement fin...). Le maillage de ces régions par des éléments simpliciaux peut poser des problèmes numériques (éléments déformés quand un maillage grossier est considéré et grand nombre d’inconnues quand un maillage fin est utilisé). La deuxième problématique concerne le déplacement du capteur. Si les différents sous-domaines géométriques (air, pièce, capteur...) sont convenablement remaillés pour chaque position du capteur, le temps total pourra être pénalisant. La troisième problématique relative à la modélisation d’un capteur souple porte sur l’imposition du courant dans des bobines déformées.Une comparaison de différentes approches nous a conduit à retenir la méthode overlapping, qui permet de considérer simultanément des milieux fins avec maillages non-conformes. Cette méthode permet d’effectuer le recollement de deux surfaces non planes et/ou de géométries différentes. La méthode overlapping a été implantée dans deux formulations duales (magnétique et électrique) en 2D et 3D intégrées dans le code de calcul DOLMEN (C++) du LGEP. La méthode overlapping a été validée pour la prise en compte de plusieurs types de régions minces (air, milieux conducteurs, milieux magnétiques, bobines plates...). La modélisation des capteurs souples nécessite aussi l’implantation d’une technique permettant d’imposer correctement les courants dans un inducteur de forme arbitraire. Une technique a été sélectionnée et programmée, d’abord pour des bobines classiques (volumiques) déformées puis pour des bobines plates flexibles. Afin de valider les développements réalisés, différentes configurations de test ont été traitées et les résultats comparés avec des solutions de référence analytiques ou expérimentales. / The objective of this thesis is the development of modeling tools for eddy current testing (ECT). Currently there is a tendency to use flexible sensors which represent a viable solution for inspecting parts with a complex surface. The main objective of this thesis is the development of techniques for taking into account this kind of sensors within the finite element method (FEM).When modeling a flexible sensor with the FEM, three issues have to be considered. The first one is related to the mesh of thin regions that appear in this kind of configuration (sensor-inspected part distance, thin coating...). The meshing of these regions with simplicial elements can cause numerical problems (distorted elements when a coarse mesh is considered and high number of unknowns when a fine mesh is used). The second issue is related to the displacement of the sensor on the part surface. If the different subdomains (air, part, sensor ...) are properly remeshed for each position of the sensor, the required time can be penalizing. The third issue, related to the modeling of a flexible sensor, is the computation of the current in distorted sensor coils.A comparison of different approaches has led to select the overlapping element method, which allows to simultaneously consider the thin regions with nonconforming meshes. This method allows to perform the connection of two surfaces which can be non-planar and/or have different geometries. The overlapping method has been implemented in two dual formulations (magnetic and electric) in 2D and 3D and integrated in the computation code (C++) DOLMEN of LGEP. The overlapping method has been validated for several kinds of thin regions (air, conductive regions, magnetic regions, flat coils...). The modeling of flexible sensors also requires the establishment of a technique for properly imposing the current in an inductor of arbitrary shape. A technique has been selected and implemented for conventional (volumic) distorted coils but also for flexible flat coils. Different test configurations have been considered in order to validate the developments and the results have been compared with analytical references or experimental solutions.
232

Méthodes numériques hybrides basées sur une approche Boltzmann sur réseau en vue de l'application aux maillages non-uniformes / Hybrid numerical methods based on the lattice Boltzmann approach with application to non-uniform grids

Horstmann, Tobias 12 October 2018 (has links)
Malgré l'efficacité informatique et la faible dissipation numérique de la méthode de Boltzmann sur réseau (LBM) classique reposant sur un algorithme de propagation-collision, cette méthode est limitée aux maillages cartésiens uniformes. L'adaptation de l'étape de discrétisation à différentes échelles de la mécanique des fluides est généralement réalisée par des schémas LBM à échelles multiples, dans lesquels le domaine de calcul est décomposé en plusieurs sous-domaines uniformes avec différentes résolutions spatiales et temporelles. Pour des raisons de connectivité, le facteur de résolution des sous-domaines adjacents doit être un multiple de deux, introduisant un changement abrupt des échelles spatio-temporelles aux interfaces. Cette spécificité peut déclencher des instabilités numériques et produire des sources de bruit parasite rendant l'exploitation de simulations à finalités aéroacoustiques impossible. Dans la présente thèse, nous avons d'abord élucidé le sujet du raffinement de maillage dans la LBM classique en soulignant les défis et les sources potentielles d'erreur. Par la suite, une méthode de Boltzmann sur réseau hybride (HLBM) est proposée, combinant l'algorithme de propagation-collision avec un algorithme de flux au sens eulérien obtenu à partir d'une discrétisation en volumes finis des équations de Boltzmann à vitesse discrète. La HLBM combine à la fois les avantages de la LBM classique et une flexibilité géométrique accrue. La HLBM permet d'utiliser des maillages cartésiens non-uniformes. La validation de la méthode hybride sur des cas tests 2D à finalité aéroacoustique montre qu'une telle approche constitue une alternative viable aux schémas Boltzmann sur réseau à échelles multiples, permettant de réaliser des raffinements locaux en H. Enfin, un couplage original, basé sur l'algorithme de propagation-collision et une formulation isotherme des équations de Navier-Stokes en volumes finis, est proposé. Une telle tentative présente l'avantage de réduire le nombre d'équations du solveur volumes finis tout en augmentant la stabilité numérique de celui-ci, en raison d'une condition CFL plus favorable. Les deux solveurs sont couplés dans l'espace des moments, où la solution macroscopique du solveur Navier-Stokes est injectée dans l'algorithme de propagation-collision à l'aide de la collision des moments centrés. La faisabilité d'un tel couplage est démontrée sur des cas tests 2D, et les résultas obtenus sont comparés avec la HLBM. / Despite the inherent efficiency and low dissipative behaviour of the standard lattice Boltzmann method (LBM) relying on a two step stream and collide algorithm, a major drawback of this approach is the restriction to uniform Cartesian grids. The adaptation of the discretization step to varying fluid dynamic scales is usually achieved by multi-scale lattice Boltzmann schemes, in which the computational domain is decomposed into multiple uniform subdomains with different spatial resolutions. For the sake of connectivity, the resolution factor of adjacent subdomains has to be a multiple of two, introducing an abrupt change of the space-time discretization step at the interface that is prone to trigger instabilites and generate spurious noise sources that contaminate the expected physical pressure signal. In the present PhD thesis, we first elucidate the subject of mesh refinement in the standard lattice Boltzmann method and point out challenges and potential sources of error. Subsequently, we propose a novel hybrid lattice Boltzmann method (HLBM) that combines the stream and collide algorithm with an Eulerian flux-balance algorithm that is obtained from a finite-volume discretization of the discrete velocity Boltzmann equations. The interest of a hybrid lattice Boltzmann method is the pairing of efficiency and low numerical dissipation with an increase in geometrical flexibility. The HLBM allows for non-uniform grids. In the scope of 2D periodic test cases, it is shown that such an approach constitutes a valuable alternative to multi-scale lattice Boltzmann schemes by allowing local mesh refinement of type H. The HLBM properly resolves aerodynamics and aeroacoustics in the interface regions. A further part of the presented work examines the coupling of the stream and collide algorithm with a finite-volume formulation of the isothermal Navier-Stokes equations. Such an attempt bears the advantages that the number of equations of the finite-volume solver is reduced. In addition, the stability is increased due to a more favorable CFL condition. A major difference to the pairing of two kinetic schemes is the coupling in moment space. Here, a novel technique is presented to inject the macroscopic solution of the Navier-Stokes solver into the stream and collide algorithm using a central moment collision. First results on 2D tests cases show that such an algorithm is stable and feasible. Numerical results are compared with those of the previous HLBM.
233

Segmentation d'images IRM du cerveau pour la construction d'un modèle anatomique destiné à la simulation bio-mécanique / Brain mr Image segmentation for the construction of an anatomical model dedicated to mechanical simulation

Galdames, Francisco José 30 January 2012 (has links)
Comment obtenir des données anatomiques pendant une neurochirurgie ? a été ce qui a guidé le travail développé dans le cadre de cette thèse. Les IRM sont actuellement utilisées en amont de l'opération pour fournir cette information, que ce soit pour le diagnostique ou pour définir le plan de traitement. De même, ces images pre-opératoires peuvent aussi être utilisées pendant l'opération, pour pallier la difficulté et le coût des images per-opératoires. Pour les rendre utilisables en salle d'opération, un recalage doit être effectué avec la position du patient. Cependant, le cerveau subit des déformations pendant la chirurgie, phénomène appelé Brain Shift, ce qui altère la qualité du recalage. Pour corriger cela, d'autres données pré-opératoires peuvent être acquises, comme la localisation de la surface corticale, ou encore des images US localisées en 3D. Ce nouveau recalage permet de compenser ce problème, mais en partie seulement. Ainsi, des modèles mécaniques ont été développés, entre autres pour apporter des solutions à l'amélioration de ce recalage. Ils permettent ainsi d'estimer les déformations du cerveau. De nombreuses méthodes existent pour implémenter ces modèles, selon différentes lois de comportement et différents paramètres physiologiques. Dans tous les cas, cela requiert un modèle anatomique patient-spécifique. Actuellement, ce modèle est obtenu par contourage manuel, ou quelquefois semi-manuel. Le but de ce travail de thèse est donc de proposer une méthode automatique pour obtenir un modèle du cerveau adapté sur l'anatomie du patient, et utilisable pour une simulation mécanique. La méthode implémentée se base sur les modèles déformables pour segmenter les structures anatomiques les plus pertinentes dans une modélisation bio-mécanique. En effet, les membranes internes du cerveau sont intégrées: falx cerebri and tentorium cerebelli. Et bien qu'il ait été démontré que ces structures jouent un rôle primordial, peu d'études les prennent en compte. Par ailleurs, la segmentation résultante de notre travail est validée par comparaison avec des données disponibles en ligne. De plus, nous construisons un modèle 3D, dont les déformations seront simulées en utilisant une méthode de résolution par Éléments Finis. Ainsi, nous vérifions par des expériences l'importance des membranes, ainsi que celle des paramètres physiologiques. / The general problem that motivates the work developed in this thesis is: how to obtain anatomical information during a neurosurgery?. Magnetic Resonance (MR) images are usually acquired before the surgery to provide anatomical information for diagnosis and planning. Also, the same images are commonly used during the surgery, because to acquire MRI images in the operating room is complex and expensive. To make these images useful inside the operating room, a registration between them and the patient's position has to be processed. The problem is that the brain suffers deformations during the surgery, in a process called brain shift, degrading the quality of registration. To correct this, intra-operative information may be used, for example, the position of the brain surface or US images localized in 3D. The new registration will compensate this problem, but only to a certain extent. Mechanical models of the brain have been developed as a solution to improve this registration. They allow to estimate brain deformation under certain boundary conditions. In the literature, there are a variety of methods for implementing these models, different equation laws used for continuum mechanic, and different reported mechanical properties of the tissues. However, a patient specific anatomical model is always required. Currently, most mechanical models obtain the associated anatomical model by manual or semi-manual segmentation. The aim of this thesis is to propose and implement an automatic method to obtain a model of the brain fitted to the patient's anatomy and suitable for mechanical modeling. The implemented method uses deformable model techniques to segment the most relevant anatomical structures for mechanical modeling. Indeed, the internal membranes of the brain are included: falx cerebri and tentorium cerebelli. Even though the importance of these structures is stated in the literature, only a few of publications include them in the model. The segmentation obtained by our method is assessed using the most used online databases. In addition, a 3D model is constructed to validate the usability of the anatomical model in a Finite Element Method (FEM). And the importance of the internal membranes and the variation of the mechanical parameters is studied.
234

Calcul du seuil de visibilité d’une distorsion géometrique locale sur un maillage et ses applications / Evaluating the visibility threshold for a local geometric distortion on a 3D mesh and its applications

Nader, Georges 22 November 2016 (has links)
Les opérations géométriques appliquées aux maillages 3D introduisent des dis torsions géométriques qui peuvent être visibles pour un observateur humain. Dans cette thèse, nous étudions l’impact perceptuel de ces distorsions. Plus précisément, notre objectif est de calculer le seuil à partir duquel les distorsions géométriques locales deviennent visibles. Afin d’atteindre notre but, nous définissons tout d’abord des caractéristiques perceptuelles pour les maillages 3D. Nous avons ensuite effectué une étude expérimentale des propriétés du système visuel humain (sensibilité au contraste et effet du masquage visuel) en observant un maillage 3D. Les résultats de ces expériences sont finalement utilisés pour proposer un algorithme qui calcule le seuil de visibilité relatif à une distorsion locale. L’algorithme proposé s’adapte aux différentes conditions d’affichage (résolution et taille de l’écran), d’illumination et au type de rendu. Enfin, nous montrons l’utilité d’un tel algorithme en intégrant le seuil de visibilité dans le pipeline de plusieurs opérations géométriques (ex: simplification, subdivision adaptative) / Geometric operations applied to a 3D mesh introduce geometric distortion in the form of vertex displacement that can be visible to a human observer. In this thesis, we have studied the perceptual impact of these geometric distortions. More precisely, our goal is to compute the threshold beyond which a local geometric distortion becomes visible. In order to reach this goal, we start by evaluating perceptually relevant properties on 3D meshes. We have then performed a series of psychophysical experiments in which we measured the visibility threshold relative to various properties of the Human Visual System (contrast sensitivity and visual masking). The results of these experiments allowed us to propose an algorithm that computes the visibility threshold relative to a local geometric distortion. This algorithm is capable of adapting to the different display condition of 3D meshes (resolution, display size, illumination condition and rendering). Finally, we showcase the utility of our work by integrating the developed perceptual method in several geometric operations such as mesh simplification and adaptive subdivision
235

Représentation par maillage adapté pour la reconstruction 3D en tomographie par rayons X / Adapted mesh representation for 3D computed tomography reconstruction

Cazasnoves, Anthony 08 December 2015 (has links)
La tomographie 3D par rayons X, utilisée tant pour le diagnostic médical que pour le contrôle non-destructif industriel, permet de reconstruire un objet en 3D à partir d’un ensemble de ses projections 2D. Le volume de reconstruction est usuellement discrétisé sur une grille régulière de voxels isotropes ce qui implique une augmentation de leur nombre pour atteindre une bonne résolution spatiale. Une telle représentation peut donc engendrer des coûts calculatoires et un volume mémoire de stockage particulièrement conséquents. Ce manuscrit présente une méthode permettant de discrétiser l’espace 3D de reconstruction de façon pertinente directement à partir de l’information structurelle contenue dans les données de projection. L’idée est d’obtenir une représentation adaptée à l’objet étudié. Ainsi, en lieu et place d’une grille voxélisée, on a recourt ici à un maillage tétraédrique épousant la structure de l’objet : la densité de mailles s’adapte en fonction des interfaces et des régions homogènes. Pour batir un tel maillage, la première étape de la méthode consiste à détecter les bords dans les données de projections 2D. Afin d’assurer une segmentation efficace et de bonne qualité, nous proposons d’exploiter le formalisme des tests statistiques pour paramétrer de façon optimale, automatique et rapide le filtre de Canny. L’information structurelle ainsi obtenue est ensuite fusionnée dans l’espace de reconstruction afin de construire un nuage de points échantillonnant les interfaces 3D de l’objet imagé. Pour ce faire, on procède à une rétroprojection directe des images de bords 2D pour obtenir une cartographie brute des interfaces 3D recherchées. Au moyen d’un filtrage automatisé par méthode statistique, on sélectionne les points les plus représentatifs, délimitant les interfaces avec précision. Le maillage adapté est finalement obtenu par tétraédrisation de Delaunay contrainte par ce nuage de points. Une reconstruction tomographique peut alors être réalisée sur une telle représentation en utilisant des schémas itératifs usuels pour lesquels les modèles de projecteur/rétroprojecteur sont adaptés. Nos expérimentations montrent qu’à partir d’un nombre restreint de projections sur 360° – i.e. 30 – notre méthode permet d’obtenir un nuage de points en très bonne adéquation avec les interfaces de l’objet étudié. La compression obtenue tant en termes de nombre d’inconnues à estimer qu’en espace mémoire nécessaire pour le stockage des volumes reconstruits est importante - jusqu’à 90% - attestant ainsi de l’intérêt de cette discrétisation. Les reconstructions obtenues sont prometteuses et les maillages générés de qualité suffisante pour envisager leur utilisation dans des applications de simulations – éléments finis ou autres. / 3D X-Ray computed tomography reconstruction is a method commonly used, nowadays, in both medical and non destructive testing fields to reconstruct a 3D object from a set of its 2D projections. The reconstruction space usually is sampled on a regular grid of isotropic voxels, thus inducing an increase in the number of cells used in order to get a satisfactory spatial resolution. This representation hence have a direct impact on the growth in computational cost of each reconstruction iteration and imposes the storage of volumes of considerable memory storage footprints. This dissertation introduces an approach to build an adapted sampling of the object of interest directly from a sparse dataset of projections and prior to any tomographic reconstruction. Instead of the usual voxel lattice, we make use of a tetrahedral mesh that tightly fits the object structure : cells density increases close to its interfaces and decreases in homogeneous regions. To create such a mesh, the first step of this work consists in the detection of edges in the 2D projection images. Segmentation quality being paramount for further stages, we introduce a statistical approach to automatically select crucial parameters of the selected edge detector - Canny's filter. This structural information then is merged within the 3D volume of reconstruction as a pointcloud adequately sampling the 3D interfaces of the studied object. To do so, we perform a direct backprojection of the 2D edge maps to obtain a rough 3D map of the desired interfaces. The points composing the cloud are placed according to this map by automated filtering of the rough map. This automation is attained by statistical approach. The adapted mesh is finally obtained by classical constrained Delaunay tetrahedralization algorithm on this cloud. CT reconstruction is performed on this new sampling by using usual iterative algorithms for which suitable models of projector/backprojector are proposed. Our experiments show that, using a sparse dataset - e.g. 30 projections - our method provides pointclouds tightly sampling the object interfaces. The compression achieved in the number of unknowns to estimate and in memory consumption for volume storage is sizable, vouching for the relevance of this sampling. Produced reconstructions are promising and the quality of meshes sufficient to contemplate their use in simulation applications, such as finite element methods.
236

Approches numériques et expérimentales pour l’étude des écoulements dans les laboratoires géologiques sur puce (GLoCs) / Numerical and experimental approches for investigating flows in geological labs on chip (GLoCs)

Diouf, Abdou khadre 22 December 2017 (has links)
Ce travail de thèse s’inscrit dans le cadre du projet ANR CGS µLab, qui vise à appréhender lesmécanismes fondamentaux impliqués dans les procédés de stockage profond du CO2 à partir des laboratoiresgéologiques sur puce (GLoCs – geological labs on chip) pour reproduire les conditions depression et de température des milieux géologiques profonds. Au-delà de la compréhension expérimentale,l’apport des techniques de modélisations numériques apparaît essentiel afin de définir des modèlespermettant de prévoir notamment les capacités maximales de stockage à partir des caractéristiques duréservoir (porosité, perméabilité, température, pression, géochimie), et du procédé d’injection (débit,composition). Dans ce contexte, ce travail a principalement deux objectifs : (i) associer l’imagerie expérimentaleet la modélisation numérique pour simuler des écoulements non réactifs dans des GLoCset (ii) suivre expérimentalement les évolutions structurelles d’un milieu poreux 3D soumis à un écoulementréactif. Notre démarche comporte deux parties pour répondre à ces objectifs. Dans la premièrepartie, nous avons effectué la modélisation 3D des perméabilités des GLoCs par la prise de moyennevolumique. Pour ce faire, nous avons d’abord vérifié le comportement darcéen d’un GLoC en fonctionde son nombre de rangs de plots en étudiant un problème de diffusion sur un maillage emboîté quenous avons implémenté à partir d’une image binaire du GLoC pour réduire le temps de calcul. Puis,nous avons mis à jour notre code de perméabilité, qui résout le problème de fermeture de l’écoulement,en calculant analytiquement en 3D le critère de stabilité qui prend en compte l’anisotropie dela géométrie des GLoCs. Nous avons ensuite traité les images numériques 2D des GLoCs avant deprocéder à la génération de leurs volumes élémentaires représentatifs (VERs) 3D. Nous avons enfinsimulé les perméabilités des GLoCs avant de les confronter aux résultats expérimentaux et à ceuxobtenus avec le logiciel PHOENICS. Dans la deuxième partie, nous avons développé un montage expérimentalpermettant de recréer des milieux poreux réactifs en 3D au sein d’un canal microfluidique(lit fixe de microparticules de carbonates de calcium – CaCO3). Grâce à la laminographie X de la ligneID19 de l’ESRF, nous avons pu observer sur des coupes d’image 2D reconstruites les phénomènes dedissolution lors de l’injection successive de volumes constants de solution hors équilibre. Cette preuvede concept a ouvert de nouvelles perspectives d’utilisation de cette méthodologie pour acquérir desdonnées cinétiques sur des phénomènes de fronts réactifs dans les poreux. / This thesis work is included within the ANR CGS µLab projet, which aims to understand thefundamental mechanisms involved in the deep storage processes of CO2 from on-chip geological laboratories(GLoCs - geological labs on chip) to reproduce the pressure and temperature conditionsof deep geological environments. Besides experimental understanding, the contribution of numericalmodeling approaches appears essential in order to define models allowing to predict in particularthe maximum storage capacities based on the characteristics of the reservoirs (porosity, permeability,temperature, pressure, geochemistry), and the injection process (flow rate, composition). In thiscontext, this work has two main goals : (i) to associate experimental imaging and numerical modelingto simulate non-reactive flows in model porous media on chip ; and (ii) to follow experimentally thestructural evolution of a 3D porous medium undergoing a reactive flow. In order to address to thesegoals, the approach we have proposed is divided into two parts. In the first part, we carried out the3D modeling of the permeabilities of GLoCs by taking volume averaging. To do this, we first verifiedthe behavior of a GLoC according to its number of plots rows by studying a diffusion problem ona nested mesh that we have implemented from a GLoC binary image to reduce computation time.Then, we updated our permeability code, which solves the closure problem of flow, by analyticallycalculating in 3D the stability criterion that takes into account the anisotropy of GLoC geometry. Wethen processed the 2D digital images of the GLoCs before proceeding with the generation of their3D representative elementary volumes. Finally, we have simulated the permeabilities of GLoCs beforecomparing them with the experimental results and those obtained with the PHOENICS software. In asecond part, we have developed an experimental set-up to recreate 3D reactive porous media within amicrofluidic channel (fixed packed bed of calcium carbonate - CaCO3 microparticles). Using the X-raylaminography of the ESRF line ID19, we have observed on reconstructed 2D images the dissolutionphenomena occurring during the successive injection of constant volumes of non-equilibrium solution.This proof of concept has opened new possibilities for using this methodology to acquire kinetic dataon reactive front phenomena in porous media.
237

Cellular GPU Models to Euclidean Optimization Problems : Applications from Stereo Matching to Structured Adaptive Meshing and Traveling Salesman Problem / Modèles cellulaires GPU appliquès à des problèmes d'optimisation euclidiennes : applications à l'appariement d'images stéréo, à la génération de maillages et au voyageur de commerce

Zhang, Naiyu 02 December 2013 (has links)
Le travail présenté dans ce mémoire étudie et propose des modèles de calcul parallèles de type cellulaire pour traiter différents problèmes d’optimisation NP-durs définis dans l’espace euclidien, et leur implantation sur des processeurs graphiques multi-fonction (Graphics Processing Unit; GPU). Le but est de pouvoir traiter des problèmes de grande taille tout en permettant des facteurs d’accélération substantiels à l’aide du parallélisme massif. Les champs d’application visés concernent les systèmes embarqués pour la stéréovision de même que les problèmes de transports définis dans le plan, tels que les problèmes de tournées de véhicules. La principale caractéristique du modèle cellulaire est qu’il est fondé sur une décomposition du plan en un nombre approprié de cellules, chacune comportant une part constante de la donnée, et chacune correspondant à une unité de calcul (processus). Ainsi, le nombre de processus parallèles et la taille mémoire nécessaire sont en relation linéaire avec la taille du problème d’optimisation, ce qui permet de traiter des instances de très grandes tailles.L’efficacité des modèles cellulaires proposés a été testée sur plateforme parallèle GPU sur quatre applications. La première application est un problème d’appariement d’images stéréo. Elle concerne la stéréovision couleur. L’entrée du problème est une paire d’images stéréo, et la sortie une carte de disparités représentant les profondeurs dans la scène 3D. Le but est de comparer des méthodes d’appariement local selon l’approche winner-takes-all et appliquées à des paires d’images CFA (color filter array). La deuxième application concerne la recherche d’améliorations de l’implantation GPU permettant de réaliser un calcul quasi temps-réel de l’appariement. Les troisième et quatrième applications ont trait à l’implantation cellulaire GPU des réseaux neuronaux de type carte auto-organisatrice dans le plan. La troisième application concerne la génération de maillages structurés appliquée aux cartes de disparité afin de produire des représentations compressées des surfaces 3D. Enfin, la quatrième application concerne le traitement d’instances de grandes tailles du problème du voyageur de commerce euclidien comportant jusqu’à 33708 villes.Pour chacune des applications, les implantations GPU permettent une accélération substantielle du calcul par rapport aux versions CPU, pour des tailles croissantes des problèmes et pour une qualité de résultat obtenue similaire ou supérieure. Le facteur d’accélération GPU par rapport à la version CPU est d’environ 20 fois plus vite pour la version GPU sur le traitement des images CFA, cependant que le temps de traitement GPU est d’environ de 0,2s pour une paire d’images de petites tailles de la base Middlebury. L’algorithme amélioré quasi temps-réel nécessite environ 0,017s pour traiter une paire d’images de petites tailles, ce qui correspond aux temps d’exécution parmi les plus rapides de la base Middlebury pour une qualité de résultat modérée. La génération de maillages structurés est évaluée sur la base Middlebury afin de déterminer les facteurs d’accélération et qualité de résultats obtenus. Le facteur d’accélération obtenu pour l’implantation parallèle des cartes auto-organisatrices appliquée au problème du voyageur de commerce et pour l’instance avec 33708 villes est de 30 pour la version parallèle. / The work presented in this PhD studies and proposes cellular computation parallel models able to address different types of NP-hard optimization problems defined in the Euclidean space, and their implementation on the Graphics Processing Unit (GPU) platform. The goal is to allow both dealing with large size problems and provide substantial acceleration factors by massive parallelism. The field of applications concerns vehicle embedded systems for stereovision as well as transportation problems in the plane, as vehicle routing problems. The main characteristic of the cellular model is that it decomposes the plane into an appropriate number of cellular units, each responsible of a constant part of the input data, and such that each cell corresponds to a single processing unit. Hence, the number of processing units and required memory are with linear increasing relationship to the optimization problem size, which makes the model able to deal with very large size problems.The effectiveness of the proposed cellular models has been tested on the GPU parallel platform on four applications. The first application is a stereo-matching problem. It concerns color stereovision. The problem input is a stereo image pair, and the output a disparity map that represents depths in the 3D scene. The goal is to implement and compare GPU/CPU winner-takes-all local dense stereo-matching methods dealing with CFA (color filter array) image pairs. The second application focuses on the possible GPU improvements able to reach near real-time stereo-matching computation. The third and fourth applications deal with a cellular GPU implementation of the self-organizing map neural network in the plane. The third application concerns structured mesh generation according to the disparity map to allow 3D surface compressed representation. Then, the fourth application is to address large size Euclidean traveling salesman problems (TSP) with up to 33708 cities.In all applications, GPU implementations allow substantial acceleration factors over CPU versions, as the problem size increases and for similar or higher quality results. The GPU speedup factor over CPU was of 20 times faster for the CFA image pairs, but GPU computation time is about 0.2s for a small image pair from Middlebury database. The near real-time stereovision algorithm takes about 0.017s for a small image pair, which is one of the fastest records in the Middlebury benchmark with moderate quality. The structured mesh generation is evaluated on Middlebury data set to gauge the GPU acceleration factor and quality obtained. The acceleration factor for the GPU parallel self-organizing map over the CPU version, on the largest TSP problem with 33708 cities, is of 30 times faster.
238

Méthodologie d’analyse de fiabilité basée sur des techniques heuristiques d’optimisation et modèles sans maillage : applications aux systèmes mécaniques / Reliability analysis methodology based on heuristic optimization techniques and non-mesh models : applications to mechanical systems

Rojas, Jhojan Enrique 04 April 2008 (has links)
Les projets d'Ingénierie Structurale doivent s’adapter aux critères de performance, de sécurité, de fonctionnalité, de durabilité et autres, établis dans la phase d’avant-projet. Traditionnellement, les projets utilisent des informations de nature déterministe comme les dimensions, les propriétés des matériaux et les charges externes. Toutefois, la modélisation des systèmes structuraux complexes implique le traitement des différents types et niveaux d'incertitudes. Dans ce sens, la prévision du comportement doit être préférablement faite en termes de probabilités puisque l'estimation de la probabilité de succès d'un certain critère est une nécessité primaire dans l’Ingénierie Structurale. Ainsi, la fiabilité est la probabilité rapportée à la parfaite opération d'un système structural donné durant un certain temps en des conditions normales d'opération pour trouver le meilleur compromis entre coût et sécurité pour l’élaboration des projets. Visant à pallier les désavantagés des méthodes traditionnelles FORM et SORM (First and Second Order Reliability Method), cette thèse propose une méthode d’analyse de fiabilité basée sur des techniques d’optimisation heuristiques (HBRM, Heuristic-based Reliability Method). Les méthodes heuristiques d’optimisation utilisées par cette méthode sont : Algorithmes Génétiques (Genetic Algorithms), Optimisation par Essaims Particulaires (Particle Swarm Optimisation) et Optimisation par Colonie de Fourmis (Ant Colony Optimization). La méthode HBRM ne requiert aucune estimation initiale de la solution et opère selon le principe de la recherche multi-directionnelle, sans besoin de calculer les dérivées partielles de la fonction d’état limite par rapport aux variables aléatoires. L’évaluation des fonctions d’état limite est réalisée en utilisant modèles analytiques, semi analytiques et numériques. Dans ce but, la mise en oeuvre de la méthode de Ritz (via MATLAB®), la méthode des éléments finis (via MATLAB® et ANSYS®) et la méthode sans maillage de Galerkin (Element-free Galerkin sous MATLAB®) a été nécessaire. La combinaison d’analyse de fiabilité, des méthodes d’optimisation et méthodes de modélisation, ci-dessus mentionnées, configure la méthodologie de conception fiabiliste proposée dans ce mémoire. L’utilisation de différentes méthodes de modélisation et d’optimisation a eu pour objectif de mettre en évidence leurs avantages et désavantages pour des applications spécifiques, ainsi pour démontrer l’applicabilité et la robustesse de la méthodologie de conception fiabiliste en utilisant ces techniques numériques. Ce qui a été possible grâce aux bons résultats trouvés dans la plupart des applications. Dans ce sens, des applications uni, bi et tridimensionnelles en statique, stabilité et dynamique des structures explorent l’évaluation explicite et implicite des fonctions d’état limite de plusieurs variables aléatoires. Procédures de validation déterministe et analyses stochastiques, et la méthode de perturbation de Muscolino, donnent les bases de l’analyse de fiabilité des applications en problèmes d’interaction fluide-structure bi et tridimensionnelles. La méthodologie est particulièrement appliquée à une structure industrielle. Résultats de applications uni et bidimensionnelles aux matériaux composites stratifiés, modélisés par la méthode EFG sont comparés avec les obtenus par éléments finis. A la fin de la thèse, une extension de la méthodologie à l’optimisation fiabiliste est proposée à travers la méthode des facteurs optimaux de sûreté. Pour cela, sont présentes des applications pour la minimisation du poids, en exigent un indice de fiabilité cible, aux systèmes modélisés par la méthode de EF et par la méthode EFG. / Structural Engineering designs must be adapted to satisfy performance criteria such as safety, functionality, durability and so on, generally established in pre-design phase. Traditionally, engineering designs use deterministic information about dimensions, material properties and external loads. However, the structural behaviour of the complex models needs to take into account different kinds and levels of uncertainties. In this sense, this analysis has to be made preferably in terms of probabilities since the estimate the probability of failure is crucial in Structural Engineering. Hence, reliability is the probability related to the perfect operation of a structural system throughout its functional lifetime; considering normal operation conditions. A major interest of reliability analysis is to find the best compromise between cost and safety. Aiming to eliminate main difficulties of traditional reliability methods such as First and Second Order Reliability Method (FORM and SORM, respectively) this work proposes the so-called Heuristic-based Reliability Method (HBRM). The heuristic optimization techniques used in this method are: Genetic Algorithms, Particle Swarm Optimization and Ant Colony Optimization. The HBRM does not require initial guess of design solution because it’s based on multidirectional research. Moreover, HBRM doesn’t need to compute the partial derivatives of the limit state function with respect to the random variables. The evaluation of these functions is carried out using analytical, semi analytical and numerical models. To this purpose were carried out the following approaches: Ritz method (using MATLAB®), finite element method (through MATLAB® and ANSYS®) and Element-free Galerkin method (via MATLAB®). The combination of these reliability analyses, optimization procedures and modelling methods configures the design based reliability methodology proposed in this work. The previously cited numerical tools were used to evaluate its advantages and disadvantages for specific applications and to demonstrate the applicability and robustness of this alternative approach. Good agreement was observed between the results of bi and three-dimensional applications in statics, stability and dynamics. These numerical examples explore explicit and implicit multi limit state functions for several random variables. Deterministic validation and stochastic analyses lied to Muscolino perturbation method give the bases for reliability analysis in 2-D and 3-D fluidstructure interaction problems. This methodology is applied to an industrial structure lied to a modal synthesis. The results of laminated composite plates modelled by the EFG method are compared with their counterparts obtained by finite elements. Finally, an extension in reliability based design optimization is proposed using the optimal safety factors method. Therefore, numerical applications that perform weight minimization while taking into account a target reliability index using mesh-based and meshless models are proposed. / Os projectos de Engenharia Estrutural devem se adaptar a critérios de desempenho, segurança, funcionalidade, durabilidade e outros, estabelecidos na fase de anteprojeto. Tradicionalmente, os projectos utilizam informações de natureza deterministica nas dimensões, propriedades dos materiais e carregamentos externos. No entanto, a modelagem de sistemas complexos implica o tratamento de diferentes tipos e níveis de incertezas. Neste sentido, a previsão do comportamento deve preferivelmente ser realizada em termos de probabilidades dado que a estimativa da probabilidade de sucesso de um critério é uma necessidade primária na Engenharia Estrutural. Assim, a confiabilidade é a probabilidade relacionada à perfeita operação de um sistema estrutural durante um determinado tempo em condições normais de operação. O principal objetivo desta análise é encontrar o melhor compromisso entre custo e segurança. Visando a paliar as principais desvantagens dos métodos tradicionais FORM e SORM (First and Second Order Reliability Method), esta tese propõe um método de análise de confiabilidade baseado em técnicas de optimização heurísticas denominado HBRM (Heuristic-based Reliability Method). Os métodos heurísticos de otimização utilizados por este método são: Algoritmos Genéticos (Genetic Algorithms), Optimização por Bandos Particulares (Particle Swarm Optimisation) e Optimização por Colónia de Formigas (Ant Colony Optimization). O método HBRM não requer de uma estimativa inicial da solução e opera de acordo com o princípio de busca multidirecional, sem efetuar o cálculo de derivadas parciais da função de estado limite em relação às variáveis aleatórias. A avaliação das funções de estado limite é realizada utilizando modelos analíticos, semi analíticos e numéricos. Com este fim, a implementação do método de Ritz (via MATLAB®), o método dos elementos terminados (via MATLAB® e ANSYS®) e o método sem malha de Galerkin (Element-free Galerkin via MATLAB®) foi necessária. A combinação da análise de confiabilidade, os métodos de optimização e métodos de modelagem, acima mencionados, configura a metodologia de projeto proposta nesta tese. A utilização de diferentes métodos de modelagem e de otimização teve por objetivo destacar as suas vantagens e desvantagens em aplicações específicas, assim como demonstrar a aplicabilidade e a robustez da metodologia de análise de confiabilidade utilizando estas técnicas numéricas. Isto foi possível graças aos bons resultados encontrados na maior parte das aplicações. As aplicações foram uni, bi e tridimensionais em estática, estabilidade e dinâmica de estruturas, as quais exploram a avaliação explícita e implícita de funções de estado limite de várias variáveis aleatórias. Procedimentos de validação déterministica e de análises estocásticas, aplicando o método de perturbação de Muscolino, fornecem as bases da análise de confiabilidade nas aplicações de problemas de iteração fluído-estrutura bi e tridimensionais. A metodologia é testada com uma estrutura industrial. Resultados de aplicações bidimensionais em estratificados compostos, modelados pelo método EFG são comparados com os obtidos por elementos finitos. No fim da tese, uma extensão da metodologia à optimização baseada em confiabilidade é proposta aplicando o método dos factores óptimos de segurança. Finalmente são apresentadas as aplicações para a minimização do peso em sistemas modelados pelo método de EF e o método EFG que exigem um índice de confiabilidade alvo.
239

Outils algorithmiques pour l'analyse statistique de la forme et de l'asymétrie de nuages de points

Combès, Benoît 18 November 2010 (has links) (PDF)
Dans cette thèse, nous proposons un ensemble d'outils permettant de quantifier et de comparer statistiquement l'asymétrie au sein d'une population ou entre deux populations de structures représentées par des nuages de points 3D. Ces outils sont définis dans un cadre cohérent qui repose sur une modélisation des nuages de points sous forme de mélanges de densités de probabilité. Ces densités dépendent de paramètres décrivant par exemple une réflexion ou encore une déformation tridimensionnelle. L'estimation des paramètres superposant au mieux les mélanges est effectuée par des variantes d'algorithmes de type Espérance-Maximisation. En particulier, nous proposons des algorithmes pour i) l'estimation d'un plan de symétrie d'un nuage de points, ii) l'estimation d'une surface de symétrie d'un nuage de points, iii) l'estimation d'une déformation non-linéaire superposant au mieux 2 nuages de points et iv) la création de modèles statistiques de formes à partir d'un ensemble de nuages de points. Nous montrons ensuite comment combiner ces méthodes pour générer des cartes statistiques d'asymétrie locale (moyenne, variance, asymétries significatives, différences significatives, {\it etc}) ainsi que des mesures globales caractérisant l'asymétrie des populations étudiées. Enfin, nous appliquons nos outils pour comparer les asymétries corticales de 2 sujets Situs Inversus (maladie congénitale dans laquelle les principaux organes viscéraux sont situés en miroir par rapport à leur situation normale) avec celles d'une population contrôle.
240

SIMULATION NUMERIQUE DE L'ENTREE EN TUNNEL D'UN TRAIN A GRANDE VITESSE

Uystepruyst, David 08 December 2010 (has links) (PDF)
Ce travail porte sur le développement d'un code numérique tridimensionnel pour la simulation d'entrées en tunnels de trains à grande vitesse en vue de proposer des solutions afin de réduire les nuisances occasionnées. L'écoulement de l'air est modélisé par les équations d'Euler instationnaires. Ces équations sont discrétisées à l'aide d'une formulation en volumes finis et résolues grâce à un schéma solveur de Riemann approché, d'ordre supérieur, particulièrement adapté à la propagation d'ondes. Pour gérer le mouvement relatif du train par rapport au tunnel, une méthode de maillage glissant est utilisée avec un traitement conservatif des faces aux niveaux des jonctions de maillages. Le domaine est ainsi décomposé en plusieurs sous-domaines, maillés indépendamment avec un mailleur cartésien automatique basé sur un maillage surfacique triangulaire. Pour réduire le domaine, et donc le temps de calcul, et accélérer la stabilisation de l'écoulement avant l'entrée du train, des conditions aux limites non réflectives sont implémentées. La méthodologie est validée sur plusieurs cas tests. Une étude paramétrique de l'influence d'un auvent à l'entrée du tunnel sur le gradient de l'onde de compression pression initiale est effectuée. Les paramètres de cette étude sont la forme, la longueur et la section de l'auvent. Enfin, l'effet d'ouvertures dans l'auvent est simulé.

Page generated in 0.0202 seconds