121 |
Translating solid state organic synthesis from a mixer mill to a continuous twin screw extruderCao, Q., Howard, J.L., Crawford, Deborah E., James, S.L., Browne, D.L. 13 February 2020 (has links)
Yes / A study on the translation of a solid-state synthetic reaction from a mechanochemical mixer-mill to a continuous twin-screw extruder is discussed herein. The study highlights some considerations to be made and parameters to be tested in the context of a model fluorination reaction, which is the first organic fluorination to be attempted using extrusion. Upon optimization, which features the first use of grinding auxiliary solids to enable effective synthetic extrusion, the difluorination reaction was successfully translated to the extruder, leading to a 100-fold improvement in Space Time Yield (STY); 29 kg m−3 day−1 in a mixer mill to 3395 kg m−3 day−1 in a twin screw extruder. / D. L. B is grateful to the EPSRC for a First Grant (D. L. B. EP/P002951/1), CRD for a studentship award to J. L. H., Queen’s University Belfast for a Visiting Research Fellowship and the School of Chemistry at Cardiff University for generous support. S. L. J. is grateful to EPSRC for support (EP/L019655/1).
|
122 |
A 60 Ghz Mmic 4x Subharmonic MixerChapman, Michael Wayne 14 November 2000 (has links)
In this modern age of information, the demands on data transmission networks for greater capacity, and mobile accessibility are increasing drastically. The increasing demand for mobile access is evidenced by the proliferation of wireless systems such as mobile phone networks and wireless local area networks (WLANs). The frequency range over which an oxygen resonance occurs in the atmosphere (~58-62 GHz) has received recent attention as a possible candidate for secure high-speed wireless data networks with a potentially high degree of frequency reuse. A significant challenge in implementing data networks at 60 GHz is the manufacture of low-cost RF transceivers capable of satisfying the system requirements. In order to produce transceivers that meet the additional demands of high-volume, mobility, and compactness, monolithic millimeter wave integrated circuits (MMICs) offer the most practical solution.
In the design of radio tranceivers with a high degree of integration, the receiver front-end is typically the most critical component to overall system performance. High-performance low-noise amplifiers (LNAs) are now realizable at frequencies in excess of 100 GHz, and a wide variety of mixer topologies are available that are capable of downconversion from 60 GHz. However, local oscillators (LOs) capable of providing adequate output power at mm-wave frequencies remain bulky and expensive. There are several techniques that allow the use of a lower frequency microwave LO to achieve the same RF downconversion. One of these is to employ a subharmonic mixer. In this case, a lower frequency LO is applied and the RF mixes with a harmonic multiple of the LO signal to produce the desired intermediate frequency (IF).
The work presented in this thesis will focus on the development of a GaAs MMIC 4-X subharmonic mixer in Finite Ground Coplanar (FGC) technology for operation at 60 GHz. The mixer topology is based on an antiparallel Schottky diode pair. A discussion of the mechanisms behind the operation of this circuit and the methods of practical implementation is presented. The FGC transmission lines and passive tuning structures used in mixer implementation are characterized with full-wave electromagnetic simulation software and 2-port vector network analyzer measurements. A characterization of mixer performance is obtained through simulations and measurement. The viability of this circuit as an alternative to other high-frequency downconversion schemes is discussed. The performance of the actual fabricated MMIC is presented and compared to currently available 60 GHz mixers. One particular MMIC design exhibits an 11.3 dB conversion loss at an RF of 58.5 GHz, an LO frequency of 14.0 GHz, and an IF of 2.5 GHz. This represents excellent performance for a 4X Schottky diode mixer at these frequencies. Finally, recommendations toward future research directions in this area are made. / Master of Science
|
123 |
Characterisation of granule structure and strength made in a high shear granulatorRahmanian, Nejat, Ghadiri, M., Jia, X., Stepanek, F. January 2009 (has links)
No / Results of a study of the influence of impeller speed on the strength, structure and morphology of granules produced in a type of high shear mixer granulators are reported. Calcium carbonate particles (Durcal 65) have been granulated in a Cyclomix with a capacity of 5 L. An aqueous solution of polyethylene glycol was used as the binder. The granules produced have been dried and their structure visualized using X-ray micro-tomography equipment, Nanotom, with a resolution of less than 1 μm. It is shown that the operation of the granulator at high impeller tip speeds produces granules with a higher strength and lower porosity than those produced at medium and low impeller speeds. Two different granule micro-structures and morphologies are produced at high and low impeller speeds. Structure descriptors such as phase volume fraction (as representative of porosity), chord length distribution and auto-correlation function (as indices of homogeneity of structure) are used to quantify the internal structure of granules in 3D, which in turn affects the granule strength.
|
124 |
A highly linear and low flicker-noise CMOS direct conversion receiver front-end for multiband applicationsPark, Jinsung 09 July 2007 (has links)
This dissertation focuses on design and implementation of a highly linear and low flicker-noise receiver front-end based on the direct conversion architecture for multiband applications in a CMOS technology. The dissertation consists of two parts: One, implementation of a highly linear RF receiver front-end and, two, implementation of a low flicker-noise RF receiver front-end based for direct conversion architecture. For multiband applications, key active components, highly linear LNAs and mixers, in the RF front-end receiver have been implemented in a 0.18um CMOS process. Theoretical approaches are analyzed from the perspective of implementation issues for highly linear receiver system and are also compared with measured results. Highly linear LNAs and mixers have been analyzed in terms of noise, linearity and power consumption, etc.
For a low flicker-noise receiver front-end based on direct conversion architecture, the design of differential LNA and various low flicker-noise mixers are investigated in a standard 0.18um CMOS process. A differential LNA which shows high linearity was fabricated with a low flicker-noise mixer. Three low flicker-noise mixers were designed, measured and compared to the-state-of-the-arts published by other research institutes and companies.
|
125 |
Nano-mélangeurs bolométriques supraconducteurs à électrons chauds en Y-Ba-Cu-O pour récepteur térahertz en mode passif / Superconducting Y-Ba-Cu-O hot electron bolometric nano-mixers for terahertz passive receiversLadret, Romain 06 July 2016 (has links)
Nous étudions un mélangeur d'ondes térahertz (THz) réalisé avec le supraconducteur à haute température critique YBaCuO en couches ultraminces (10 à 50 nm). Le travail vise à concevoir un démonstrateur portable pour la détection hétérodyne térahertz passive, avec une cryogénie simplifiée à 60-80 kelvin (projet ANR MASTHER).Le principe de détection est le bolomètre à électrons chauds (HEB) jusqu'à présent développé avec des supraconducteurs à basse température critique. L'effet HEB est mis en ¿uvre dans une constriction en YBaCuO (quelques centaines de nm de dimensions latérales). Cette structure conduit à un détecteur THz sensible et rapide (bande passante instantanée de 100 GHz). Le rayonnement THz est couplé à la constriction par une antenne planaire large bande.En premier lieu, les échanges thermiques entre réservoirs d'électrons et de phonons (YBaCuO et son substrat) sont modélisés. Nous établissons ainsi les conditions optimales pour le HEB en termes de dimensions de la constriction et de puissance de l'oscillateur local requises pour un mélange performant (gain et bruit). Par rapport aux modèles antérieurs, nous introduisons une approche de "point chaud" nouvelle incluant l'influence de la fréquence THz dans YBaCuO, ainsi que l'adaptation d'impédance entre la constriction et l'antenne. En second lieu, nous décrivons l'optimisation des étapes de micro-fabrication des HEB, en particulier les lithographies électronique et optique, pour obtenir des constrictions de 300 nm de côté. De premiers dispositifs ont été testés en détection directe infrarouge. Les performances entre des couches d'YBaCuO ultraminces préparées suivant différentes techniques sont comparées. / We report on the development of a terahertz (THz) wave mixer made from high critical temperature superconducting YBaCuO ultrathin films (10 to 50 nm). The work is part of the MASTHER ANR project aiming at a portable demonstrator for passive terahertz heterodyne detection, implementing simplified cryogenics (60 to 80 kelvin). The detection principle is that of the hot electron bolometer (HEB) so far mainly developed with low critical temperature superconductors. The HEB effect is implemented in an YBaCuO constriction (a few hundred nm in lateral dimensions). This structure can lead to a sensitive and fast THz detector (theoretical instantaneous bandwidth of 100 GHz). The THz radiation is coupled to the YBaCuO constriction by means of a wideband planar antenna. The new aspects first concern the modeling of heat exchange between electrons and phonons reservoirs (YBaCuO and its substrate). Our results establish the optimum operating conditions in terms of dimensions of the constriction and the local oscillator power required for high performance THz mixing (conversion gain and noise temperature). We are introducing in particular a new "hot spot" modeling approach, which takes into account the influence of the terahertz frequency in the YBaCuO material and the impedance matching between the antenna and the constriction. Second, we have developed and optimized the HEB micro-fabrication process in clean room, especially the electronic and optical lithography steps, to obtain constrictions of 300 nm lateral size. Our first devices have been tested by direct detection in the infrared. The performance between YBaCuO ultrathin films prepared using various techniques are compared.
|
126 |
Intelligent real-time environment and process adaptive radio frequency front-ends for ultra low power applicationsBanerjee, Debashis 21 September 2015 (has links)
In the thesis the design of process tolerant, use-aware radio-frequency front-ends were explored. First, the design of fuzzy logic and equation based controllers, which can adapt to multi-dimensional channel conditions, are proposed. Secondly, the thesis proves that adaptive systems can have multiple modes of operation depending upon the throughput requirements of the system. Two such modes were demonstrated: one optimizing the energy-per-bit (energy priority mode) and another achieving the lowest power consumption at the highest throughput (data priority mode). Finally, to achieve process tolerant channel adaptive operation a self-learning methodology is proposed which learns the optimal re-configuration setting for the system on-the-fly. Implications of the research are discussed and future avenues of further research are proposed.
|
127 |
Detect, Bite, SlamMiharbi, Ali 01 January 2010 (has links)
This paper explores the influences, ideas and motivations behind my MFA thesis exhibition. It primarily focuses on how I developed my work for the show in connection to my previous work as well as work created by other artists who explored the impacts of new media in the last decade. With the advancement of social media, digital technologies no longer have their infamous coldness. Our perceptions and the metaphors in language are all reflected onto the machines we create while in return they also shape and redefine our lives. It becomes increasingly difficult to talk about dialectics such as machine-human, virtual-real, and nature-culture. With the aid of some humor, I attempted to reflect on the marriage of these old oppositions and this paper will discuss the foundations of these ideas as well as my practice in general.
|
128 |
Projeto de um bloco LNA-misturador para radiofrequência em tecnologia CMOS. / A merged RF-CMOS LNA-mixer design in CMOS technology.Ayala Pabón, Armando 15 December 2009 (has links)
Este trabalho apresenta o projeto de um bloco LNA-Misturador dentro de um mesmo circuito integrado para aplicações em um receptor Bluetooth 2;45GHz. Uma estratégia de projeto bem clara, concisa e com uma boa base física e matemática foi desenvolvida para auxiliar o processo de projeto de um bloco LNA-Misturador, composto por um LNA cascode em cascata com um misturador de chaveamento de corrente com entradas simples e degeneração indutiva nas fontes dos estágios de transcondutância. Esta estratégia foi adaptada de trabalhos apresentados na literatura. A estratégia de projeto proposta considera o compromisso entre ruído, linearidade, ganho, dissipação de potência, casamento de impedâncias e isolamento de portas, usando as dimensões dos dispositivos e condições de polarização como variáveis de projeto. Com base nesta estratégia se obteve um bloco LNA-Misturador que atinge algumas especificações propostas. Um bloco LNA-Misturador foi projetado e fabricado em uma tecnologia CMOS 0;35µm para validar a estratégia de projeto proposta. Além disso, para atingir os objetivos, durante o desenvolvimento deste trabalho foi dada atenção especial no projeto dos indutores. Foi projetado, fabricado e medido um chip de teste. Para tal fim foram aplicadas técnicas e estruturas de de-embedding nas medidas para conseguir resultados mais confiáveis. Os resultados experimentais obtidos para os indutores e os resultados preliminares do bloco LNA-Misturador s~ao satisfatórios de acordo com as especificações e os esperados das simulações. No entanto, os indutores integrados degradam significativamente o desempenho do bloco LNA-Misturador. Se forem usados processos de fabricação nos quais os indutores apresentem melhor desempenho, os resultados do bloco LNA-Misturador aplicando a estratégia de projeto desenvolvida neste trabalho podem ser melhorados. Finalmente, é importante ressaltar que a estratégia de projeto proposta neste trabalho já está sendo usada e adaptada em outros projetos com o propósito de melhorar os resultados obtidos, e conseguir auxiliar o processo de projeto deste tipo de blocos. / This work presents a fully integrated LNA-Mixer design for a Bluetooth receiver application at 2:45GHz. A concise design strategy with good physics and mathematics basis was developed to assist the design process of a LNA-Mixer block, formed by a cascode LNA in cascade to a single balanced current commutation Mixer with inductive degeneration. This strategy was adapted from literature and considers the trade-offs between noise, linearity, gain, power dissipation, impedance matching and ports isolation, using the device dimensions and bias conditions as design variables. Based on this strategy, the proposed LNA-Mixer design specifications were achieved. To validate the proposed design strategy, the LNA-Mixer were fabricated in a 0:35µm CMOS process. Furthermore, to achieve the specifications, during the development of this work a special attention to the RF CMOS inductors was given. A test chip was designed, fabricated and measured applying de-embedding structures to obtain more reliable results. The experimental results obtained for the inductors and the preliminary results for the LNA-Mixer are satisfactory compared to the specifications and as expected from simulations. However, the integrated inductors degrade the performance of the block significantly and if a manufacturing process in which the inductor has better performance is used, the resulting LNA-Mixer design applying the strategy developed in this work can be improved. Finally, it is important to highlight that the design strategy proposed in this work is already being used and adapted in other designs in order to improve the results, and to assist the design process of such blocks.
|
129 |
Dispersion de nanotubes de carbone dans une matrice élastomère EPDM par des méthodes douces de mélanges. Vers le contrôle des propriétés rhéologiques et électriques. / Dispersion of Carbon Nanotubes in an EPDM rubber matrix using soft mixing techniques. Toward the control of rheological and electrical properties.Charman, Maxime 15 December 2011 (has links)
Grâce à leurs propriétés mécaniques et électroniques élevées, les NanoTubes de Carbone (NTC) semblent être les nanocharges idéales pour conférer des propriétés optimum à des matériaux composites, en particulier ceux qui sont élaborés à partir de matrices élastomères. Cependant, pour obtenir une amélioration significative des propriétés une bonne dispersion dans la matrice est nécessaire. La dispersion des NTC dans une matrice élastomère de type EPM est explorée ici en employant un copolymère statistique, le poly(éthylène-stat-acétate de vinyle) (EVA), comme agent dispersant. Les outils classiques de mélange des élastomères, mélangeur interne et mélangeur à cylindres, qui sont des techniques de mélange douces, ont été utilisés dans le cadre de cette étude. Nous avons montré qu’à faible taux de NTC dans la matrice leur dispersion était contrôlée par deux paramètres clés (i) la viscosité de la matrice EPM et (ii) la concentration en EVA. L’augmentation des concentrations de NTC a permis de mettre en évidence que les propriétés rhéologiques et électriques des nanocomposites variaient brusquement à partir de concentrations critiques (seuil de percolation) assez faibles permettant de justifier l’utilisation du système EPM-EVA sélectionné. Nous avons alors préparé un mélange maître EPM-EVA chargé à 20% en NTC possédant de très bonnes propriétés de conductivité. Des mélanges à base d’EPDM chargés par des nanotubes de carbone, du noir de carbone ou le mélange des deux ont également été analysés. Nous avons démontré que la dilution d’un mélange maître permet d’obtenir un élastomère chargé en NTC avec une viscosité Mooney constante et avec un impact fort sur la cinétique de vulcanisation de l’élastomère (accélération de la réaction). Un effet de synergie entre noir de carbone et NTC a été mis en évidence au niveau des propriétés mécaniques mais pas pour les propriétés électriques. / The outstanding properties of Carbon NanoTubes (CNTs) make them ideal candidates for use in nanocomposites, and particularly in those based on rubber matrix. However, to obtain an improvement of the properties, a good degree of dispersion of the CNT in the matrix is crucial. The CNT dispersion in an EPM rubber is investigated here by using a statistical copolymer, the ethylene-stat-vinyl acetate (EVA), as dispersing agent. In this study, we work with the classic methods used for rubber mixing, like an internal mixer and an open two roll mill, which are soft mixing techniques. At low CNT rate in the matrix, the dispersion is controlled by two parameters such as the EPM matrix viscosity and the EVA concentration. The rheological and electrical properties varied abruptly when the CNT concentration is increased in the matrix. The low values obtained for this percolation threshold justify the use of EPM-EVA system. We have prepared an EPM-EVA master batch loaded with 20% of CNT and possessing very good conductive properties. We studied EPDM compound filled with carbon nanotubes, carbon black or the blend of both. We have demonstrated that the dilution of the master batch allows us to obtain a rubber filled with a constant Mooney viscosity but with an important impact on the vulcanization kinetics of elastomers. The synergistic effect between carbon black and carbon nanotubes has been shown on the mechanicals properties but not on the electrical ones.
|
130 |
A Microfluidic Platform to Enable Screening of Immobilised Biomolecule MixturesMichael Hines Unknown Date (has links)
Abstract This thesis describes the design, fabrication and operation of a microfluidic device for the screening of biomolecule mixture surface mediated effects. The characterisation of a surface immobilisation strategy that will allow the robust attachment of candidate biomolecules on a substrate for use in cell culture applications. This is carried out in the form of a modified and optimised layer-by-layer surface immobilisation strategy and its subsequent thorough and robust characterisation. This was achieved by compiling and critically analysing large amounts of quartz crystal microbalance with dissipation (QCM-D) data and the model utilised to provide meaningful, physical data as an output. QCM-D data was combined with surface plasmon resonance (SPR) data to validate the assumptions used within the QCM-D model package. Further evidence demonstrating the presence of the multilayer, as described by QCM-D and SPR, is achieved using x-ray photoelectron spectroscopy (XPS). These results show that the multilayer surface is robustly attached to the substrate and consists of a large amount of water whilst being able to immobilise mixtures of four proteins. A custom protocol for fabricating these two layer devices was devised and is presented. Scale limitations have been overcome to provide mixing capabilities for large extracellular matrix molecules to be immobilised on the previously described, microfluidically generated surface immobilisation strategy. The optimisation and characterisation of the mixing within this microfluidic device, affected by the incorporated staggered herring bone mixer is also shown. Using dynamic force spectroscopy (DFS) along with a custom designed force curve data processing and analysis package, the spatial localisation of a mixture of four immobilised biomolecules was determined. The aim of this study was to compare the spatial localization of a mixture of four biomolecules created by; standard cell culture protocols (adsorbed from bulk onto tissue culture polystyrene) and a surface created via microfluidic deposition on top of a previously described surface immobilisation strategy. The design and robust application of this custom analysis package allows the definition of a “Barricade of Specificity” such that interactions between an antibody functionalised AFM tip and a surface composed of a mixture of proteins, to be categorised as either a “true” specific interaction, or a non-specific interaction. The application of this Barricade of Specificity thus allows the spatial localisation of four immobilized biomolecules to be determined with a large degree of accuracy as a result of the large rage of non-specific interactions surveyed and the strict definition of a valid rupture force. The final chapter details the application of the microfluidic platform to enable high throughput screening of the effects of extracellular matrix (ECM) molecules, singly and in combination, with regards to the effect on the expression of cell surface markers on umbilical cord blood (UCB) derived CD34+ cells. Careful selection of candidate ECM molecules, cytokine and oxygen concentration has resulted in little difference in the effect on UCB derived CD34+ cells differentiation state after seven days in culture. The major effect has been the maturation towards lymphocyte and leukocyte precursors. However, of the four ECM molecules tested individually, in binary and in quaternary combinations, osteopontin (Opn) and laminin (Ln) demonstrated differences compared to other surfaces tested. In order to further assess the effect of these protein surfaces on the cell surface marker expression of UCB derived CD34+ cells, further tests are warranted for increased periods of time to enable greater discrimination in marker expression and thus increase our understanding of the fundamental biology of this rare and clinically useful cell source.
|
Page generated in 0.0218 seconds