• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 13
  • 10
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

MOX dopé chrome : optimisation du dopage et de l'atmosphère de frittage

Thomas, Régis 17 July 2013 (has links) (PDF)
Dans un contexte d'accroissement des marges de sûreté des réacteurs de générations II et III vis-à-vis des scénarios accidentels, des efforts importants de recherche sont consacrés à l'amélioration de la microstructure du combustible MOX à l'issue de son procédé de fabrication. Les deux caractéristiques microstructurales recherchées sont l'accroissement de l'homogénéité de répartition du plutonium et l'augmentation de la taille de grain. Dans cette optique, une solution envisagée est l'ajout lors du procédé de fabrication et sans modification de celui-ci, de sesquioxyde de chrome Cr2O3. Une précédente thèse sur le sujet a permis de proposer un modèle d'homogénéisation de la répartition du plutonium suite à l'ajout de Cr2O3. L'auteur a souligné l'importance de la formation du précipité PuCrO3 aux joints de grains lorsque la solubilité du chrome dans la matrice (U,Pu)O2 est atteinte. Cependant, les mécanismes d'action du chrome n'ont été étudiés que pour une atmosphère de frittage unique. Plusieurs points restent également à approfondir, notamment la solubilité du chrome et les conditions optimales de formation du précipité PuCrO3. Dans un premier temps, une étude de la spéciation du chrome solubilisé et précipité dans l'oxyde mixte (U,Pu)O2 a été réalisée. Les techniques ayant permis d'analyser directement le chrome sont la microsonde électronique et la spectroscopie d'absorption des rayons X. Il a été montré que le degré d'oxydation et l'environnement du chrome solubilisé sont indépendants de la pression partielle d'oxygène imposée lors du frittage et de la teneur en plutonium de l'oxyde mixte. La nature des précipités et la solubilité du chrome dépendent, quant à eux, de la variable thermodynamique et de la teneur en Pu. Sur la base de ces résultats, un modèle de solubilité du chrome dans l'oxyde mixte (U,Pu)O2-x a été construit. Ce modèle a été réalisé en fonction de la teneur en plutonium y de la solution solide (U1-yPuy)O2-x (y = 0,11 ; 0,275 et 1) et sur la gamme de potentiel d'oxygène d'intérêt pour le frittage du combustible (-445 kJ.mol -1< µO2 < -360 kJ.mol -1). Outre l'optimisation du dopage, ce modèle permet de définir les conditions optimales de formation du précipité PuCrO3 en fonction de la teneur en plutonium et de l'atmosphère de frittage. Dans un second temps, nous avons regardé si les conditions d'obtention du précipité PuCrO3 correspondaient à un accroissement de l'homogénéité de répartition du plutonium et une taille de grains maximale. Pour ce faire, des échantillons fabriqués avec ou sans présence de chrome et frittés sous différentes atmosphères ont été étudiés. Il a été mis en évidence que la cinétique d'interdiffusion U-Pu est complètement modifiée en présence de chrome. De plus, suite à l'ajout de chrome, les conditions permettant d'accroître la cinétique d'interdiffusion U-Pu ne sont pas forcément associées à une taille de grain maximale.A partir de ces résultats, des préconisations pour la mise en œuvre industrielle sont proposées. Elles concernent le choix de l'atmosphère de frittage et la teneur en chrome nécessaire à l'optimisation de la microstructure.
22

Filmes biocompatíveis obtidos da polimerização a plasma das misturas dos monômeros HEMA/DEAEMA e THFMA/MOx para aplicações em drug delivery /

Kodaira, Felipe Vicente de Paula. January 2020 (has links)
Orientador: Rogério Pinto Mota / Resumo: Polímeros a plasma são uma classe de materiais que possuem aplicações em diversos tipos de indústrias, como biomédica, alimentícia, embalagens, eletrônica, farmaceutica, entre outras. Esses materiais possuem características que os diferem dos polímeros convencionais, como uma estrutura química ordenada aleatoriamente, boa adesão a diferentes substratos e possuem cadeias muito entrelaçadas. Estes polímeros podem ser utilizados para a função de drug delivery, podem ser carregados com um medicamento e liberá-lo quando in vivo, este conceito de drug delivery permite a realização de um tratamento localizado e com uma dose mais segura de medicamento. O processo de polimerização a plasma também tem características que o difere da polimerização convencional, ele é capaz de realizar reações que demandam muita energia e não poderiam acontecer por química convencional, os parâmetros aplicados podem ser ajustados para customizar até certo ponto o material obtido e não gera resíduos. Inicialmente a polimerização a plasma era realizada em baixa pressão, mais recentemente a alternativa de realizar o processo em pressão atmosférica vêm ganhando destaque por ser relativamente mais barata e pelas características diferentes da descarga e dos polímeros a plasma resultantes. Existem muitas configurações de fontes de plasma em pressão atmosférico, dentre elas os jatos de plasma (APPJs), nestas fontes o plasma é gerado por descargas DBD ou corona no interior de tubos ou cavidades e é expelida para ... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
23

Desenvolvimento de catalisadores bifuncionais de ?xido de zirc?nio modificado por ?xidos de tungst?nio e molibd?nio contendo platina para a rea??o de isomeriza??o de n-parafinas / Development of bifunctional catalysts on zircon oxide modify by tungsten and molybdenum oxides contain platinum for nparaffin isomerization

Pedrosa, Anne Michelle Garrido 04 October 2007 (has links)
Made available in DSpace on 2014-12-17T15:42:31Z (GMT). No. of bitstreams: 1 AnneMichelleGPS.pdf: 4577671 bytes, checksum: 19f54b9da1543ee4a1008ce93d607ec1 (MD5) Previous issue date: 2007-10-04 / Bifunctional catalysts based on zircon oxide modified by tungsten (W = 10, 15 and 20 %) and by molybdenum oxide (Mo= 10, 15 e 20 %) containg platinum (Pt = 1%) were prepared by the polymeric precursor method. For comparison, catalysts the tungsten base was also prepared by the impregnation method. After calcinations at 600, 700 and 800 ?C, the catalysts were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, thermogravimetric and differential thermal analysis, nitrogen adsorption and scanning electron microscopy. The profile of metals reduction was determined by temperature programmed reduction. The synthesized catalysts were tested in n-heptane isomerization. X-ray diffractogram of the Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts revealed the presence of tetragonal ZrO2 and platinum metallic phases in all calcined samples. Diffraction peaks due WO3 and ZrO2 monoclinic also were observed in some samples of the Pt/WOx-ZrO2 catalysts. In the Pt/MoOx-ZrO2 catalysts also were observed diffraction peaks due ZrO2 monoclinic and Zr(MoO4)2 oxide. These phases contained on Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts varied in accordance with the W or Mo loading and in accordance with the calcination temperature. The infrared spectra showed absorption bands due O-W-O and W=O bonds in the Pt/WOx-ZrO2 catalysts and due O-Mo-O, Mo=O and Mo-O bonds in the Pt/MoOx-ZrO2 catalysts. Specific surface area for Pt/WOx-ZrO2 catalysts varied from 30-160 m2 g-1 and for the Pt/MoOx-ZrO2 catalysts varied from 10-120 m2 g-1. The metals loading (W or Mo) and the calcination temperature influence directly in the specific surface area of the samples. The reduction profile of Pt/WOx-ZrO2 catalysts showed two peaks at lower temperatures, which are attributed to platinum reduction. The reduction of WOx species was evidenced by two reduction peak at high temperatures. In the case of Pt/MoOx-ZrO2 catalysts, the reduction profile showed three reduction events, which are attributed to reduction of MoOx species deposited on the support and in some samples one of the peak is related to the reduction of Zr(MoO4)2 oxide. Pt/WOx-ZrO2 catalysts were active in the n-heptane isomerization with high selectivity to 3-methyl-hexane, 2,3- dimethyl-pentane, 2-methyl-hexane among other branched hydrocarbons. The Pt/MoOx-ZrO2 catalysts practically didn't present activity for the n-heptane isomerization, generating mainly products originating from the catalytic cracking / Catalisadores bifuncionais a base de ?xido de zirc?nio modificado por ?xidos de tungst?nio (W = 10, 15 e 20 %) ou molibd?nio (Mo= 10, 15 e 20 %) contendo platina (Pt = 1 %) foram preparados pelo m?todo dos precursores polim?ricos. Por compara??o, catalisadores a base de tungst?nio tamb?m foram preparados pelo m?todo de impregna??o. Ap?s calcina??es a 600, 700 e 800 ?C, os catalisadores foram caracterizados por difra??o de raios-X, espectroscopia de absor??o na regi?o do infravermelho, an?lise termogravim?trica, an?lise t?rmica diferencial, adsor??o de nitrog?nio e microscopia eletr?nica de varredura. Os perfis de redu??o dos metais foram determinados por redu??o a temperatura programada. Os catalisadores sintetizados foram testados na isomeriza??o do n-heptano. Os difratogramas de raios-X dos catalisadores Pt/WOx-ZrO2 e Pt/MoOx-ZrO2 revelaram a presen?a do ZrO2 tetragonal e da platina met?lica em todas as amostras calcinadas. Picos de difra??o referentes ao WO3 e ao ZrO2 monocl?nico tamb?m foram observados em algumas das amostras dos catalisadores Pt/WOx-ZrO2. Nos catalisadores do tipo Pt/MoOx-ZrO2 tamb?m foram observados picos de difra??o referente ao ZrO2 monocl?nico e ao ?xido Zr(MoO4)2. O aparecimento destas outras fases contidas nos catalisadores Pt/WOx-ZrO2 e Pt/MoOx-ZrO2 variaram de acordo com o teor de W ou Mo e de acordo com a temperatura de calcina??o. Os espectros de absor??o na regi?o do infravermelho exibiram bandas de absor??o referentes as liga??es O-W-O e W=O nos catalisadores Pt/WOx-ZrO2 e referentes as liga??es O-Mo-O, Mo=O e Mo-O nos catalisadores Pt/MoOx-ZrO2. A ?rea superficial espec?fica dos catalisadores Pt/WOx-ZrO2 variou de 30-160 m2 g-1 e para os catalisadores do tipo Pt/MoOx-ZrO2 variou de 10-120 m2 g-1. O teor de metais (W ou Mo) e a temperatura de calcina??o exercem uma influ?ncia direta no valor da ?rea superficial espec?fica das amostras. Os perfis de redu??o dos catalisadores Pt/WOx-ZrO2 exibiram dois picos a baixas temperaturas, os quais s?o atribu?dos a redu??o da platina. A redu??o das esp?cies WOx foi evidenciada por dois picos de redu??o a altas temperaturas. No caso dos catalisadores Pt/MoOx-ZrO2, os perfis de redu??o mostram tr?s eventos de redu??o, os quais s?o atribu?dos a redu??o das esp?cies MoOx depositadas no suporte e em algumas amostras um dos picos ? relacionado com a redu??o do ?xido Zr(MoO4)2. Os catalisadores Pt/WOx-ZrO2 foram ativos para a isomeriza??o do n-heptano com alta seletividade a 3-metil-hexano, 2,3-dimetil-pentano e 2-metil-hexano entre outros hidrocarbonetos ramificados. Os catalisadores Pt/MoOx- ZrO2 praticamente n?o apresentaram atividade para a isomeriza??o do n-heptano, gerando principalmente produtos oriundos do craqueamento catalitico
24

In situ studies of uranium-plutonium mixed oxides : Influence of composition on phase equilibria and thermodynamic properties / Etudes in situ des oxydes mixtes d'uranium et de plutonium : Influence de la composition sur les équilibres de phase et les propriétés thermodynamiques

Strach, Michal 29 September 2015 (has links)
En raison de leurs propriétés chimiques et physiques, les oxydes mixtes d'uranium et de plutonium sont considérés comme combustibles pour les réacteurs nucléaires de quatrième génération. Dans ce cadre, des études expérimentales complémentaires sont nécessaire, notamment pour mieux comprendre les phénomènes mis en jeu lors de la fabrication ou sous irradiation. L'objet de ce travail est d'étudier le diagramme de phase U-Pu-O dans une large gamme de composition et de températures afin d'améliorer notre connaissance de ce système. La plupart des expériences ont été réalisées par diffraction des rayons X en fonction de la température. La contrôle in situ de la pression partielle en oxygène a permis de faire varier la stœchiométrie en oxygène dans le matériau. L'approche expérimentale a été couplée avec la modélisation thermodynamique par la méthode CALPHAD afin de mieux dimensionner les expériences et interpréter les résultats. Cette méthodologie a permis d'améliorer notre connaissance des équilibres de phase dans le système U-Pu-O. / Due to their physical and chemical properties, mixed uranium-plutonium oxides are considered for fuel in 4th generation nuclear reactors. In this frame, complementary experimental studies are necessary to develop a better understanding of the phenomena that take place during fabrication and operation in the reactor. The focus of this work was to study the U Pu–O phase diagram in a wide range of compositions and temperatures to ameliorate our knowledge of the phase equilibria in this system. Most of experiments were done using in situ X-ray diffraction at elevated temperatures. The control of the oxygen partial pressure during the treatments made it possible to change the oxygen stoichiometry of the sample, which gave us an opportunity to study rapidly different compositions and the processes involved. The experimental approach was coupled with thermodynamic modeling using the CALPHAD method, to precisely plan the experiments and interpret the obtained results. This approach enabled us to enhance the knowledge of phase equilibria in the U–Pu–O system.
25

Neutronic study of the mono-recycling of americum in PWR and of the core conversion INMNSR using the MURE code / Étude neutronique du mono-recyclage de l'Américium en REP et la conversion du coeur MNSR à l'aide du code MURE

Sogbadji, Robert 11 July 2012 (has links)
Le code MURE est basé sur le couplage d’un code Monte Carlo statique et le calcul de l’évolution pendant l’irradiation et les différentes périodes du cycle (refroidissement, fabrication). Le code MURE est ici utilisé pour analyser deux différentes questions : le mono-recyclage de l’Am dans les réacteurs français de type REP et la conversion du coeur du MNSR (Miniature Neutron Source Reactor) au Ghana d’un combustible à uranium hautement enrichi (HEU) vers un combustible faiblement enrichi (LEU), dans le cadre de la lutte contre la prolifération. Dans les deux cas, une comparaison détaillée est menée sur les taux d’irradiation et les radiotoxicités induites (combustibles usés, déchets).Le combustible UOX envisagé est enrichi de telle sorte qu’il atteigne un taux d’irradiation de 46 GWj/t et 68 GWj/t. Le combustible UOX usé est retraité, et le retraitement standard consiste à séparer le plutonium afin de fabriquer un combustible MOX sur base d’uranium appauvri. La concentration du Pu dans le MOX est déterminée pour atteindre un taux d’irradiation du MOX de 46 et 68 GWj/t. L’impact du temps de refroidissement de l’UOX usé est étudié (5 à 30 ans), afin de quantifier l’impact de la disparition du 241PU (fissile) par décroissance radioactive (T=14,3 ans). Un refroidissement de 30 ans demande à augmenter la teneur en Pu dans le MOX. L’241Am, avec une durée de vie de 432 ans, jour un rôle important dans le dimensionnement du site de stockage des déchets vitrifiés et dans leur radiotoxicité à long terme. Il est le candidat principal à la transmutation, et nous envisageons donc son recyclage dans le MOX, avec le plutonium. Cette stratégie permet de minimiser la puissance résiduelle et la radiotoxicité des verres, en laissant l’Am disponible dans les MOX usés pour une transmutation éventuelle future dans les réacteurs rapides. Nous avons étudié l’impact neutronique d’un tel recyclage. Le temps de refroidissement de l’UOX est encore plus sensible ici car l’241Am recyclé est un fort poison neutronique qui dégrade les performances du combustible (taux d’irradiation, coefficients de vide et de température). Néanmoins, à l’exception de quelques configurations, le recyclage de l’Am ne dégrade pas les coefficients de sûreté de base. Le réacteur MNSR du Ghana fonctionne aujourd’hui avec de l’uranium enrichi à 90,2% (HEU), et nous étudions ici la possibilité de le faire fonctionner avec de l’uranium enrichi à 12,5%, en passant d’un combustible sur base d’aluminium à un oxyde. Les simulations ont été menées avec le code MURE, et montrent que le coeur LEU peut-être irradié plus longtemps, mais demande d’intervenir plus tôt sur le pilotage en jouant sur la quantité de béryllium en coeur. Les flux de neutrons dans les canaux d’irradiation sont similaires pour les coeurs HEU et LEU, de même pour les coefficients de vide. Le combustible LEU usé présente cependant une radiotoxicité et une chaleur résiduelle plus élevée, du fait de la production plus importante de transuraniens pendant l’irradiation. / The MURE code is based on the coupling of a Monte Carlo static code and the calculation of the evolution of the fuel during irradiation and cooling periods. The MURE code has been used to analyse two different questions, concerning the mono-recycling of Am in present French Pressurized Water Reactor, and the conversion of high enriched uranium (HEU) used in the Miniature Neutron Source Reactor in Ghana into low enriched uranium (LEU) due to proliferation resistance issues. In both cases, a detailed comparison is made on burnup and the induced radiotoxicity of waste or spent fuel. The UOX fuel assembly, as in the open cycle system, was designed to reach a burn-up of 46GWd/T and 68GWd/T. The spent UOX was reprocessed to fabricate MOX assemblies, by the extraction of Plutonium and addition of depleted Uranium to reach burn-ups of 46GWd/T and 68GWd/T, taking into account various cooling times of the spent UOX assembly in the repository. The effect of cooling time on burnup and radiotoxicity was then ascertained. Spent UOX fuel, after 30 years of cooling in the repository required higher concentration of Pu to be reprocessed into a MOX fuel due to the decay of Pu-241. Americium, with a mean half-life of 432 years, has high radiotoxic level, high mid-term residual heat and a precursor for other long lived isotope. An innovative strategy consists of reprocessing not only the plutonium from the UOX spent fuel but also the americium isotopes which dominate the radiotoxicity of present waste. The mono-recycling of Am is not a definitive solution because the once-through MOX cycle transmutation of Am in a PWR is not enough to destroy all the Am. The main objective is to propose a “waiting strategy” for both Am and Pu in the spent fuel so that they can be made available for further transmutation strategies. The MOXAm (MOX and Americium isotopes) fuel was fabricated to see the effect of americium in MOX fuel on the burn-up, neutronic behavior and on radiotoxicity. The MOXAm fuel showed relatively good indicators both on burnup and on radiotoxicity. A 68GWd/T MOX assembly produced from a reprocessed spent 46GWd/T UOX assembly showed a decrease in radiotoxicity as compared to the open cycle. All fuel types understudy in the PWR cycle showed good safety inherent feature with the exception of the some MOXAm assemblies which have a positive void coefficient in specific configurations, which could not be consistent with safety features. The core lifetimes of the current operating 90.2% HEU UAl fuel and the proposed 12.5% LEU UOX fuel of the MNSR were investigated using MURE code. Even though LEU core has a longer core life due to its higher core loading and low rate of uranium consumption, the LEU core will have it first beryllium top up to compensate for reactivity at earlier time than the HEU core. The HEU and LEU cores of the MNSR exhibited similar neutron fluxes in irradiation channels, negative feedback of temperature and void coefficients, but the LEU is more radiotoxic after fission product decay due to higher actinides presence at the end of its core lifetime.
26

Influence du potentiel d’oxygène sur la microstructure et l’homogénéité U-Pu des combustibles U1-yPuyO2±x / Influence of the oxygen potential on the microstructure and the homogeneity of fuel U-Pu : U1-yPuyO2±x

Cocollomb, Ségolène 02 December 2013 (has links)
Les phénomènes de diffusion se produisant lors du frittage des oxydes mixtes d’uranium et deplutonium (MOX) dépendent du potentiel d’oxygène de l’atmosphère du four, qui détermine lanature et la concentration des défauts ponctuels dans le matériau. Les travaux de thèse ont porté surune meilleure compréhension de l’influence du potentiel d’oxygène sur la densification, la formationde la solution solide et l’interdiffusion U-Pu lors du frittage des combustibles MOX. Pour cela, unlarge domaine de potentiel d’oxygène a été étudié, entre -600 et -100 kJ.mol-1 à 1700°C, afin demettre en évidence les différents mécanismes diffusionnels et leur impact sur la microstructurelorsqu’on s’éloigne de la composition stoechiométrique i.e. lorsque la concentration en défautsaugmente.Les études ont montré que plus le potentiel d’oxygène augmente, plus la densification du mélange70 % UO2+x + 30 % PuO2 s’effectue à basse température. Lors du chauffage, les oxydes de départ(UO2+x et PuO2-x) densifient dans un premier temps puis la solution solide se forme à une températureplus élevée d’environ 200°C. La solution solide apparaît à plus basse température quand le potentield’oxygène augmente, avec une cinétique de formation plus rapide. L’étude de l’interdiffusion U-Puindique qu’un traitement thermique avec un potentiel d’oxygène supérieur à -150 kJ.mol-1 à 1700°Cpermet d’obtenir un coefficient d’interdiffusion supérieur d’un à deux ordres de grandeur à ceuxobtenus entre -550 et -350 kJ.mol-1 à 1700°C et conduit donc à une homogénéisation U-Pu accrue.Cette étude permet de donner des recommandations sur le choix de l’atmosphère et de proposer uncycle de frittage optimisé en fonction de l’application ou de la caractéristique souhaitée. / Diffusion mechanisms occurring during the sintering of mixed uranium-plutonium oxides (MOX) areaffected by the oxygen potential of the atmosphere, as this latter imposes the nature and theconcentration of point defects in the material. This work is focused on a better knowledge of theinfluence of oxygen potential on densification, solid solution formation and U-Pu interdiffusionduring the sintering of MOX fuels. In this aim, a wide range of oxygen potential was studied, between-600 and -100 kJ.mol-1 at 1700°C, to highlight the various diffusional mechanisms and their impact onthe microstructure as oxygen deviates from stoichiometric composition and the defect concentrationincreases.As oxygen potential increases, the densification of the 70 % UO2+x + 30 % PuO2 mixture occurs at alower temperature. During the heating, the initial oxides (UO2+x et PuO2-x) densify first and then thesolid solution starts forming at about 200°C higher. The solid solution appears at a lowertemperature as the oxygen potential increases, with a faster kinetics of formation. The U-Puinterdiffusion study indicates that a heat treatment with an oxygen potential higher than -150kJ.mol-1 at 1700°C allows to obtain an interdiffusion coefficient higher by one up to two orders ofmagnitude compared with those obtained between -550 and -350 kJ.mol-1 at 1700°C and thereforeleads to an enhanced U-Pu homogenizationThis study enables to make recommendations on the atmosphere choice and to provide an optimizedsintering cycle depending on the desired application or required feature.
27

Neutronic study of the mono-recycling of americum in PWR and of the core conversion INMNSR using the MURE code

Sogbadji, Robert 11 July 2012 (has links) (PDF)
The MURE code is based on the coupling of a Monte Carlo static code and the calculation of the evolution of the fuel during irradiation and cooling periods. The MURE code has been used to analyse two different questions, concerning the mono-recycling of Am in present French Pressurized Water Reactor, and the conversion of high enriched uranium (HEU) used in the Miniature Neutron Source Reactor in Ghana into low enriched uranium (LEU) due to proliferation resistance issues. In both cases, a detailed comparison is made on burnup and the induced radiotoxicity of waste or spent fuel. The UOX fuel assembly, as in the open cycle system, was designed to reach a burn-up of 46GWd/T and 68GWd/T. The spent UOX was reprocessed to fabricate MOX assemblies, by the extraction of Plutonium and addition of depleted Uranium to reach burn-ups of 46GWd/T and 68GWd/T, taking into account various cooling times of the spent UOX assembly in the repository. The effect of cooling time on burnup and radiotoxicity was then ascertained. Spent UOX fuel, after 30 years of cooling in the repository required higher concentration of Pu to be reprocessed into a MOX fuel due to the decay of Pu-241. Americium, with a mean half-life of 432 years, has high radiotoxic level, high mid-term residual heat and a precursor for other long lived isotope. An innovative strategy consists of reprocessing not only the plutonium from the UOX spent fuel but also the americium isotopes which dominate the radiotoxicity of present waste. The mono-recycling of Am is not a definitive solution because the once-through MOX cycle transmutation of Am in a PWR is not enough to destroy all the Am. The main objective is to propose a "waiting strategy" for both Am and Pu in the spent fuel so that they can be made available for further transmutation strategies. The MOXAm (MOX and Americium isotopes) fuel was fabricated to see the effect of americium in MOX fuel on the burn-up, neutronic behavior and on radiotoxicity. The MOXAm fuel showed relatively good indicators both on burnup and on radiotoxicity. A 68GWd/T MOX assembly produced from a reprocessed spent 46GWd/T UOX assembly showed a decrease in radiotoxicity as compared to the open cycle. All fuel types understudy in the PWR cycle showed good safety inherent feature with the exception of the some MOXAm assemblies which have a positive void coefficient in specific configurations, which could not be consistent with safety features. The core lifetimes of the current operating 90.2% HEU UAl fuel and the proposed 12.5% LEU UOX fuel of the MNSR were investigated using MURE code. Even though LEU core has a longer core life due to its higher core loading and low rate of uranium consumption, the LEU core will have it first beryllium top up to compensate for reactivity at earlier time than the HEU core. The HEU and LEU cores of the MNSR exhibited similar neutron fluxes in irradiation channels, negative feedback of temperature and void coefficients, but the LEU is more radiotoxic after fission product decay due to higher actinides presence at the end of its core lifetime.
28

Influence du potentiel d'oxygène sur la microstructure et l'homogénéité U-Pu des combustibles U1-yPuyO2±x

Berzati, Ségolène 02 December 2013 (has links) (PDF)
Les phénomènes de diffusion se produisant lors du frittage des oxydes mixtes d'uranium et deplutonium (MOX) dépendent du potentiel d'oxygène de l'atmosphère du four, qui détermine lanature et la concentration des défauts ponctuels dans le matériau. Les travaux de thèse ont porté surune meilleure compréhension de l'influence du potentiel d'oxygène sur la densification, la formationde la solution solide et l'interdiffusion U-Pu lors du frittage des combustibles MOX. Pour cela, unlarge domaine de potentiel d'oxygène a été étudié, entre -600 et -100 kJ.mol-1 à 1700°C, afin demettre en évidence les différents mécanismes diffusionnels et leur impact sur la microstructurelorsqu'on s'éloigne de la composition stoechiométrique i.e. lorsque la concentration en défautsaugmente.Les études ont montré que plus le potentiel d'oxygène augmente, plus la densification du mélange70 % UO2+x + 30 % PuO2 s'effectue à basse température. Lors du chauffage, les oxydes de départ(UO2+x et PuO2-x) densifient dans un premier temps puis la solution solide se forme à une températureplus élevée d'environ 200°C. La solution solide apparaît à plus basse température quand le potentield'oxygène augmente, avec une cinétique de formation plus rapide. L'étude de l'interdiffusion U-Puindique qu'un traitement thermique avec un potentiel d'oxygène supérieur à -150 kJ.mol-1 à 1700°Cpermet d'obtenir un coefficient d'interdiffusion supérieur d'un à deux ordres de grandeur à ceuxobtenus entre -550 et -350 kJ.mol-1 à 1700°C et conduit donc à une homogénéisation U-Pu accrue.Cette étude permet de donner des recommandations sur le choix de l'atmosphère et de proposer uncycle de frittage optimisé en fonction de l'application ou de la caractéristique souhaitée.
29

Atomic scale simulations on LWR and Gen-IV fuel

Caglak, Emre 12 October 2021 (has links) (PDF)
Fundamental understanding of the behaviour of nuclear fuel has been of great importance. Enhancing this knowledge not only by means of experimental observations, but also via multi-scale modelling is of current interest. The overall goal of this thesis is to understand the impact of atomic interactions on the nuclear fuel material properties. Two major topics are tackled in this thesis. The first topic deals with non-stoichiometry in uranium dioxide (UO2) to be addressed by empirical potential (EP) studies. The second fundamental question to be answered is the effect of the atomic fraction of americium (Am), neptunium (Np) containing uranium (U) and plutonium (Pu) mixed oxide (MOX) on the material properties.UO2 has been the reference fuel for the current fleet of nuclear reactors (Gen-II and Gen-III); it is also considered today by the Gen-IV International Forum for the first cores of the future generation of nuclear reactors on the roadmap towards minor actinide (MA) based fuel technology. The physical properties of UO2 highly depend on material stoichiometry. In particular, oxidation towards hyper stoichiometric UO2 – UO2+x – might be encountered at various stages of the nuclear fuel cycle if oxidative conditions are met; the impact of physical property changes upon stoichiometry should therefore be properly assessed to ensure safe and reliable operations. These physical properties are intimately linked to the arrangement of atomic defects in the crystalline structure. The first paper evaluates the evolution of defect concentration with environment parameters – oxygen partial pressure and temperature by means of a point defect model, with reaction energies being derived from EP based atomic scale simulations. Ultimately, results from the point defect model are discussed, and compared to experimental measurements of stoichiometry dependence on oxygen partial pressure and temperature. Such investigations will allow for future discussions about the solubility of different fission products and dopants in the UO2 matrix at EP level.While the first paper answers the central question regarding the dominating defects in non-stoichiometry in UO2, the focus of the second paper was on the EP prediction of the material properties, notably the lattice parameter of Am, Np containing U and Pu MOX as a function of atomic fractions.The configurational space of a complex U1-y-y’-y’’PuyAmy’Npy’’O2 system, was assessed via Metropolis-Monte Carlo techniques. From the predicted configuration, the relaxed lattice parameter of Am, Np bearing MOX fuel was investigated and compared with available literature data. As a result, a linear behaviour of the lattice parameter as a function of Am, Np content was observed, as expected for an ideal solid solution. These results will allow to support and increase current knowledge on Gen-IV fuel properties, such as melting temperature, for which preliminary results are presented in this thesis, and possibly thermal conductivity in the future. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.465 seconds