• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 68
  • 44
  • 16
  • 13
  • 13
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 394
  • 55
  • 53
  • 46
  • 46
  • 31
  • 28
  • 28
  • 28
  • 26
  • 26
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Sur la conjecture d'André-Oort et courbes modulaires de Drinfeld

BREUER, Florian 08 November 2002 (has links) (PDF)
Nous démontrons une version pour la caractéristique p d'un cas spécial de la conjecture d'André-Oort. Plus précisement, soit Z le produit de n courbes modulaires de Drinfeld, et soit X une sous-variété algébrique irréductible de Z. Alors nous démontrons que X contient un ensemble Zariski-dense de points CM (c.a.d. points correspondant aux n-uples de A-modules de Drinfeld de rang 2 avec mulitplications complexes, où A=F_q[T], et q est une puissance d'un nombre prémier impair) si et seulement si X est une sous-variété dite modulaire. Notre approche répose sur une approche (en caractéristique 0) due à Edixhoven.
112

Améliorations de la multiplication et de la factorisation d'entier

Kruppa, Alexander 28 January 2010 (has links) (PDF)
Cette thèse propose des améliorations aux problèmes de la multiplication et de la factorisation d'entier. <p> L'algorithme de Schönhage-Strassen pour la multiplication d'entier, publié en 1971, fut le premier à atteindre une complexité de O(n log (n) log(log(n))) pour multiplier deux entiers de n bits, et reste parmi les plus rapides en pratique. Il réduit la multiplication d'entier à celle de polynôme sur un anneau fini, en utilisant la transformée de Fourier rapide pour calculer le produit de convolution. Dans un travail commun avec Gaudry et Zimmermann, nous décrivons une implantation efficace de cet algorithme, basée sur la bibliothèque GNU MP; par rapport aux travaux antérieurs, nous améliorons l'utilisation de la mémoire cache, la sélection des paramètres et la longueur de convolution, ce qui donne un gain d'un facteur 2 environ. <p> Les algorithmes P-1 et P+1 trouvent un facteur p d'un entier composé rapidement si p-1, respectivement p+1, ne contient pas de grand facteur premier. Ces algorithmes comportent deux phases: la première phase calcule une grande puissance g<sub>1</sub> d'un élément g<sub>0</sub> d'un groupe fini défini sur F<sub>p</sub>, respectivement F<sub>p^2</sub>, la seconde phase cherche une collision entre puissances de g<sub>1</sub>, qui est trouvée de manière efficace par évaluation-interpolation de polynômes. Dans un travail avec Peter Lawrence Montgomery, nous proposons une amélioration de la seconde phase de ces algorithmes, avec une construction plus rapide des polynômes requis, et une consommation mémoire optimale, ce qui permet d'augmenter la limite pratique pour le plus grand facteur premier de p-1, resp. p+1, d'un facteur 100 environ par rapport aux implantations antérieures. <p> Le crible algébrique (NFS) est le meilleur algorithme connu pour factoriser des entiers dont les facteurs n'ont aucune propriété permettant de les trouver rapidement. En particulier, le module du système RSA de chiffrement est choisi de telle sorte, et sa factorisation casse le système. De nombreux efforts ont ainsi été consentis pour améliorer NFS, de façon à établir précisément la sécurité de RSA. Nous donnons un bref aperçu de NFS et de son historique. Lors de la phase de crible de NFS, de nombreux petits entiers doivent être factorisés. Nous présentons en détail une implantation de P-1, P+1, et de la méthode ECM basée sur les courbes elliptiques, qui est optimisée pour de tels petits entiers. Finalement, nous montrons comment les paramétres de ces algorithmes peuvent étre choisis finement, en tenant compte de la distribution des facteurs premiers dans les entiers produits par NFS, et de la probabilité de trouver des facteurs premiers d'une taille donnée.
113

Structure et dynamique de la diversité d'une plante cultivée à multiplication végétative : le cas des ignames au Bénin (Dioscorea sp.)

Scarcelli, Nora 22 November 2005 (has links) (PDF)
Nous avons étudié comment les pratiques paysannes contribuent à la dynamique et la structuration de la diversité d'une plante cultivée à multiplication végétative, l'igname (Dioscorea sp.) au Bénin. Dans un premier temps, nous avons montré la diploïdie des espèces étudiées (D. rotundata, D. abyssinica et D. praehensilis). Nous avons mis en évidence des flux de gènes entre les compartiments sauvage (D. abyssinica et D. praehensilis) et cultivé (D. rotundata). Tout d'abord, nous avons montré l'existence et la viabilité d'hybrides interspécifiques. Puis, nous avons montré qu'à travers la pratique de l'ennoblissement, certains paysans créent de nouvelles variétés à partir d'individus sauvages, d'hybrides interspécifiques et probablement à partir d'hybrides inter-variétaux. Les paysans utilisent donc la reproduction sexuée des ignames sauvages et cultivées et participent ainsi à maintenir les processus évolutifs chez cette plante à multiplication végétative. Nous avons ensuite analysé la diversité du compartiment cultivé et son organisation à l'échelle d'un village. Nos résultats suggèrent que les variétés d'ignames ont été créées à partir de produits de reproduction sexuée. Les variétés sont polyclonales mais homogènes génétiquement. En effet, cette diversité s'interprète comme des mutants dérivant d'un même génotype. Enfin, les agriculteurs cultivent les mêmes groupes de variétés et échangent des tubercules entre eux, ce qui conduit à une absence de différenciation entre les pools génétiques cultivés par les différents paysans.
114

DSP Platform Benchmarking : DSP Platform Benchmarking

Xinyuan, Luo January 2009 (has links)
<p><p>Benchmarking of DSP kernel algorithms was conducted in the thesis on a DSP processor for teaching in the course TESA26 in the department of Electrical Engineering. It includes benchmarking on cycle count and memory usage. The goal of the thesis is to evaluate the quality of a single MAC DSP instruction set and provide suggestions for further improvement in instruction set architecture accordingly. The scope of the thesis is limited to benchmark the processor only based on assembly coding. The quality check of compiler is not included. The method of the benchmarking was proposed by BDTI, Berkeley Design Technology Incorporations, which is the general methodology used in world wide DSP industry.</p><p>Proposals on assembly instruction set improvements include the enhancement of FFT and DCT. The cycle cost of the new FFT benchmark based on the proposal was XX% lower, showing that the proposal was right and qualified. Results also show that the proposal promotes the cycle cost score for matrix computing, especially matrix multiplication. The benchmark results were compared with general scores of single MAC DSP processors offered by BDTI.</p></p>
115

Computational Complexity of Finite Field Multiplication / Beräkningskomplexitet för multiplikation i ändliga kroppar

Quttineh, Nils-Hassan January 2003 (has links)
<p>The subject for this thesis is to find a basis which minimizes the number of bit operations involved in a finite field multiplication. The number of bases of a finite field increases quickly with the extension degree, and it is therefore important to find efficient search algorithms. Only fields of characteristic two are considered. </p><p>A complexity measure is introduced, in order to compare bases. Different methods and algorithms are tried out, limiting the search in order to explore larger fields. The concept of equivalent bases is introduced. </p><p>A comparison is also made between the Polynomial, Normal and Triangular Bases, referred to as known bases, as they are commonly used in implementations. Tables of the best found known bases for all fields up to GF(2^24) is presented. </p><p>A list of the best found bases for all fields up to GF(2^25) is also given.</p>
116

Architectures for Multiplication in Galois Rings / Arkitekturer för multiplikation i Galois-ringar

Abrahamsson, Björn January 2004 (has links)
<p>This thesis investigates architectures for multiplying elements in Galois rings of the size 4^m, where m is an integer. </p><p>The main question is whether known architectures for multiplying in Galois fields can be used for Galois rings also, with small modifications, and the answer to that question is that they can. </p><p>Different representations for elements in Galois rings are also explored, and the performance of multipliers for the different representations is investigated.</p>
117

Implementering av 1D-DCT

Zilic, Edmin January 2006 (has links)
<p>IDCT (Inverse Discrete Cosine Transform) is a common algorithm being used with image and sound decompression. The algorithm is a Fourier related transform which can occur in many different types like, one-dimensional, two-dimensional, three-dimensional and many more.</p><p>The goal with this thesis is to create a fast and low effect version of two-dimensional IDCT algorithm, where techniques as multiple-constant multiplication and subexpression sharing plus bit-serial and bit-parallel arithmetic are used.</p><p>The result is a hardware implementation with power consumption at 19,56 mW.</p>
118

Low Power and Low complexity Constant Multiplication using Serial Arithmetic

Johansson, Kenny January 2006 (has links)
<p>The main issue in this thesis is to minimize the energy consumption per operation for the arithmetic parts of DSP circuits, such as digital filters. More specific, the focus is on single- and multiple-constant multiplication using serial arithmetic. The possibility to reduce the complexity and energy consumption is investigated. The main difference between serial and parallel arithmetic, which is of interest here, is that a shift operation in serial arithmetic require a flip-flop, while it can be hardwired in parallel arithmetic.</p><p>The possible ways to connect a certain number of adders is limited, i.e., for single-constant multiplication, the number of possible structures is limited for a given number of adders. Furthermore, for each structure there is a limited number of ways to place the shift operations. Hence, it is possible to find the best solution for each constant, in terms of complexity, by an exhaustive search. Methods to bound the search space are discussed. We show that it is possible to save both adders and shifts compared to CSD serial/parallel multipliers. Besides complexity, throughput is also considered by defining structures where the critical path, for bit-serial arithmetic, is no longer than one full adder.</p><p>Two algorithms for the design of multiple-constant multiplication using serial arithmetic are proposed. The difference between the proposed design algorithms is the trade-offs between adders and shifts. For both algorithms, the total complexity is decreased compared to an algorithm for parallel arithmetic.</p><p>The impact of the digit-size, i.e., the number of bits to be processed in parallel, in FIR filters is studied. Two proposed multiple-constant multiplication algorithms are compared to an algorithm for parallel arithmetic and separate realization of the multipliers. The results provide some guidelines for designing low power multiple-constant multiplication algorithms for FIR filters implemented using digit-serial arithmetic.</p><p>A method for computing the number of logic switchings in bit-serial constant multipliers is proposed. The average switching activity in all possible multiplier structures with up to four adders is determined. Hence, it is possible to reduce the switching activity by selecting the best structure for any given constant. In addition, a simplified method for computing the switching activity in constant serial/parallel multipliers is presented. Here it is possible to reduce the energy consumption by selecting the best signed-digit representation of the constant.</p><p>Finally, a data dependent switching activity model is proposed for ripple-carry adders. For most applications, the input data is correlated, while previous estimations assumed un-correlated data. Hence, the proposed method may be included in high-level power estimation to obtain more accurate estimates. In addition, the model can be used as cost function in multiple-constant multiplication algorithms. A modified model based on word-level statistics, which is accurate in estimating the switching activity when real world signals are applied, is also presented.</p> / Report code: LiU-Tek-Lic-2006:30.
119

Hur skiljer sig skolmatematiken för årskurs 3 i en turkisk och en svensk skola? : jämförelsestudie av undervisning i matematik i Turkiet och Sverige

Taskin, Sevgül January 2009 (has links)
<p>The purpose of the study is, through some aspects, to make it visible and compare the education in mathematics in classes 1-3 in Sweden and Turkey. I have also studied the mathematic lessons, textbook and teaching aids, examinations and the use of calculator, on the basis of steering documents in curriculum and syllabi. The method used in this study contains of qualitative interviews and have an unstructured character but also observations noted continuously. The result is a comparison between my own experiences and the observations connected to relevant theories and the questions.</p>
120

Semantische Repräsentation, obligatorische Aktivierung und verbale Produktion arithmetischer Fakten / Semantic representation, obligatory activation, and verbal production of arithmetic facts

Domahs, Frank January 2006 (has links)
Die vorliegende Arbeit widmet sich der Repräsentation und Verarbeitung arithmetischer Fakten. Dieser Bereich semantischen Wissens eignet sich unter anderem deshalb besonders gut als Forschungsgegenstand, weil nicht nur seine einzelne Bestandteile, sondern auch die Beziehungen dieser Bestandteile untereinander außergewöhnlich gut definierbar sind. Kognitive Modelle können also mit einem Grad an Präzision entwickelt werden, der in anderen Bereichen kaum je zu erreichen sein wird. Die meisten aktuellen Modelle stimmen darin überein, die Repräsentation arithmetischer Fakten als eine assoziative, netzwerkartig organisierte Struktur im deklarativen Gedächtnis zu beschreiben. Trotz dieser grundsätzlichen Übereinstimmung bleibt eine Reihe von Fragen offen. In den hier vorgestellten Untersuchungen werden solche offene Fragen in Hinsicht auf drei verschiedene Themenbereiche angegangen: 1) die neuroanatomischen Korrelate 2) Nachbarschaftskonsistenzeffekte bei der verbalen Produktion sowie 3) die automatische Aktivierung arithmetischer Fakten. In einer kombinierten fMRT- und Verhaltensstudie wurde beispielsweise der Frage nachgegangen, welche neurofunktionalen Entsprechungen es für den Erwerb arithmetischer Fakten bei Erwachsenen gibt. Den Ausgangspunkt für diese Untersuchung bildete das Triple-Code-Modell von Dehaene und Cohen, da es als einziges auch Aussagen über neuroanatomische Korrelate numerischer Leistungen macht. Das Triple-Code-Modell geht davon aus, dass zum Abruf arithmetischer Fakten eine „perisylvische“ Region der linken Hemisphäre unter Einbeziehung der Stammganglien sowie des Gyrus angularis nötig ist (Dehaene & Cohen, 1995; Dehaene & Cohen, 1997; Dehaene, Piazza, Pinel, & Cohen, 2003). In der aktuellen Studie sollten gesunde Erwachsene komplexe Multiplikationsaufgaben etwa eine Woche lang intensiv üben, so dass ihre Beantwortung immer mehr automatisiert erfolgt. Die Lösung dieser geübten Aufgaben sollte somit – im Gegensatz zu vergleichbaren ungeübten Aufgaben – immer stärker auf Faktenabruf als auf der Anwendung von Prozeduren und Strategien beruhen. Hingegen sollten ungeübte Aufgaben im Vergleich zu geübten höhere Anforderungen an exekutive Funktionen einschließlich des Arbeitsgedächtnisses stellen. Nach dem Training konnten die Teilnehmer – wie erwartet – geübte Aufgaben deutlich schneller und sicherer beantworten als ungeübte. Zusätzlich wurden sie auch im Magnetresonanztomografen untersucht. Dabei konnte zunächst bestätigt werden, dass das Lösen von Multiplikationsaufgaben allgemein von einem vorwiegend linkshemisphärischen Netzwerk frontaler und parietaler Areale unterstützt wird. Das wohl wichtigste Ergebnis ist jedoch eine Verschiebung der Hirnaktivierungen von eher frontalen Aktivierungsmustern zu einer eher parietalen Aktivierung und innerhalb des Parietallappens vom Sulcus intraparietalis zum Gyrus angularis bei den geübten im Vergleich zu den ungeübten Aufgaben. So wurde die zentrale Bedeutung von Arbeitsgedächtnis- und Planungsleistungen für komplexe ungeübte Rechenaufgaben erneut herausgestellt. Im Sinne des Triple-Code-Modells könnte die Verschiebung innerhalb des Parietallappens auf einen Wechsel von quantitätsbasierten Rechenleistungen (Sulcus intraparietalis) zu automatisiertem Faktenabruf (linker Gyrus angularis) hindeuten. Gibt es bei der verbalen Produktion arithmetischer Fakten Nachbarschaftskonsistenzeffekte ähnlich zu denen, wie sie auch in der Sprachverarbeitung beschrieben werden? Solche Effekte sind nach dem aktuellen „Dreiecksmodell“ von Verguts & Fias (2004) zur Repräsentation von Multiplikationsfakten erwartbar. Demzufolge sollten richtige Antworten leichter gegeben werden können, wenn sie Ziffern mit möglichst vielen semantisch nahen falschen Antworten gemeinsam haben. Möglicherweise sollten demnach aber auch falsche Antworten dann mit größerer Wahrscheinlichkeit produziert werden, wenn sie eine Ziffer mit der richtigen Antwort teilen. Nach dem Dreiecksmodell wäre darüber hinaus sogar der klassische Aufgabengrößeneffekt bei einfachen Multiplikationsaufgaben (Zbrodoff & Logan, 2004) auf die Konsistenzverhältnisse der richtigen Antwort mit semantisch benachbarten falschen Antworten zurückzuführen. In einer Reanalyse der Fehlerdaten von gesunden Probanden (Campbell, 1997) und einem Patienten (Domahs, Bartha, & Delazer, 2003) wurden tatsächlich Belege für das Vorhandensein von Zehnerkonsistenzeffekten beim Lösen einfacher Multiplikationsaufgaben gefunden. Die Versuchspersonen bzw. der Patient hatten solche falschen Antworten signifikant häufiger produziert, welche die gleiche Zehnerziffer wie das richtigen Ergebnisses aufwiesen, als ansonsten vergleichbare andere Fehler. Damit wird die Annahme unterstützt, dass die Zehner- und die Einerziffern zweistelliger Zahlen separate Repräsentationen aufweisen – bei der Multiplikation (Verguts & Fias, 2004) wie auch allgemein bei numerischer Verarbeitung (Nuerk, Weger, & Willmes, 2001; Nuerk & Willmes, 2005). Zusätzlich dazu wurde in einer Regressionsanalyse über die Fehlerzahlen auch erstmalig empirische Evidenz für die Hypothese vorgelegt, dass der klassische Aufgabengrößeneffekt beim Abruf von Multiplikationsfakten auf Zehnerkonsistenzeffekte zurückführbar ist: Obwohl die Aufgabengröße als erster Prädiktor in das Modell einging, wurde diese Variable wieder verworfen, sobald ein Maß für die Nachbarschaftskonsistenz der richtigen Antwort in das Modell aufgenommen wurde. Schließlich wurde in einer weiteren Studie die automatische Aktivierung von Multiplikationsfakten bei gesunden Probanden mit einer Zahlenidentifikationsaufgabe (Galfano, Rusconi, & Umilta, 2003; Lefevre, Bisanz, & Mrkonjic, 1988; Thibodeau, Lefevre, & Bisanz, 1996) untersucht. Dabei sollte erstmals die Frage beantwortet werden, wie sich die automatische Aktivierung der eigentlichen Multiplikationsergebnisse (Thibodeau et al., 1996) zur Aktivierung benachbarter falscher Antworten (Galfano et al., 2003) verhält. Ferner sollte durch die Präsentation mit verschiedenen SOAs der zeitliche Verlauf dieser Aktivierungen aufgeklärt werden. Die Ergebnisse dieser Studie können insgesamt als Evidenz für das Vorhandensein und die automatische, obligatorische Aktivierung eines Netzwerkes arithmetischer Fakten bei gesunden, gebildeten Erwachsenen gewertet werden, in dem die richtigen Produkte stärker mit den Faktoren assoziiert sind als benachbarte Produkte (Operandenfehler). Dabei führen Produkte kleiner Aufgaben zu einer stärkeren Interferenz als Produkte großer Aufgaben und Operandenfehler großer Aufgaben zu einer stärkeren Interferenz als Operandenfehler kleiner Aufgaben. Ein solches Aktivierungsmuster passt gut zu den Vorhersagen des Assoziationsverteilungsmodells von Siegler (Lemaire & Siegler, 1995; Siegler, 1988), bei dem kleine Aufgaben eine schmalgipflige Verteilung der Assoziationen um das richtige Ergebnis herum aufweisen, große Aufgaben jedoch eine breitgipflige Verteilung. Somit sollte die vorliegende Arbeit etwas mehr Licht in bislang weitgehend vernachlässigte Aspekte der Repräsentation und des Abrufs arithmetischer Fakten gebracht haben: Die neuronalen Korrelate ihres Erwerbs, die Konsequenzen ihrer Einbindung in das Stellenwertsystem mit der Basis 10 sowie die spezifischen Auswirkungen ihrer assoziativen semantischen Repräsentation auf ihre automatische Aktivierbarkeit. Literatur Campbell, J. I. (1997). On the relation between skilled performance of simple division and multiplication. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1140-1159. Dehaene, S. & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83-120. Dehaene, S. & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219-250. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. Domahs, F., Bartha, L., & Delazer, M. (2003). Rehabilitation of arithmetic abilities: Different intervention strategies for multiplication. Brain and Language, 87, 165-166. Galfano, G., Rusconi, E., & Umilta, C. (2003). Automatic activation of multiplication facts: evidence from the nodes adjacent to the product. Quarterly Journal of Experimental Psychology A, 56, 31-61. Lefevre, J. A., Bisanz, J., & Mrkonjic, L. (1988). Cognitive arithmetic: evidence for obligatory activation of arithmetic facts. Memory and Cognition, 16, 45-53. Lemaire, P. & Siegler, R. S. (1995). Four aspects of strategic change: contributions to children's learning of multiplication. Journal of Experimental Psychology: General, 124, 83-97. Nuerk, H. C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25-B33. Nuerk, H. C. & Willmes, K. (2005). On the magnitude representations of two-digit numbers. Psychology Science, 47, 52-72. Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology: General, 117, 258-275. Thibodeau, M. H., Lefevre, J. A., & Bisanz, J. (1996). The extension of the interference effect to multiplication. Canadian Journal of Experimental Psychology, 50, 393-396. Verguts, T. & Fias, W. (2004). Neighborhood Effects in Mental Arithmetic. Psychology Science. Zbrodoff, N. J. & Logan, G. D. (2004). What everyone finds: The problem-size effect. In J. I. D. Campbell (Hrsg.), Handbook of Mathematical Cognition (pp.331-345). New York, NY: Psychology Press. / The present thesis deals with the representation and processing of arithmetic facts. This domain of semantic knowledge has gained a substantial amount of interest as its components as well as their interrelations are well specified. Thus, cognitive models can be developed with a degree of precision, which cannot be reached in many other domains. Most recent models agree that arithmetic facts are represented in an associative, network-like structure in declarative memory. Despite this general agreement a lot of issues still remain unresolved. The open questions tackled in the present work address three different aspects of arithmetic facts: 1) their neuro-anatomical correlates, 2) neighbourhood consistency effects in their verbal production and 3) their automatic activation. In a combined behavioural and fMRI study the neurofunctional correlates of the acquisition of arithmetic facts in adults were examined. This research was based on the Triple-Code-Model of Dehaene and Cohen, the only recent model which makes explicit assumptions on neuroanatomical correlates of numerical abilities. The Triple-Code-Model assumes that a “perisylvian” region in the left hemisphere including the basal ganglia and the Angular Gyrus is involved in the retrieval of arithmetic facts (Dehaene & Cohen, 1995; Dehaene & Cohen, 1997; Dehaene, Piazza, Pinel, & Cohen, 2003). In the present study healthy adults were asked to train complex multiplication problems extensively during one week. Thus, these problems could be solved more and more automatically. It was reasoned that answering these trained problems should more and more rely on the retrieval of facts from declarative memory, whereas answering untrained problems should rely on the application of strategies and procedures, which impose high demands on executive functions including working memory. After the training was finished, participants – as expected – could solve trained problems faster and more accurately than non-trained problems. Participants were also submitted to a functional magnetic resonance imaging examination. In general, this examination added to the evidence for a mainly left hemispheric fronto-parietal network being involved in mental multiplication. Crucially, comparing trained with non-trained problems a shift of activation from frontal to more parietal regions was observed. Thus, the central role of central executive and working memory for complex calculation was highlighted. Moreover, a shift of activation from the Intraparietal Sulcus to the Angular Gyrus took place within the parietal lobe. According to the Triple-Code-Model, this shift may be interpreted to indicate a strategy change from quantity based calculation, relying on the Intraparietal Sulcus, to fact retrieval, relying on the left Angular Gyrus. Are there neighbourhood consistency effects in the verbal production of arithmetic facts similar to what has been described for language production? According to the “Triangle Model” of simple multiplication, proposed by Verguts & Fias (2004), such effects can be expected. According to this model corrects answers can be given more easily if they share digits with many semantically close wrong answers. Moreover, it can be assumed that wrong answers, too, are more likely to be produced if they share a digit with the correct result. In addition to this, the Triangle Model also states that the classical problem size effect in simple multiplication (Zbrodoff & Logan, 2004) can be drawn back to neighbourhood consistency between the correct result and semantically close wrong answers. In fact, a re-analysis of error data from a sample of healthy young adults (Campbell, 1997) and a patient with acalculia (Domahs, Bartha, & Delazer, 2003) provided evidence for the existence of decade consistency effects in the verbal production of multiplication results. Healthy participants and the patient produced significantly more wrong answers which shared the decade digit with the correct result than otherwise comparable wrong answers. This result supports the assumption of separate representations of decade and unit digits in two-digit numbers in multiplication (Verguts & Fias, 2004) and in number processing in general (Nuerk, Weger, & Willmes, 2001; Nuerk & Willmes, 2005). Moreover, an additional regression analysis on the error rates provided first empirical evidence for the hypothesis that the classical problem size effect in the retrieval of multiplication facts may be an artefact of neighbourhood consistency: Although problem size was the first variable to enter the model, it was excluded from the model once a measure for neighbourhood consistency was included. Finally, in a further study the automatic activation of multiplication facts was examined in a number matching task (Galfano, Rusconi, & Umilta, 2003; Lefevre, Bisanz, & Mrkonjic, 1988; Thibodeau, Lefevre, & Bisanz, 1996). This experiment addressed the question how the automatic activation of actual multiplication results (Thibodeau et al., 1996) relates to the activation of semantically close wrong answers (Galfano et al., 2003). Furthermore, using different SOAs the temporal properties of these activations should be disclosed. In general, the results of this study provide evidence for an obligatory and automatic activation of a network of arithmetic facts in healthy educated adults in which correct results are stronger associated with the operands than semantically related wrong answers. Crucially, products of small problems lead to stronger interference effects than products of larger problems while operand errors of large problems lead to stronger interference effects than operand errors of small problems. Such a pattern of activation is in line with predictions of Siegler’s Distribution of Associations Model (Lemaire & Siegler, 1995; Siegler, 1988) which assumes a more peaked distribution of associations between operands and potential results for small compared to large multiplication problems. In sum, the present thesis should shed some light into largely ignored aspects of arithmetic fact retrieval: The neural correlates of its acquisition, the consequences of its implementation in the base 10 place value system, as well as the specific effects of its semantic representation for automatic activation of correct multiplication facts and related results. References Campbell, J. I. (1997). On the relation between skilled performance of simple division and multiplication. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1140-1159. Dehaene, S. & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83-120. Dehaene, S. & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219-250. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. Domahs, F., Bartha, L., & Delazer, M. (2003). Rehabilitation of arithmetic abilities: Different intervention strategies for multiplication. Brain and Language, 87, 165-166. Galfano, G., Rusconi, E., & Umilta, C. (2003). Automatic activation of multiplication facts: evidence from the nodes adjacent to the product. Quarterly Journal of Experimental Psychology A, 56, 31-61. Lefevre, J. A., Bisanz, J., & Mrkonjic, L. (1988). Cognitive arithmetic: evidence for obligatory activation of arithmetic facts. Memory and Cognition, 16, 45-53. Lemaire, P. & Siegler, R. S. (1995). Four aspects of strategic change: contributions to children's learning of multiplication. Journal of Experimental Psychology: General, 124, 83-97. Nuerk, H. C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25-B33. Nuerk, H. C. & Willmes, K. (2005). On the magnitude representations of two-digit numbers. Psychology Science, 47, 52-72. Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology: General, 117, 258-275. Thibodeau, M. H., Lefevre, J. A., & Bisanz, J. (1996). The extension of the interference effect to multiplication. Canadian Journal of Experimental Psychology, 50, 393-396. Verguts, T. & Fias, W. (2004). Neighborhood Effects in Mental Arithmetic. Psychology Science. Zbrodoff, N. J. & Logan, G. D. (2004). What everyone finds: The problem-size effect. In J. I. D. Campbell (Ed.), Handbook of Mathematical Cognition (pp.331-345). New York, NY: Psychology Press.

Page generated in 0.0179 seconds