• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 19
  • 13
  • 9
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 141
  • 141
  • 59
  • 37
  • 30
  • 30
  • 30
  • 29
  • 26
  • 26
  • 25
  • 24
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Etude du comportement magnétique et spectral de l'effet Faraday dans des oxydes métalliques dopés par des nanoparticules magnétiques de ferrite de cobalt / Study of the magnetic and spectral behavior of the Faraday effect in metallic oxyde doped by cobalt ferrite magnetic nanoparticles

Nandiguim, Lamaï 03 May 2016 (has links)
Ce travail de thèse est consacré à l’étude des propriétés magnéto-optiques de nanoparticules (NP) magnétiques de ferrite de cobalt (CoFe2O4) sous forme liquide et lorsqu’elles sont bloquées dans une matrice de silice produite par voie sol-gel. Cette dernière dispersion constitue un matériau composite à activité magnéto-optique obtenu par un procédé basse température qui le rend totalement compatible avec les technologies d’intégration. A plus long terme, ce matériau pourra contribuer à l’intégration de composants non-réciproques. L’objectif de ce travail est d’une part l’identification du type de NP qui maximise la rotation Faraday et le facteur de mérite (rapport de la rotation Faraday à l’absorption) dans le but d’améliorer la qualité magnéto-optique du matériau composite. Et d’autre part, il s’agit d’améliorer la compréhension des phénomènes physiques liés aux effets magnéto-optiques de ces nanoparticules et le lien avec leurs caractéristiques physiques. L’étude est menée sur des NP magnétiques synthétisées et dispersées en phase aqueuse au laboratoire PHENIX (UMR CNRS 8234). Les mesures optiques et magnéto-optiques réalisées au laboratoire Hubert Curien (UMR CNRS 5516) ont été complétées par des mesures magnétiques XMCD au synchrotron SOLEIL. L’étude des différentes nanoparticules magnétiques a révélé que l’utilisation d’une petite taille de NP permet de multiplier par deux le facteur de mérite du matériau pour une longueur d’onde de 1,5 µm, soit une division par deux des pertes pour les composants magnéto-optiques visés. L’analyse du comportement spectral de l’effet Faraday illustre l’influence de la distribution cationique des ions Co2+ et Fe3+ dans la structure cristalline. Couplée aux mesures XMCD, l’analyse montre le besoin d’une localisation de l’ion Co2+ en site tétraédrique dans la structure spinelle pour maximiser l’effet Faraday à 1,5µm, et obtenir une anisotropie uniaxe qui permette une pré-orientation aisée des NP lors de la gélification / This work is dedicated to the study of the magneto-optical properties of cobalt ferrite (CoFe2O4) nanoparticles (NP) dispersed in liquid as ferrofluid, or blocked in a solid silica matrix realized with a sol-gel method. This last dispersion is a magneto-optical composite material, obtained with a low temperature process which insures its compatibility with photonic integration technologies, to produce, in the future, integrated non-reciprocal devices. The aim of the study is, on one hand, to identify which kind of NP can improve the Faraday effect and the merit factor (ratio between the Faraday effect and the absorption) of the composite material. On the other hand, the aim is to give a better understanding of the link between the magneto-optical properties and the physical characteristics of the NP. The study has been led on NP synthetized and dispersed as ferrofluid in PHENIX laboratory (UMR CNRS 8234). Optical and magneto-optical measurements were made in Hubert Curien laboratory (UMR CNRS 5516) and completed by XMCD analysis in Synchroton SOLEIL. Results show that it is necessary to use a small size of NP (5 nm) to maximize the merit factor at a wavelength of 1,5 µm. The spectral analysis of the Faraday effect shows the influence of the cationic distribution of Co2+ et Fe3+ in the spinelle structure. Coupled to XMCD results, this analysis shows that it is necessary to maximize the quantity of Co2+ in tetraedric sites to maximize the Faraday effect at 1,5 µm and to obtain an uniaxial anisotropy which allows to orientate the NP during the gelification of the sol-gel matrix
62

Propagation de parois magnétiques dans des films et des pistes à anisotropie magnétique perpendiculaire / Propagation de domain walls in the thin films and wires with perpendicular magnetic anisotropy

Nguyen, Ngoc-Minh 07 December 2012 (has links)
Cette thèse est consacrée à l’étude des mécanismes de propagation de parois magnétiques dans des films et des pistes magnétiques basés sur des matériaux à anisotropie magnétique perpendiculaire qui sont très prometteurs pour les mémoires magnétiques non volatiles d’ultra haute densité. Je me suis principalement intéressé à l’influence des défauts structuraux sur les mécanismes de dépiegeage de parois en utilisant la technique de microscopie Kerr ainsi que des mesures de transport. Trois résultats importants ont été mis en évidence : (1) Dans des vannes de spin de type CoNi/Cu/CoNi, il existe une forte influence du champ dipolaire généré par la couche dure qui peut influencer la nucléation parasite de paroi magnétique dans la couche libre et créer une propagation asymétrique sous l’effet d’un courant polarisé. J’ai aussi montré que dans des pistes sub-50nm, le renversement de l’aimantation s’effectue par des événements multiples de nucléation à cause de la présence de centres de piégeage fort qui bloquent la propagation ; (2) En visualisant la géométrie des domaines magnétiques et en étudiant les lois de reptation, j’ai montré la présence d’une faible densité de défauts structuraux et de faibles champs de propagation dans les multicouches texturés/amorphe de CoNi-CoFeB et cristallisés de Ta-CoFeB-MgO ; (3) J’ai finalement mis en évidence un effet du transfert de spin à de faibles densités de courant (≈5x1011 A/cm2) dans les pistes de CoNi-CoFeB. J’ai aussi montré une forte influence du champ d’Oesterd sur la propagation de parois liée à la présence de faibles champs de propagation. Finalement, dans le cas des pistes basées sur des films cristallisés de Ta-CoFeB-MgO, j’ai pu mesurer la vitesse sur 10 ordres de grandeur et montrer que les parois se propagent à des champs de propagation ultra faibles (0,1mT). / This work is focused on the study of magnetic domain wall propagation mechanisms in the thin films and wires based on materials with perpendicular magnetic anisotropy which are promissing for the non-volatile magnetic memory of ultra high density. I’m interested in the influence of structural defects on the mechanisms of domain wall propagation by using the Kerr microscopy technique and the transport measurements. Three important results were obtained: (1) In the spin valve structure of CoNi/Cu/CoNi, a strong influence of the dipolar magnetic field induced by the hard layer can generate a parasitic nucleation in the soft layer and create an asymmetric domain wall propagation driven by a spin polarized current. I also demonstrated that in sub-50nm wires, the nature of magnetization reversal process is the multiple nucleation events because of strong pinning centers that hinder the domain wall motion; (2) By observing the magnetic domain geometry et studying the creep law, I have pointed out that in the CoNi-CoFeB multilayers and the crystallized Ta-CoFeB-MgO multilayers, the structural defect density is low and the propagation fields can be reduced; (3) I found a spin-transfer effect with low current density (≈5x1011 A/cm2) in CoNi-CoFeB wires. I also demonstrated that the Oersted field can strongly influence the domain wall motion, especially in the material with low propagation field. Finally, in the Ta-CoFeB-MgO wires, I could measure a wide range of domain wall velocity and I show that the domain wall can move at a very low propagation field (0.1mT)
63

Caracterização estrutural e magnética do compósito cerâmico ZnO – CoFe2O4 / Structural and magnetic characterization of the composite ceramic ZnO - CoFe2O4

Oliveira Neto, Francisco de 12 August 2015 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-02-12T12:25:51Z No. of bitstreams: 2 Dissertação - Francisco de Oliveira Neto - 2015.pdf: 6608686 bytes, checksum: 00be4069bc90036c589c6c3fa9131408 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-02-16T06:42:51Z (GMT) No. of bitstreams: 2 Dissertação - Francisco de Oliveira Neto - 2015.pdf: 6608686 bytes, checksum: 00be4069bc90036c589c6c3fa9131408 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-02-16T06:42:51Z (GMT). No. of bitstreams: 2 Dissertação - Francisco de Oliveira Neto - 2015.pdf: 6608686 bytes, checksum: 00be4069bc90036c589c6c3fa9131408 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-08-12 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Multiferroic materials that simultaneously exhibit two or more physical properties have increasingly raised the interest of the scientific and technological community to develop new multifunctional materials. The discuss all stages of manufacturing, morphological, structural and magnetic characterization of a multifunctional composite containing zinc oxide and cobalt ferrite. Thus, studies of ZnO, and the CoFe2O4 composite (0,80ZnO+0,20 CoFe2O4) initiated by the synthesis of nanosized powders by combustion reaction phases were performed. The compounds studied were sintered at different temperatures (1100 to 1250°C) to obtain relative density near to 90% of the theoretical density. Analysis by scanning electron microscopy, spectroscopy energy dispersive, vibrating sample magnometry and diffraction ray-X were made. Measurements of magnetic properties were conducted at room temperature (22°C) and high temperature (22°C to 700°C). In the samples, formation of ceramic structures was verified, the stoichiometry of the proposed chemical compounds was maintained and possibly the formation of a mixed zinc and cobalt ferrite to composite samples. In the sample of the composite sintered at 1250°C there was the formation of cubic zinc oxide. The magnetic behavior and magnetic anisotropy of the samples were similar, however, significant differences were observed in the values of the Curie temperature, coercive field, can assume different origins for the magnetic CoFe2O4 and the composite (0,80ZnO+0,20CoFe2O4) due, perhaps to the formation of a mixed ferrite. / Materiais multiferróicos que exibem simultaneamente duas ou mais propriedades físicas têm cada vez mais suscitado o interesse da comunidade científica e tecnológica para o desenvolvimento de novos materiais multifuncionais. Objetivou-se discutir todas as etapas de fabricação e caracterização morfológica, estrutural e magnética de um compósito multifuncional contendo óxido de zinco e ferrita de cobalto. Assim, foram realizados estudos sobre as fases das amostras de ZnO, CoFe2O4 e o compósito (0,80ZnO+0,20CoFe2O4) iniciados pela síntese de pós nanométricos por via de reação de combustão. Os compostos estudados foram sinterizados em diferentes temperaturas (1100 e 1250°C) obtendo densidades relativas próximas a 90% das densidades teóricas. Foram efetuadas análises por microscopia eletrônica de varredura, espectroscopia de energia dispersiva, difratometria de raio-X e magnometria de amostra vibrante. As medidas de propriedades magnéticas foram realizadas à temperatura ambiente (22°C) e em função da temperaturas (22°C à 700°C) (altas temperaturas). Em todas as amostras estudadas foi verificada a formação de estruturas cerâmicas, mantendo a estequiometria dos compostos químicos propostos e possivelmente a formação de uma ferrita mista de zinco e cobalto para as amostras do compósito. Para a amostra do compósito sinterizada a 1250°C verificou-se também a formação de óxido de zinco cúbico. O comportamento magnético e a anisotropia magnética das amostras foram similares, entretanto diferenças significativas foram observadas nos valores obtidos da temperatura de Curie, do campo coercitivo e do momento magnético total, podendo supor origens magnéticas diferentes para o CoFe2O4 e o compósito de 0,80ZnO+0,20CoFe2O4 devido a formação de uma ferrita mista.
64

Materials for Magnetic Recording Applications

Burkert, Till January 2005 (has links)
<p>In the first part of this work, the influence of hydrogen on the structural and magnetic properties of Fe/V(001) superlattices was studied. The local structure of the vanadium-hydride layers was determined by extended x-ray absorption fine structure (EXAFS) measurements. The magnetic ordering in a weakly coupled Fe/V(001) superlattice was investigated using the magneto-optical Kerr effect (MOKE). The interlayer exchange coupling is weakened upon alloying with hydrogen and a phase with short-range magnetic order was observed.</p><p>The second part is concerned with first-principles calculations of magnetic materials, with a focus on magnetic recording applications. The uniaxial magnetic anisotropy energy (MAE) of Fe, Co, and Ni was calculated for tetragonal and trigonal structures. Based on an analysis of the electronic states of tetragonal Fe and Co at the center of the Brillouin zone, tetragonal Fe-Co alloys were proposed as a material that combines a large uniaxial MAE with a large saturation magnetization. This was confirmed by experimental studies on (Fe,Co)/Pt superlattices. The large uniaxial MAE of L1<sub>0</sub> FePt is caused by the large spin-orbit interaction on the Pt sites in connection with a strong hybridization between Fe and Pt. Furthermore, it was shown that the uniaxial MAE can be increased by alloying the Fe sublattice with Mn. The combination of the high-moment rare-earth (RE) metals with the high-<i>T</i><sub>C</sub> 3<i>d</i> transition metals in RE/Cr/Fe multilayers (RE = Gd, Tb, Dy) gives rise to a strong ferromagnetic effective exchange interaction between the Fe layers and the RE layer. The MAE of hcp Gd was found to have two principal contributions, namely the dipole interaction of the large localized 4<i>f</i> spins and the band electron magnetic anisotropy due to the spin-orbit interaction. The peculiar temperature dependence of the easy axis of magnetization was reproduced on a qualitative level.</p>
65

Magnetism of Semiconductors and Metallic Multilayers

Stanciu, Victor January 2005 (has links)
Magnetic properties of diluted magnetic semiconductors and magnetic metallic multilayers are investigated by SQUID magnetometry. By doping GaAs with magnetic Mn2+ ions under well defined growth conditions, one obtains a diluted magnetic semiconductor, (Ga,Mn)As, in which the randomly-distributed magnetic ions act as acceptor centers. At high enough dopant and hole concentration a carrier-induced ferromagnetic state results between the magnetic ions. Due to peculiarities of the growth process sizable amounts of donor defects, such as Mn interstitials and As antisites, are also introduced into the GaAs host. The magnetic properties of (Ga,Mn)As are altered by the presence of such defects through the compensation effect of the holes. The Mn interstitials are thermally unstable above a certain threshold temperature and therefore their concentration can be controlled by post-growth annealing. The influence of the interfaces on the magnetic moment of FeNi/V and FeNi/Co superlattices has been studied. A decrease of the `FeNi' magnetic moment at the interfaces is observed for FeNi/V superlattices while in case of FeNi/Co an enhanced magnetic moment is obtained at the interfaces. Changes of the interlayer exchange coupling have been studied in a series of Fe/V(Fe) multilayers in which the V spacer was alloyed with small amounts of Fe. The dynamic magnetic properties of discontinuous metal-insulator multilayers of Ni81Fe19/Al2O3 have been investigated. By varying the thickness of the insulator the system exhibits a superferromagnetic, a 3d spin-glass-like and a superparamagnetic behavior.
66

Theoretical Approaches For Modelling Molecular Magnetism

Rajamani, R 11 1900 (has links)
In this thesis we have developed electronic and spin model Hamiltonians to understand magnetism in molecule based magnets like photomagnets, high-nuclearity transition metal complexes and single molecule magnets. In chapter 1, we provide an overview of molecular magnets. Here, we present a survey on the literature available on molecule based magnets. The chapter throws light on various phenomena found in molecular magnetic systems that range in dimensions from 3D down to molecular dimension. This is followed by a brief introduction to high-nuclearity transition metal complexes and single molecule magnets (SMMs). In the last two sections of this chapter, we discuss Light Induced Excited Spin State Trapping (LIESST) and photomagnetism in some molecular systems. Chapter 2 discusses various theoretical models that have been developed for magnetism. We begin with an introduction to the spin Hamiltonian and the origin of direct and kinetic exchange in simple systems and extend it to larger systems. Then we introduce the concept of superexchange proposed by Goodenough and Kanamori, followed by introduction to anisotropic Dzyalashinskii-Moria (DM) exchange and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. We also discuss molecular magnetic anisotropy, long-range magnetic interactions and higher order exchange interactions. These are effective model Hamiltonians that do not provide microscopic origin of magnetism, hence electronic model Hamiltonians need to be invoked. We introduce electronic model Hamiltonians like Huckel, Hubbard and Pariser-Parr-Popple (PPP) models and then present numerical techniques like valencebond (VB) and constant MS techniques that are used to exactly solve these model Hamiltonians. We present a many-body electronic model involving the active orbitals on the transition metal ions for photomagnetism in MoCu6 cluster, in chapter 3. The model is exactly solved using a valence bond approach. The ground state solution of the model is highly degenerate and is spanned by five S=0 states, nine S=1 states, five S=2 states and one S=3 state. The orbital occupancies in all these states correspond to six Cu(II) ions and one diamagnetic Mo(IV ) ion. The optically excited chargetransfer (CT) state in each spin sector occurs at nearly the same excitation energy of 2.993 eV for physically reasonable parameter values. We find that the excitation cross sections in different spin manifolds are similar in magnitude. The lifetime of the S=3 excited states is expected to be the largest as the number of states below that energy is very sparse in this spin sector compared to other spin sectors. This shows that photomagnetism is not due to preferential excitation to the S = 3 state. The inputs from the electronic model allows us to develop a kinetic model. In this model, photomagnetism is attributed to a long lived S=3 charge transfer excited state for which there appears to be sufficient experimental evidence. Based on this postulate, we model photomagnetism by including internal conversions and intersystem crossings. The key feature of the model is the assumption of existence of two kinds of S=3 states; one of which has no direct pathway for internal conversion and the other characterized by slow kinetics for internal conversion to the lowenergy states. The trapped S=3 state can decay via a thermally activated barrier to the other S = 3 state. The experimental XMT vs. T variation for two different irradiation times are fitted using Arrhenius dependence of the rate constants in the model. Conventional superexchange rules predict ferromagnetic exchange interaction between Ni(II) and M (M = MoV ,WV , NbIV ). Recent experiments show that in some systems this superexchange is antiferromagnetic. To understand this feature, in chapter 4 we develop a microscopic model for Ni(II) - M systems and solve it exactly using a valence bond approach. We identify direct exchange coupling, splitting of the magnetic orbitals and interorbital electron repulsions, on the M site as the parameters which control the ground state spin of various clusters of the Ni(II) - M system. We present quantum phase diagrams which delineate the high-spin and low-spin ground states in the parameter space. We fit the spin gap to a spin Hamiltonian and extract the effective exchange constant within the experimentally observed range, for reasonable parameter values. We also find a region in the parameter space where an intermediate spin state is the ground state. These results indicate that the spin spectrum of the microscopic model cannot be reproduced by a simple Heisenberg exchange Hamiltonian. The electronic model for A − B systems has been employed to reproduce the experimental magnetic data of the { NiW }2 system. In chapter 5, we present a theoretical approach to calculate the molecular magnetic anisotropy parameters, DM and EM for single molecule magnets in any eigenstate of the exchange Hamiltonian, treating the anisotropy Hamiltonian as a perturbation. Neglecting inter-site dipolar interactions, we calculate molecular magnetic anisotropy in a given total spin state from the known single-ion anisotropies of the transition metal centers. The method is applied to Mn12Ac and Fe8 in their ground and first few excited eigenstates, as an illustration. We have also studied the effect of orientation of local anisotropies on the molecular anisotropy in various eigenstates of the exchange Hamiltonian. We find that, in case of Mn12Ac, the molecular anisotropy depends strongly on the orientation of the local anisotropies and the spin of the state. The DM value of Mn12Ac is almost independent of the orientation of the local anisotropy of the core Mn(IV ) ions. In the case of Fe8, the dependence of molecular anisotropy on the spin of the state in question is weaker. We have also calculated the anisotropy constants for several sets of exchange parameters and find that in Mn12Ac the anisotropy increases with spin excitation gap while in Fe8, the anisotropy is almost independent of the gap. We have modeled the magnetic property of Nb6Ni12 cluster using a spin Hamiltonian in chapter 6. From Goodenough-Kanamori rules we should expect a ferromagnetic exchange between Nb and Ni ions. However, the magnetic studies indicate that the interaction is antiferromagnetic. We give reasons for the anomaly and fit the XMT data using an antiferromagnetic Heisenberg model. The observed XMT value at 2 K however does not correspond to ferrimagnetic ground state of Stot=9 and we invoke intermolecular interaction to explain this feature.
67

Co(II) Based Magnetic Systems. Part I Spin Crossover Systems and Dendritic Frameworks. Part II Co(II) Single Molecule Magnets.

Farghal, Ahmed M. S. 10 February 2012 (has links)
This work comprises two main parts. The first part outlines our efforts to expand on the recent work of Gütlich et.al. by synthesizing Co(II) based spin crossover systems within a dendritic framework. We wanted to investigate the possibility of synthesizing different first generation, triazole containing dendrimers using “click” type reactions and their coordination ability with Co(II) ions. To this end we have had limited success mainly due to the numerous challenges in synthesizing a pure dendrimer product. The second part details our efforts in the synthesis of a mononuclear Co(II) based single molecule magnet. This comes as an extension to recent reports by Chang and Long where they have successfully obtained mononuclear Fe(II) single molecule magnets by inducing structural distortions within the complexes to amplify the spin-orbit coupling. We postulated that the use of Co(II) in conjunction with a bulky ligand framework would lead to desirable magnetic properties. We chose the known bis(imino)pyridine ligand scaffold due to its rich chemistry and its interesting and unexpected coordination behaviour, as we have seen in previous research efforts by our lab. To this end we were successful in isolating and characterizing 4 compounds, and we have carried out detailed magnetic measurements on the two most magnetically interesting species.
68

Co(II) Based Magnetic Systems. Part I Spin Crossover Systems and Dendritic Frameworks. Part II Co(II) Single Molecule Magnets.

Farghal, Ahmed M. S. 10 February 2012 (has links)
This work comprises two main parts. The first part outlines our efforts to expand on the recent work of Gütlich et.al. by synthesizing Co(II) based spin crossover systems within a dendritic framework. We wanted to investigate the possibility of synthesizing different first generation, triazole containing dendrimers using “click” type reactions and their coordination ability with Co(II) ions. To this end we have had limited success mainly due to the numerous challenges in synthesizing a pure dendrimer product. The second part details our efforts in the synthesis of a mononuclear Co(II) based single molecule magnet. This comes as an extension to recent reports by Chang and Long where they have successfully obtained mononuclear Fe(II) single molecule magnets by inducing structural distortions within the complexes to amplify the spin-orbit coupling. We postulated that the use of Co(II) in conjunction with a bulky ligand framework would lead to desirable magnetic properties. We chose the known bis(imino)pyridine ligand scaffold due to its rich chemistry and its interesting and unexpected coordination behaviour, as we have seen in previous research efforts by our lab. To this end we were successful in isolating and characterizing 4 compounds, and we have carried out detailed magnetic measurements on the two most magnetically interesting species.
69

Planar patterned media fabricated by ion irradiation into CrPt3 ordered alloy films

Kato, T, Iwata, S, Yamauchi, Y, Tsunashima, S, Matsumoto, K, Morikawa, T, Ozaki, K 11 March 2009 (has links)
No description available.
70

Fundamental Properties of Functional Magnetic Materials

Wikberg, Magnus January 2010 (has links)
Magnetic properties of powders, thin films and single crystals have been investigated using magnetometry methods. This thesis provides analysis and conclusions that are supported by the results obtained from spectroscopic and diffraction measurements as well as from theoretical calculations. First, the magnetic behavior of transition metal (TM) doped ZnO with respect to doping, growth conditions and post annealing has been studied. Our findings indicate that the magnetic behavior stems from small clusters or precipitates of the dopant, with ferromagnetic or antiferromagnetic interactions. At the lowest dopant concentrations, the estimated cluster sizes are too small for high resolution imaging. Still, the clusters may be sufficiently large to generate a finite spontaneous magnetization even at room temperature and could easily be misinterpreted as an intrinsic ferromagnetic state of the TM:ZnO compound. Second, influence of lattice strain on both magnetic moment and anisotropy has been investigated for epitaxial MnAs thin films grown on GaAs substrates. The obtained magnetic moments and anisotropy values are higher than for bulk MnAs. The enhanced values are caused by highly strained local areas that have a stronger dependence on the in-plane axis strain than out-of plane axis strain. Finally, spin glass behavior in Li-layered oxides, used for battery applications, and a double perovskite material has been investigated. For both Li(NiCoMn)O2 and (Sr,La)MnWO6, a mixed-valence of one of the transition metal ions creates competing ferromagnetic and antiferromagnetic interactions resulting in a low temperature three-dimensional (3D) spin glass state. Additionally, Li(NiCoMn)O2 with large cationic mixing exhibits a percolating ferrimagnetic spin order in the high temperature region and coexists with a two-dimensional (2D) frustrated spin state in the mid temperature region. This is one of the rare observations where a dimensional crossover from 2D to 3D spin frustration appears in a reentrant material. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 720

Page generated in 0.0721 seconds