• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 23
  • 9
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 105
  • 105
  • 37
  • 28
  • 25
  • 20
  • 19
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Stochastic Cellular Manufacturing System Design and Control

Egilmez, Gokhan January 2012 (has links)
No description available.
62

Comparative analysis of linear and circular manufacturing system paradigms for a steel-based product. : A case study of a mailbox manufacturing company

ALAGBADA, SAMUEL January 2022 (has links)
The manufacturing industry has exerted a tremendous impact on the natural environment. The aim of this thesis is to evaluate the consequences of shift from linear manufacturing system to circular manufacturing system in order to decouple the environmental burden of production and consumption process in relation to quantity of carbon footprint, cumulative energy demand, natural resource consumption, waste generated and recovered presently. In response to this, life cycle assessment (LCA) is used to quantify and compare the associated environmental impact of the current manufacturing system of both Linear manufacturing system and the circular manufacturing system. The thesis therefore asserts that circular manufacturing system (CMS) is more sustainable compared to linear manufacturing system (LMS) in relation to its reduction capacity of the prevailing environmental indicators most especially global threat of natural resources depletion and climate change confronting biodiversity. The result shown that CMS seems more sustainable compared to LMS in relation to the studied environmental indicators. Further to this, the emerging circular manufacturing system, its transitional shift, challenges, and its relationships with other manufacturing dynamics for consideration are also highlighted and discussed. It was concluded that these prominent challenges are caused by organizational management in relation to leadership and communication (OLC), has the highest impact value. Similarly, the consequential effect was seen on the level of implementation of government policy (GPI) and deployment of state of the art design, knowledge and technology (DTK) for the paradigm shift. So, it is suggested that OLC should be given due consideration.
63

Discrete event simulation tool for analysis of a manufacturing system : Observed from a context of sustainability and efficiency

Mellström, Teodor January 2023 (has links)
This report is a master thesis project done as a final project of Industrial design engineering with a master in production engineering, at Luleå University of Technology during the spring of 2021. The project was done as a collaboration with the company Nord-lock, based out of Mattmar, Sweden. The company produce wedge-locking washers that use tension instead of friction to secure critical bolted joints. The purpose of the project was to create a simulation model which can be used as a tool for improving production utilisation. The company do not currently use simulation within the organisation, requiring the model to be built up from scratch. The overall project structure has followed a cyclic process which divides it into three different laps. The first lap focused on mapping the production and gaining an understanding of the manufacturing and business systems. The second lap focused on the creation of the simulation model and further data collection. The third lap looked into validation and experimentation with the simulation model, creating cases to test the use and outputs of the model. The simulation model followed four key stages for conducting a simulation study, going from creating an understanding of the real world and the problems to the solutions.  The current state was mapped using different methods for data collection and further analysis of the findings. Direct observation with operators at the shop floor was used to gain an understanding of how a batch travels through the manufacturing system. Observing the human operations that are required for different activities was important for creating a map over the necessary steps in a process. The production is divided into two different flow groups, with machines and operations being placed into machine groups under these. The surface treatment is an important step in assuring the products quality and exists as a collection of machine groups under the first flow group. It became clear that the production planning of batches was separated between the two flow groups, creating a disconnection to how a batch travels through the entire manufacturing system. The simulation model would aim to allow batches to be planned from creation to finished product, observing how they behave through the system.  Due to limited experience of the simulation software within the company, the creation of the model into a tool required control of inputs being accessible to the intended users. The inputs and outputs of the system are therefore controlled using excel sheets which only requires a user to have experience with excel and the existing business systems. Data for activities within the simulation model is gathered from the business systems, which gets their data from the results of the actual manufacturing system. A user guide was created to assist users with adding new articles or change data into the simulation model. The excel sheet which displays the outputs of the system is connected to the simulation model and updates as the model is run.  The simulation model showed that the surface treatment is a big bottleneck for the throughput of the system. Subsequent cases that were created experimented with how this bottleneck react to different inputs. When increasing the throughput time of the machine groups before the surface treatment, no real increase in the throughput of the system was found. The queue time before the bottleneck decreased greatly when comparing the results to the regular model. The second case observed how the system reacts to changes in the surface treatment, comparing the results to the previous case. The final chapter discusses how the tool can be used within the company. A sustainable context is used to show how different results can affect the sustainability within the manufacturing system in all three aspects.
64

Object Oriented Simulation of Agent Based Flexible Manufacturing System with Dynamic Routing and Scheduling

Ghosal, Subhabrata 17 September 2015 (has links)
No description available.
65

Development of the Simulation Based Integrative Decision Support Framework for Flexible Manufacturing System with Real Time Process Plan Selection

Patel, Chintankumar R. 22 September 2010 (has links)
No description available.
66

RMS capacity utilisation: product family and supply chain

Abdi, M. Reza, Labib, A.W. 09 June 2016 (has links)
Yes / The paper contributes to development of RMS through linkage with external stakeholders such as customers and suppliers of parts/raw materials to handle demand fluctuations that necessitate information sharing across the supply chain tiers. RMS is developed as an integrated supply chain hub for adjusting production capacity using a hybrid methodology of decision trees and Markov analysis. The proposed Markov Chain model contributes to evaluate and monitor system reconfigurations required due to changes of product families with consideration of the product life cycles. The simulation findings indicate that system productivity and financial performance in terms of the profit contribution of product-process allocation will vary over configuration stages. The capacity of an RMS with limited product families and/or limited model variants becomes gradually inoperative whilst approaching upcoming configuration stages due to the end of product life cycles. As a result, reconfiguration preparation is suggested quite before ending life cycle of an existing product in process, for switching from a product family to a new/another product family in the production range, subject to its present demand. The proposed model is illustrated through a simplified case study with given product families and transition probabilities.
67

Controle de sistemas reconfiguráveis de manufatura. / Control of reconfigurable manufacturing systems.

Silva, Robson Marinho da 01 August 2016 (has links)
A capacidade de reconfiguração de sistemas de manufatura tem sido procurada pelas empresas para assegurar características de agilidade, eficiência e exibilidade para atender as mudanças de tipo/quantidade de produtos, processos, recursos e, além disso, para assegurar a devida reação à ocorrência de falhas. Por outro lado, a Indústria 4.0\" impõe novos desafios para os sistemas de controle, tais como a integração de tecnologias de interação entre homem e máquina em cadeias de valor compondo uma rede de plantas industriais geograficamente dispersas. O controle de sistemas reconfiguráveis de manufatura deve considerar: (i) funcionalidades de sistemas distribuídos e dispersos, tais como agilidade de resposta às mudanças, autonomia e colaboração entre os componentes para alcançar os objetivos do sistema de forma conjunta; (ii) interfaces para sua interoperabilidade e portabilidade; (iii) modularização para facilitar a manutenção, expansão e atualização do sistema, evitando a sobreposição de escopos; e (iv) mecanismos de controle para supervisionar as ações e interações dos componentes, o diagnóstico e a tomada de decisão. O pleno atendimento a estes requisitos não é trivial e formalismos para o desenvolvimento de soluções devem ser adotados. Uma solução é combinar técnicas voltadas para sistema multiagente e holon com arquitetura orientada a serviço através de uma adequada técnica de modelagem usando extensões de rede de Petri: Production Flow Schema e Input Output Place Transition. Portanto, este trabalho prop~oe uma arquitetura de controle e o método de modelagem de seus componentes para sistemas reconfiguráveis de manufatura combinando estas técnicas e considerando os aspectos de personalização, convertibilidade, escalabilidade, modularidade, integrabilidade, diagnosticabilidade, interoperabilidade e colaboração entre os componentes do sistema de controle, inclusive do homem. Um exemplo de aplicação é apresentado para demonstrar a viabilidade da proposta e comprovar os resultados alcançados. / The reconfiguration ability of the manufacturing systems has been approached by companies to ensure agility, efficiency and exibility characteristics to address the changes of type/quantity of products, processes and resources and, furthermore, to ensure proper reaction to the fault occurrence. On the other hand, the\"Industry 4.0\" imposes new challenges for control systems, such as interaction between man and machine into value chains composing a network of geographically dispersed industrial plants. The control of reconfigurable manufacturing systems should consider: (i) functionalities requirements of distributed and disperse systems, such as responsiveness to changes, autonomy and collaboration among components to achieve the global system aim; (ii) interfaces for interoperability and portability; (iii) modularity to facilitate maintenance, expansion and upgrade of the system, avoiding the overlapping of scopes; and (iv) control mechanisms to supervise the actions and interactions among components, diagnosis and decision making. The compliance with these requirements is not trivial and formalisms to develop solutions must be adopted. A solution is combining techniques based on holonic and multi-agent system with service-oriented architecture through appropriate modeling using Petri net extensions: Production Flow Schema and Input Output Place Transition. Therefore, this paper proposes control architecture and a method to model components for reconfigurable manufacturing systems, combining these techniques and considering aspects of customization, convertibility, scalability, modularity, integrability, diagnosability, interoperability and collaboration among control system components, including humans. An application example is presented to demonstrate the feasibility of the proposal and verify the results.
68

Développement d’une nouvelle famille d’indicateurs de performance pour la conception d’un système manufacturier reconfigurable (RMS) : approches évolutionnaires multicritères / Development of a new family of performance indicators for the design of a reconfigurable manufacturing system (RMS) : multi-criteria evolutionary approaches

Haddou Benderbal, Hichem 20 June 2018 (has links)
L'environnement manufacturier moderne est face à un bouleversement de paradigmes nécessitant plus de changeabilité au niveau physique et logique. Un système manufacturier Changeable est défini comme un système de production ayant les capacités de faciliter les changements adéquats, permettant d'ajuster ses structures et ses processus en réponse aux différents besoins. Dans ce contexte, les systèmes manufacturiers doivent se doter d’un très haut niveau de reconfigurabilité, qui est considérée comme l’un des facteurs majeurs du concept de changeabilité. En effet, dans la vision de l'Usine du Futur, la reconfigurabilité est essentielle pour s'adapter efficacement à la complexité croissante des environnements manufacturiers. Elle assure une adaptation rapide, efficace et facile de ces systèmes tout en étant réactif, robuste et économiquement compétitif. L’objectif est de répondre aux nouvelles contraintes internes et externes telles que la globalisation, la variété des produits, la personnalisation de masse ou le raccourcissement des délais. À travers cette thèse, nous étudions la problématique de conception des systèmes manufacturiers reconfigurables (Reconfigurable Manufacturing System – RMS). L’objectif consiste à concevoir des systèmes réactifs en se basant sur leurs capacités en matière de reconfigurabilité. Nous avons étudié ce problème sur trois niveaux : (i) le niveau des composantes, relatif aux modules des machines reconfigurables, (ii) le niveau des machines et leurs interactions, ainsi que l’impact de ces interactions sur le système et (iii) le niveau de l'atelier, composé de l'ensemble des machines reconfigurables. Nous avons développé pour chaque niveau, des indicateurs de performance afin d’assurer les meilleures performances du système conçu, tels que l’indicateur de modularité, l’indicateur de flexibilité, l’indicateur de robustesse et l’effort d'évolution d'un système reconfigurable. Pour l'ensemble des problèmes étudiés, nous avons développé des modèles d’optimisation multicritère, résolus à travers des heuristiques ou des métaheuristiques multicritères (comme le recuit simulé multicritère (AMOSA) et les algorithmes génétiques multicritère (NSGA-II)). De nombreuses expériences numériques et analyses ont été réalisées afin de démontrer l’applicabilité de nos approches / The modern manufacturing environment is facing a paradigm shift that require more changeability at physical and logical levels. A Changeable Manufacturing System is defined as a production system that has the ability to facilitate the right changes, allowing the adjustment of its structures and processes in response to the different needs. In this context, manufacturing systems must have a very high level of reconfigurability, which is considered to be one of the major enablers of changeability. From the perspective of the “Factory of the future”, the reconfigurability is essential to effectively adapt to the ever-increasing complexity of manufacturing environments. It allows a rapid, efficient and easy adaptation of these systems while being responsive, robust and economically competitive. The objective is to respond to new internal and external constraints in terms of globalization, variety of products, mass customization, and shorter lead times. Through this thesis, we study the problem of design of reconfigurable manufacturing systems (RMS) that meets these requirements. The goal is to design responsive systems based on their key features of reconfigurability. We have studied the RMS design problem on three levels: (i) the level of the components, relating to the modules of the reconfigurable machines, (ii) the machine level and their interactions, as well as the impact of these interactions on the system and (iii) the workshop level composed of all the reconfigurable machines. We have developed for each level, performance indicators to ensure a better responsiveness and a high performance of the designed system, like the modularity index, the flexibility index, the robustness index and the layout evolution effort of a reconfigurable system. For each of the studied problems, we developed multicriteria optimization models, solved through heuristics or multicriteria metaheuristics (such as archived multi-objective simulated annealing (AMOSA) and multi-objective genetic algorithms (NSGA-II)). Numerous numerical experiments and analyzes have been performed to demonstrate the applicability of our approaches
69

Utilização da busca Tabu para a geração de um modelo aplicado ao Job-shop scheduling problem considerando um sistema de manufatura flexível / Using Tabu search for the generation of model applied Job-shop scheduling problem considering a flexible manufacturing system

Müller, Gilberto Irajá 20 February 2006 (has links)
Made available in DSpace on 2015-03-05T13:56:58Z (GMT). No. of bitstreams: 0 Previous issue date: 20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho tem como objetivo a geração de um modelo de escalonamento aplicado ao Jobshop Scheduling Problem num Sistema de Manufatura Flexível que considera o tempo total de produção (makespan), o tempo total de atraso, o tempo total parado e o tempo total ocioso.O modelo proposto é composto por: (a) uma função objetivo que reflete, através de suas variáveis de decisão e seus pesos respectivos, as estratégias de otimização, e de (b) uma arquitetura que está dividida em cinco fases. O modelo utilizou o algoritmo Busca Tabu que,através de duas estratégias de geração de vizinhanças, busca a otimização da função objetivo. A arquitetura do modelo baseia-se na extração da demanda de produção, na Tecnologia de Grupo, nas Regras de Despacho, no Algoritmo Busca Tabu e na gravação do plano de produção, para tratar os Problemas de Seleção de Partes (Famílias de Partes) e do Escalonamento. Foram realizados, através de um estudo de caso, diversos experimentos que possibilitaram a comparação de estratégias de otimiza / This paper has the aim of generating a scheduling model applied to Job-shop Scheduling Problem in Flexible Manufacturing System, which considers the makespan, total tardiness time, total stop time, total idle time. The model proposed is composed for: (a) an objective function that reflects, through its variables of decision and its weights, the optimization strategies, and (b) arquitecture that is divided in five phases. The model used the Tabu Search algorithm which, through two strategies neighborhoods generation, searching the objective function optimization. The model architecture is based on extraction of production demand, in the Group Technology, in the Dispatching Rules, in the Tabu Search algorithm and save production plan, to deal the Part Selections (Part Families) and Scheduling Problems.Through a study of case, it has been realized several experiments which makes it possible the comparison of optimization strategies and real scheduling, and which proves conflicts in decision variables. For mo
70

Análise do comportamento dos tempos de produção em um sistema de manufatura flexível em um problema de escalonamento em um job shop: abordagem utilizando conceito de caminho crítico

Rodrigues, Antonio Gabriel 01 March 2007 (has links)
Made available in DSpace on 2015-03-05T13:58:26Z (GMT). No. of bitstreams: 0 Previous issue date: 1 / Universidade do Vale do Rio dos Sinos / Neste trabalho é abordado o Problema de Escalonamento em um job shop, considerando restrições de datas de entrega, turnos de produção e tempo de setup entre operações. Considera-se um ambiente de Sistema de Manufatura flexível, que dado ao alto nível de automação, permite a previsibilidade dos processos de carregamento dos recursos à área de processamento. O problema foi modelado através de uma Função Objetivo fn composta de três variáveis de decisão. A importância da contribuição de cada variável para o valor de fn é gerida pela atribuição de valores aos pesos associados às variáveis. Na abordagem proposta, são utilizadas técnicas de Tecnologia de Grupo e Busca Tabu. O modelo implementado é uma modificação da técnica i TSAB, proposta por Nowicki e Smutnicki, a qual apresenta bons resultados no tratamento do Problema de Escalonamento em um job shop PEJS clássico. A consideração das restrições adicionais ao PEJS aumenta a complexidade do modelo implementado, porém, deixa o problema mais próximo da realidade. / In this work the Job Shop Scheduling Problem is studied, considering due dates, production turns and tooling constraints. This problem is applied in a Flexible Manufacturing System, which possesses high degree of automation, allowing previsibility in the processes of loading and unloading jobs on the machines. The problem is modeled through a objective function fn composed by three weighted decision variables. The importance of each variable in the fn final value is managed through assignment of values to the weights of these variables. In the proposed approach, it was used Group Technology and Tabu Search techniques. The implemented model is a modification of the i TSAB technique, proposed by Nowicki and Smutniki. The consideration of adicional constraints in the Job Shop Scheduling Problem increases the complexity of the implementation, otherwise, makes the problem closer to the industrial reality. The model was validated using benchmark instances, in which the data from the addional constraints were added.

Page generated in 0.1017 seconds