• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 29
  • 29
  • 16
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 200
  • 200
  • 54
  • 53
  • 42
  • 41
  • 30
  • 29
  • 28
  • 21
  • 20
  • 20
  • 20
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Jun Kinases in Hematopoiesis, and Vascular Development and Function: A Dissertation

Ramo, Kasmir 06 July 2015 (has links)
Arterial occlusive diseases are major causes of morbidity and mortality in industrialized countries and represent a huge economic burden. The extent of the native collateral circulation is an important determinant of blood perfusion restoration and therefore the severity of tissue damage and functional impairment that ensues following arterial occlusion. Understanding the mechanisms responsible for collateral artery development may provide avenues for therapeutic intervention. Here, we identify a critical requirement for mixed lineage kinase (MLK) – cJun-NH2-terminal kinase (JNK) signaling in vascular morphogenesis and native collateral artery development. We demonstrate that Mlk2-/-Mlk3-/- mice or mice with compound JNK-deficiency in the vascular endothelium display abnormal collateral arteries, which are unable to restore blood perfusion following arterial occlusion, leading to severe tissue necrosis in animal models of femoral and coronary artery occlusion. Employing constitutive and inducible conditional deletion strategies, we demonstrate that endothelial JNK acts during the embryonic development of collateral arteries to ensure proper patterning and maturation, but is dispensable for angiogenic and arteriogenic responses in adult mice. During developmental vascular morphogenesis, MLK – JNK signaling is required for suppression of excessive sprouting angiogenesis likely via JNK-dependent regulation of Dll4 expression and Notch signaling. This function of JNK may underlie its critical requirement for native collateral artery formation. Thus, this study introduces MLK – JNK signaling as a major regulator of vascular development. In contrast, we find that JNK in hematopoietic cells, which are thought to share a common mesodermally-derived precursor with endothelial cells, is cellautonomously dispensable for normal hematopoietic development and hematopoietic stem cell self-renewal, illustrating the highly context dependent function of JNK.
192

Étude des facteurs de régulation de la stabilité de la MAPK atypique ERK3 ainsi que de son rôle dans la progression tumorale du cancer du sein

Tesnière, Chloé 12 1900 (has links)
ERK3 est une protéine de la famille des MAP kinase (MAPK) classifiée comme atypique car elle présente des différences notables comparées aux propriétés redondantes des MAPK dites classiques. ERK3 est notamment une protéine très instable dégradée constitutivement par le système ubiquitine protéasome. Par conséquence, son activité biologique est principalement contrôlée par la régulation de sa dégradation. Pourtant, les facteurs impliqués dans la régulation de la stabilité de ERK3 restent mal compris. Ce travail de thèse vise ainsi à affiner notre compréhension des mécanismes de régulation de la stabilité de ERK3. De manière intéressante, nous avons montré dans une première étude qu’un pH acide stabilise fortement ERK3 alors qu’à l’inverse, un pH basique induit sa rapide dégradation par le protéasome. De plus, la déplétion génétique de NBCn1, un transporteur de bicarbonate impliqué dans la régulation du pH intracellulaire, augmente également la stabilité de ERK3. Ainsi, des variations de pH intracellulaire régulent finement la dégradation de ERK3. Nous avons également montré dans une deuxième étude l’importance de ERK3 dans la progression tumorale dans le cancer du sein. La surexpression de ERK3 au niveau transcriptionnel ou protéique est associée à un mauvais pronostic dans le cancer du sein, que ce soit au niveau de la survie globale ou de la survie sans métastase. Ainsi, la déplétion de ERK3 entraîne une diminution drastique du nombre de métastases au foie et aux poumons. ERK3 est également impliquée dans la migration cellulaire in vitro. Nous avons montré pour la première fois que la stabilité d’une kinase peut être modulée par le pH. Or, le pH est impliqué dans de nombreux processus biologiques comme, entre autres, la prolifération cellulaire, la migration, l’invasion et la mort cellulaire. Les résultats obtenus pendant ce doctorat ouvrent donc de nouveaux champs d’exploration pour étudier l’activité biologique de ERK3 dans des contextes dépendants du pH. / ERK3 is an atypical member of the MAP kinase (MAPK) family because its regulation differs from the canonical module of classical MAPK. ERK3 is also an unstable protein constitutively degraded by the ubiquitin proteasome system (UPS). Therefore, ERK3 stability regulation is an essential element in the control of its biological activity. However, the components implied in the regulation of its stability by the UPS are mainly unknown. This thesis aims to understand the regulation mechanisms controlling ERK3 degradation to better explore its biological function. In a first study, we showed that an acidic extracellular pH strongly stabilizes ERK3. At the opposite, a basic pH triggers its rapid degradation by the proteasome. Moreover, genetic depletion of NBCn1, a bicarbonate transporter involved in the regulation of the intracellular pH (pHi), also impacts ERK3 stability. We demonstrated that pHi variation finely regulates ERK3 degradation. We also explored the role of ERK3 in breast cancer progression in a second study. In breast cancer, high ERK3 expression correlates with a poor overall survival as well as a higher risk to develop metastases. ERK3 depletion triggers a severe decrease in the number of liver and lungs metastasis in a in vivo metastasis model. We also demonstrated that ERK3 is involved in cell migration in vitro. We showed for the first time that a kinase stability is modulated by pH variation. pH homeostasis is finely regulated in cells to assure important cellular functions such as proliferation, invasion, and survival. Therefore, ERK3 protein levels regulation by the pH raises new potential functions to explore for this kinase in a context pH dependent.
193

BMPR-II deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFbeta-TAK1-MAPK pathways in PAH

Nasim, Md. Talat, Ogo, T., Chowdhury, H.M., Zhao, L., Chen, C-n., Rhodes, C., Trembath, R.C. January 2012 (has links)
Yes / Pulmonary arterial hypertension (PAH) is a cardiovascular disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary arterial smooth muscle cells (PASMCs). Heterozygous mutations in the type II receptor for bone morphogenetic protein (BMPR2) underlie the majority of the inherited and familial forms of PAH. The transforming growth factor beta (TGFbeta) pathway is activated in both human and experimental models of PAH. However, how these factors exert pro-proliferative and anti-apoptotic responses in PAH remains unclear. Using mouse primary PASMCs derived from knock-in mice, we demonstrated that BMPR-II dysfunction promotes the activation of small mothers against decapentaplegia-independent mitogen-activated protein kinase (MAPK) pathways via TGFbeta-associated kinase 1 (TAK1), resulting in a pro-proliferative and anti-apoptotic response. Inhibition of the TAK1-MAPK axis rescues abnormal proliferation and apoptosis in these cells. In both hypoxia and monocrotaline-induced PAH rat models, which display reduced levels of bmpr2 transcripts, this study further indicates that the TGFbeta-MAPK axis is activated in lungs following elevation of both expression and phosphorylation of the TAK1 protein. In ex vivo cell-based assays, TAK1 inhibits BMP-responsive reporter activity and interacts with BMPR-II receptor. In the presence of pathogenic BMPR2 mutations observed in PAH patients, this interaction is greatly reduced. Taken together, these data suggest dysfunctional BMPR-II responsiveness intensifies TGFbeta-TAK1-MAPK signalling and thus alters the ratio of apoptosis to proliferation. This axis may be a potential therapeutic target in PAH.
194

The role of the JNK/AP-1 pathway in the induction of iNOS and CATs in vascular cells

Zamani, Marzieh January 2013 (has links)
Nitric oxide (NO) is an important biological molecule within the body, which over production of this molecule in response to different stimulations can cause various inflammatory diseases. Over production of this molecule is caused by the induction of the inducible nitric oxide synthase (iNOS) enzyme. This enzyme uses L-arginine as a substrate and therefore the presence and transport of this amino acid into the cells can be a key factor in regulating NO over production. Different signalling mechanisms have been implicated in the regulation of this pathway and one of which involves the Mitogen Activated Protein Kinases (MAPK). This family of proteins respond to inflammatory conditions and may mediate effects induced by inflammatory mediators. Of the MAPKs, the role of the c-Jun-N-terminal kinase (JNK) pathway in the induction of iNOS is still controversial. JNK and its downstream target, the transcription factor Activator Protein-1 (AP-1), have shown contradictory effects on iNOS induction leading to controversies over their role in regulating iNOS expression in different cell systems or with various stimuli. The studies described in this thesis have determined the role of JNK/AP-1 on iNOS expression, NO production, L-arginine uptake and also on the transporters responsible for L-arginine transport into the cells. The studies were carried out in two different cell types: rat aortic smooth muscle cells (RASMCs) and J774 macrophages which are both critically associated with the over production of NO in vascular inflammatory disease states. The first approach was to block the expression of the inducible L-arginine-NO pathway using SP600125 and JNK Inhibitor VIII which are both pharmacological inhibitors of JNK. The results from these studies showed that the pharmacological intervention was without effect in RASMCs, but inhibited iNOS, NO and L-arginine transport in J774 macrophages. In contrast, the molecular approach employed using two dominant negative constructs of AP-1 (TAM-67 and a-Fos) revealed a different profile of effects in RASMCs, where a-Fos caused an induction in iNOS and NO while TAM-67 had an inhibitory effect on iNOS, NO, L-arginine transport and CAT-2B mRNA expression. The latter was unaffected in RASMCs but suppressed in J774 macrophages by SP600125. Examination of JNK isoforms expression showed the presence of JNK1 and 2 in both cell systems. Moreover, stimulation with LPS/IFN- or LPS alone resulted in JNK phosphorylation which did not reveal any difference between smooth muscle cells and macrophages. In contrast, expression and activation of AP-1 subunits revealed differences between the two cell systems. Activation of cells with LPS and IFN- (RASMCs) or LPS alone (J774 macrophages) resulted in changes in the activated status of the different AP-1 subunit which was different for the two cell systems. In both cell types c-Jun, JunD and Fra-1 were increased and in macrophages, FosB activity was also enhanced. Inhibition of JNK with SP600125 caused down-regulation in c-Jun in both cell types. Interestingly this down-regulation was in parallel with increases in the subunits JunB, JunD, c-Fos and Fra-1 in RASMCs or JunB and Fra-1 in J774 macrophages. Since, SP600125 was able to exert inhibitory effects in the latter cell type but not in RASMCs, it is possible that the compensatory up-regulation of certain AP-1 subunits in the smooth muscle cells may compensate for c-Jun inhibition thereby preventing suppression of iNOS expression. This notion clearly needs to be confirmed but it is potentially likely that hetero-dimers formed between JunB, JunD, c-Fos and Fra-1 could sustain gene transcription in the absence of c-Jun. The precise dimer required has not been addressed but unlikely to exclusively involve JunB and Fra-1 as these are up-regulated in macrophages but did not sustain iNOS, NO or induced L-arginine transport in the presence of SP600125. To further support the argument above, the dominant negatives caused varied effects on the activation of the different subunits. a-Fos down-regulated c-Jun, c-Fos, FosB, Fra-1 whereas TAM-67 reduced c-Jun and c-Fos but marginally induced Fra-1 activity. Associated with these changes was an up-regulation of iNOS-NO by a-Fos and inhibition by TAM-67. Taken together, the data proposes a complex mechanism(s) that regulate the expression of the inducible L-arginine-NO pathway in different cell systems and the complexity may reflect diverse intracellular changes that may be different in each cell type and not always be apparent using one experimental approach especially where this is pharmacological. Moreover, these findings strongly suggest exercising caution when interpreting pure pharmacological findings in cell-based systems particularly where these are inconsistent or contradictory.
195

Estudo do gene MAP3K1 em pacientes portadores de distúrbios do desenvolvimento sexual 46,XY por anormalidades no desenvolvimento gonadal / Study of the MAP3K1 gene in patients with disorders of sexual development 46,XY by abnormalities in gonadal development

Machado, Aline Zamboni 20 February 2017 (has links)
Introdução: Pearlman e colaboradores relacionou a presença de mutações ativadoras no gene MAP3K1 com o desenvolvimento testicular anormal em pacientes com disgenesia gonadal 46,XY familial, embora os estudos em camundongos tenham demonstrado que o gene Map3k1 não é essencial para a determinação testicular. No desenvolvimento gonadal masculino, a ligação do MAP3K1 à proteína RHOA promove uma fosforilação normal de p38 e ERK1/2, o que determina um bloqueio da via da beta-catenina pela MAP3K4. Já no desenvolvimento feminino, ocorre uma hiper fosforilação de p38 e ERK1/2, o que determina a ativação da via da beta-catenina e o bloqueio da via de retroalimentação positiva do SOX9 e o desenvolvimento testicular. Objetivos: Pesquisar a presença de variantes alélicas do gene MAP3K1 em pacientes portadores de distúrbios do desenvolvimento sexual (1) 46,XY por anormalidades do desenvolvimento gonadal e avaliar a repercussão funcional das variantes identificadas. Casuística e Métodos: Quarenta e sete pacientes com disgenesia gonadal 46,XY (17 com a forma completa e 29 com a forma parcial) e uma paciente com DDS 46,XY de causa etiológica não conhecida foram estudados. As regiões codificadoras do gene MAP3K1 foram amplificadas e sequenciadas pelo método de Sanger ou painel customizado de genes-alvo associados ao DDS. Estudo in vitro utilizando o método de detecção colorimétrica In-Cell ELISA com anticorpos específicos para detecção de ERK1/2 e AKT, fosforilado e não fosforilado foi realizado em fibroblastos obtidos por biópsia de pele e mantidos em cultura celular de 3 indivíduos portadores de variantes no MAP3K1. A quantificação da fosforilação de p38 e ERK por ensaio de citometria em células linfoblastóides mutadas foram realizados em amostras de 4 indivíduos portadores de variantes no MAP3K1 em estudo realizado em colaboração. Imunohistoquímica com anticorpos anti Caspase-3 foram realizadas em tecidos gonadais parafinados das pacientes portadoras de variantes alélicas nos genes MAP3K1 e FGFR2. Resultados: Vinte e uma variantes alélicas, sete das quais ainda não descritas na literatura, foram identificadas no gene MAP3K1. Quatro novas variantes alélicas exônicas e não sinônimas (p.Leu639Pro, p.Leu447Trp, p.Thr657Arg e p.Cys691Arg) foram identificadas em heterozigose; todas foram classificadas como deletérias para a proteína nos estudos de predição \"in silico\", não foram identificadas em indivíduos controles brasileiros estudados e não estão descritas nos bancos de dados populacionais. A variante p.Leu639Pro foi identificada em duas irmãs com disgenesia gonadal 46,XY portadoras da variante p.Ser453Leu no gene FGFR2 identificada previamente. A variante intrônica c.834+1G >T identificada em heterozigose foi classificada como deletéria à proteína na análise no site de predição para alteração de \"splicing\". Os ensaios colorimétricos para detecção de ERK1/2 e AKT, fosforilado e não fosforilado foram inconclusivos. Os estudos in vitro de avaliação dos níveis de fosforilação de p38 e ERK evidenciaram uma maior fosforilação nas culturas celulares mutantes para o MAP3K1 quando comparado com a linhagem celular selvagem, resultado estatisticamente significativo ( p < 0,001) e que corrobora com os dados publicados previamente. A imunohistoquímica com anticorpos anti Caspase-3 mostrou uma maior marcação em células germinativas nos tecidos gonadais das pacientes portadoras das variantes no MAP3K1 e FGFR2 do que no tecido testicular normal, porém marcações foram identificadas também em células germinativas de tecidos testiculares de indivíduos com DDS 46,XY de outras etiologias. Conclusões: Os achados sugerem fortemente a participação das mutações identificadas no MAP3K1 na etiologia dos distúrbios do desenvolvimento sexual dos pacientes estudados. Porém, uma melhor compreensão dos mecanismos de participação da via MAPK nas redes gênicas de regulação do processo de determinação testicular humano ainda é necessário / Introduction: Pearlman et al. associated the presence of activating mutations in MAP3K1 gene with abnormal testicular development in patients with familial 46,XY gonadal dysgenesis, although studies in mice have shown that the Map3k1 gene is not essential for testicular determination. In male gonadal development, the binding of MAP3K1 to the RHOA protein promotes a normal phosphorylation of p38 and ERK1/2, and a blockade of the beta- catenin pathway is determined by MAP3K4. In the female development, hyperphosphorylation of p38 and ERK1/2 occurs. p38 and ERK1/2 hyperphosphorylated determine the activation of the beta-catenin pathway, the blockade of the positive feedback pathway of SOX9 and the testicular development. Objectives: To investigate the presence of allelic variants of the MAP3K1 gene in patients with 46,XY disorders of sex development (DSD) due to abnormalities of gonadal development and to evaluate the functional repercussion of the identified variants. Patients and Methods: Forty-seven patients with 46,XY gonadal dysgenesis (17 patients with complete form and 29 with partial form) and one patient with 46,XY DSD of unknown cause were studied. The MAP3K1 coding regions were amplified and sequenced by Sanger method or by custom panel of target genes associated with DSD. In-Cell ELISA assay with specific antibodies for the detection of phosphorylated and non-phosphorylated ERK1/2 and AKT was performed on fibroblasts obtained by skin biopsy and kept in cell culture of 3 individuals with MAP3K1 variants. Quantification of p38 and ERK phosphorylation by cytometric assay on mutated lymphoblastoid cells were performed on samples from 4 subjects with MAP3K1 variants in a collaborative study. Immunohistochemistry with anti-Caspase-3 antibodies were performed on paraffinembedded gonadal tissues of patients with MAP3K1 and FGFR2 allelic variants. Results: Twenty-one allelic variants, seven of them have not yet been described in the literature, were identified in the MAP3K1. Four novel exonic and non-synonymous allelic variants (p.Leu639Pro, p.Leu447Trp, p.Thr657Arg and p.Cys691Arg) were identified in heterozygous state; all of them were classified as deleterious in silico prediction sites; they were not identified in Brazilian control subjects and they were not described in the human genetic variation databases. The p.Leu639Pro variant was identified in two sisters with 46,XY gonadal dysgenesis carrying the previously identified FGFR2 variant (p Ser453Leu). The intronic c.834+1G > T variant identified in heterozygous state was classified as deleterious in the prediction sites. Colorimetric assays for the detection of phosphorylated and nonphosphorylated ERK1/2 and AKT were not significant. In vitro studies to evaluate p38 and ERK phosphorylation levels evidenced increased phosphorylation in the MAP3K1 mutant cells when compared to the wild type cells line; a statistically significant result (p < 0.001) that confirmed previously published data. The immunohistochemistry study with anti-Caspase-3 antibodies showed that the gonadal tissues of patients with MAP3K1 and FGFR2 variants exhibited more apoptotic germ ceIls than normal testicular tissue, but stained germ cells were also identified in the testicular tissues of the 46,XY DSD controls.Conclusions: These findings strongly suggest the participation of MAP3K1 mutations in the etiology of the testicular abnormalities of the 46,XY DSD patients of this study. However, a better understanding of the mechanisms of MAPK pathway in the gene regulatory networks of the human testicular determination process is still necessary
196

Control of transcription initiation by the stress activated hog1 kinase

Zapater Enrique, Meritxell 01 December 2006 (has links)
En el llevat Saccharomyces cerevisiae els canvis en les condicions osmòtiques del medi extracel.lular són sensades per la MAP cinasa Hog1, la qual permet dur a terme l'adaptació cel.lular mitjançant la modulació de l'expressió gènica, de la traducció i de la progressió del cicle cel.lular. A l'inici d'aquest projecte de tesi, els mecanismes pels quals Hog1 controla l'expressió gènica no eren del tot coneguts. El nostre objectiu va ser caracteritzar el mecanisme molecular pel qual Hog1 modula la transcripció en resposta a estrès osmòtic. Hem aconseguit demostrar que el reclutament de Hog1 als promotors sensibles a estrès osmòtic per part del factor de transcripció és essencial per al reclutament i activació de la RNA polimerasa II, mecanisme que podria estar conservat en les cèl.lules eucariotes. També hem identificat noves activitats remodeladores de cromatina implicades en la resposta gènica a osmoestrès mediada per Hog1. Vàrem realitzar un cribatge genètic per identificar mutacions que provoquessin osmosensibilitat i una reducció en l'expressió de gens de resposta a estrès osmòtic. Aquest cribatge ens va permetre identificar nous reguladors de la transcripció mediada per osmoestrès: la histona deacetilasa Rpd3 i els complexes SAGA i mediador. Els nostres resultats permeten, doncs, definir un important paper per a Rpd3, SAGA i mediador en la inducció gènica mediada per Hog1, i han estat importants per assolir una millor visió de com les cinases activades per estrès regulen la iniciació de la transcripció. / In Saccharomyces cerevisiae, changes in the extracellular osmotic conditions are sensed by the HOG MAPK pathway, which elicits the program for cell adaptation, including modulation of gene expression, translation and cell-cycle progression. At the beginning of this PhD Project, the mechanisms by which Hog1 was controlling gene transcription were not completely understood. Our main objective was to characterize the molecular mechanisms by which the Hog1 MAPK modulates transcription upon osmostress. We have shown that anchoring of Hog1 to osmoresponsive promoters by the transcription factor is essential for recruitment and activation of RNA polymerase II, a mechanism that might be conserved among eukaryotic cells. In addition, we identified novel chromatin modifying and remodelling activities involved in the Hog1-mediated osmostress gene expression. We performed a genome-wide genetic screening searching for mutations that render cells osmosensitive and displayed reduced expression of osmoresponsive genes. Rpd3 histone deacetylase, SAGA and Mediator complexes were identified as novel regulators of osmostress-mediated transcription. Thus, our results define a major role for Rpd3, SAGA and Mediator in the Hog1-mediated osmostress gene induction, and have been important to achieve a better view of how a SAPK regulates transcription initiation.
197

Tumor suppressive effects of the Beta-2 adrenergic receptor and the small GTPase RhoB

Carie, Adam E. January 2008 (has links)
Dissertation (Ph.D.)--University of South Florida, 2008. / Title from PDF of title page. Document formatted into pages; contains 201 pages. Includes vita. Includes bibliographical references.
198

Estudo do gene MAP3K1 em pacientes portadores de distúrbios do desenvolvimento sexual 46,XY por anormalidades no desenvolvimento gonadal / Study of the MAP3K1 gene in patients with disorders of sexual development 46,XY by abnormalities in gonadal development

Aline Zamboni Machado 20 February 2017 (has links)
Introdução: Pearlman e colaboradores relacionou a presença de mutações ativadoras no gene MAP3K1 com o desenvolvimento testicular anormal em pacientes com disgenesia gonadal 46,XY familial, embora os estudos em camundongos tenham demonstrado que o gene Map3k1 não é essencial para a determinação testicular. No desenvolvimento gonadal masculino, a ligação do MAP3K1 à proteína RHOA promove uma fosforilação normal de p38 e ERK1/2, o que determina um bloqueio da via da beta-catenina pela MAP3K4. Já no desenvolvimento feminino, ocorre uma hiper fosforilação de p38 e ERK1/2, o que determina a ativação da via da beta-catenina e o bloqueio da via de retroalimentação positiva do SOX9 e o desenvolvimento testicular. Objetivos: Pesquisar a presença de variantes alélicas do gene MAP3K1 em pacientes portadores de distúrbios do desenvolvimento sexual (1) 46,XY por anormalidades do desenvolvimento gonadal e avaliar a repercussão funcional das variantes identificadas. Casuística e Métodos: Quarenta e sete pacientes com disgenesia gonadal 46,XY (17 com a forma completa e 29 com a forma parcial) e uma paciente com DDS 46,XY de causa etiológica não conhecida foram estudados. As regiões codificadoras do gene MAP3K1 foram amplificadas e sequenciadas pelo método de Sanger ou painel customizado de genes-alvo associados ao DDS. Estudo in vitro utilizando o método de detecção colorimétrica In-Cell ELISA com anticorpos específicos para detecção de ERK1/2 e AKT, fosforilado e não fosforilado foi realizado em fibroblastos obtidos por biópsia de pele e mantidos em cultura celular de 3 indivíduos portadores de variantes no MAP3K1. A quantificação da fosforilação de p38 e ERK por ensaio de citometria em células linfoblastóides mutadas foram realizados em amostras de 4 indivíduos portadores de variantes no MAP3K1 em estudo realizado em colaboração. Imunohistoquímica com anticorpos anti Caspase-3 foram realizadas em tecidos gonadais parafinados das pacientes portadoras de variantes alélicas nos genes MAP3K1 e FGFR2. Resultados: Vinte e uma variantes alélicas, sete das quais ainda não descritas na literatura, foram identificadas no gene MAP3K1. Quatro novas variantes alélicas exônicas e não sinônimas (p.Leu639Pro, p.Leu447Trp, p.Thr657Arg e p.Cys691Arg) foram identificadas em heterozigose; todas foram classificadas como deletérias para a proteína nos estudos de predição \"in silico\", não foram identificadas em indivíduos controles brasileiros estudados e não estão descritas nos bancos de dados populacionais. A variante p.Leu639Pro foi identificada em duas irmãs com disgenesia gonadal 46,XY portadoras da variante p.Ser453Leu no gene FGFR2 identificada previamente. A variante intrônica c.834+1G >T identificada em heterozigose foi classificada como deletéria à proteína na análise no site de predição para alteração de \"splicing\". Os ensaios colorimétricos para detecção de ERK1/2 e AKT, fosforilado e não fosforilado foram inconclusivos. Os estudos in vitro de avaliação dos níveis de fosforilação de p38 e ERK evidenciaram uma maior fosforilação nas culturas celulares mutantes para o MAP3K1 quando comparado com a linhagem celular selvagem, resultado estatisticamente significativo ( p < 0,001) e que corrobora com os dados publicados previamente. A imunohistoquímica com anticorpos anti Caspase-3 mostrou uma maior marcação em células germinativas nos tecidos gonadais das pacientes portadoras das variantes no MAP3K1 e FGFR2 do que no tecido testicular normal, porém marcações foram identificadas também em células germinativas de tecidos testiculares de indivíduos com DDS 46,XY de outras etiologias. Conclusões: Os achados sugerem fortemente a participação das mutações identificadas no MAP3K1 na etiologia dos distúrbios do desenvolvimento sexual dos pacientes estudados. Porém, uma melhor compreensão dos mecanismos de participação da via MAPK nas redes gênicas de regulação do processo de determinação testicular humano ainda é necessário / Introduction: Pearlman et al. associated the presence of activating mutations in MAP3K1 gene with abnormal testicular development in patients with familial 46,XY gonadal dysgenesis, although studies in mice have shown that the Map3k1 gene is not essential for testicular determination. In male gonadal development, the binding of MAP3K1 to the RHOA protein promotes a normal phosphorylation of p38 and ERK1/2, and a blockade of the beta- catenin pathway is determined by MAP3K4. In the female development, hyperphosphorylation of p38 and ERK1/2 occurs. p38 and ERK1/2 hyperphosphorylated determine the activation of the beta-catenin pathway, the blockade of the positive feedback pathway of SOX9 and the testicular development. Objectives: To investigate the presence of allelic variants of the MAP3K1 gene in patients with 46,XY disorders of sex development (DSD) due to abnormalities of gonadal development and to evaluate the functional repercussion of the identified variants. Patients and Methods: Forty-seven patients with 46,XY gonadal dysgenesis (17 patients with complete form and 29 with partial form) and one patient with 46,XY DSD of unknown cause were studied. The MAP3K1 coding regions were amplified and sequenced by Sanger method or by custom panel of target genes associated with DSD. In-Cell ELISA assay with specific antibodies for the detection of phosphorylated and non-phosphorylated ERK1/2 and AKT was performed on fibroblasts obtained by skin biopsy and kept in cell culture of 3 individuals with MAP3K1 variants. Quantification of p38 and ERK phosphorylation by cytometric assay on mutated lymphoblastoid cells were performed on samples from 4 subjects with MAP3K1 variants in a collaborative study. Immunohistochemistry with anti-Caspase-3 antibodies were performed on paraffinembedded gonadal tissues of patients with MAP3K1 and FGFR2 allelic variants. Results: Twenty-one allelic variants, seven of them have not yet been described in the literature, were identified in the MAP3K1. Four novel exonic and non-synonymous allelic variants (p.Leu639Pro, p.Leu447Trp, p.Thr657Arg and p.Cys691Arg) were identified in heterozygous state; all of them were classified as deleterious in silico prediction sites; they were not identified in Brazilian control subjects and they were not described in the human genetic variation databases. The p.Leu639Pro variant was identified in two sisters with 46,XY gonadal dysgenesis carrying the previously identified FGFR2 variant (p Ser453Leu). The intronic c.834+1G > T variant identified in heterozygous state was classified as deleterious in the prediction sites. Colorimetric assays for the detection of phosphorylated and nonphosphorylated ERK1/2 and AKT were not significant. In vitro studies to evaluate p38 and ERK phosphorylation levels evidenced increased phosphorylation in the MAP3K1 mutant cells when compared to the wild type cells line; a statistically significant result (p < 0.001) that confirmed previously published data. The immunohistochemistry study with anti-Caspase-3 antibodies showed that the gonadal tissues of patients with MAP3K1 and FGFR2 variants exhibited more apoptotic germ ceIls than normal testicular tissue, but stained germ cells were also identified in the testicular tissues of the 46,XY DSD controls.Conclusions: These findings strongly suggest the participation of MAP3K1 mutations in the etiology of the testicular abnormalities of the 46,XY DSD patients of this study. However, a better understanding of the mechanisms of MAPK pathway in the gene regulatory networks of the human testicular determination process is still necessary
199

Role of Map4k4 in Skeletal Muscle Differentiation: A Dissertation

Wang, Mengxi 01 May 2013 (has links)
Skeletal muscle is a complicated and heterogeneous striated muscle tissue that serves critical mechanical and metabolic functions in the organism. The process of generating skeletal muscle, myogenesis, is elaborately coordinated by members of the protein kinase family, which transmit diverse signals initiated by extracellular stimuli to myogenic transcriptional hierarchy in muscle cells. Mitogen-activated protein kinases (MAPKs) including p38 MAPK, c-Jun N terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) are components of serine/threonine protein kinase cascades that play important roles in skeletal muscle differentiation. The exploration of MAPK upstream kinases identified mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4), a serine/threonine protein kinase that modulates p38 MAPK, JNK and ERK activities in multiple cell lines. Our lab further discovered that Map4k4 regulates peroxisome proliferator-activated receptor γ (PPARγ) translation in cultured adipocytes through inactivating mammalian target of rapamycin (mTOR), which controls skeletal muscle differentiation and hypotrophy in kinase-dependent and -independent manners. These findings suggest potential involvement of Map4k4 in skeletal myogenesis. Therefore, for the first part of my thesis, I characterize the role of Map4k4 in skeletal muscle differentiation in cultured muscle cells. Here I show that Map4k4 functions as a myogenic suppressor mainly at the early stage of skeletal myogenesis with a moderate effect on myoblast fusion during late-stage muscle differentiation. In agreement, Map4k4 expression and protein kinase activity are declined with myogenic differentiation. The inhibitory effect of Map4k4 on skeletal myogenesis requires its kinase activity. Surprisingly, none of the identified Map4k4 downstream effectors including p38 MAPK, JNK and ERK is involved in the Map4k4-mediated myogenic differentiation. Instead, expression of myogenic regulatory factor Myf5, a positive mediator of skeletal muscle differentiation is transiently regulated by Map4k4 to partially control skeletal myogenesis. Mechanisms by which Map4k4 modulates Myf5 amount have yet to be determined. In the second part of my thesis, I assess the relationship between Map4k4 and IGF-mediated signaling pathways. Although siRNA-mediated silencing of Map4k4 results in markedly enhanced myotube formation that is identical to the IGF-induced muscle hypertrophic phenotype, and Map4k4 regulates IGF/Akt signaling downstream effector mTOR in cultured adipocytes, Map4k4 appears not to be involved in the IGF-mediated ERK1/2 signaling axis and the IGF-mediated Akt signaling axis in C2C12 myoblasts. Furthermore, Map4k4 does not affect endogenous Akt signaling or mTOR activity during C2C12 myogenic differentiation. The results presented here not only identify Map4k4 as a novel suppressor of skeletal muscle differentiation, but also add to our knowledge of Map4k4 action on multiple signaling pathways in muscle cells during skeletal myogenesis. The effects that Map4k4 exerts on myoblast differentiation, fusion and Myf5 expression implicate Map4k4 as a potential drug target for muscle mass growth, skeletal muscle regeneration and muscular dystrophy.
200

Fibroblast growth factor receptor 1 promotes proliferation and survival via activation of the mitogen-activated protein kinase pathway in bladder cancer

Tomlinson, D.C., Lamont, F.R., Shnyder, Steven, Knowles, M.A. January 2009 (has links)
No / Fibroblast growth factor receptors (FGFR) play key roles in proliferation, differentiation, and tumorigenesis. Many urothelial carcinomas contain activating point mutations or increased expression of FGFR3. However, little is known about the role of other FGFRs. We examined FGFR expression in telomerase-immortalized normal human urothelial cells, urothelial carcinoma cell lines, and tumor samples and showed that FGFR1 expression is increased in a high proportion of cell lines and tumors independent of stage and grade. To determine the role of FGFR1 in low-stage bladder cancer, we overexpressed FGFR1 in telomerase-immortalized normal human urothelial cells and examined changes in proliferation and cell survival in response to FGF2. FGFR1 stimulation increased proliferation and reduced apoptosis. To elucidate the mechanistic basis for these alterations, we examined the signaling cascades activated by FGFR1. FRS2alpha and PLCgamma were activated in response to FGF2, leading to activation of the mitogen-activated protein kinase pathway. The level of mitogen-activated protein kinase activation correlated with the level of cyclin D1, MCL1, and phospho-BAD, which also correlated with FGFR-induced proliferation and survival. Knockdown of FGFR1 in urothelial carcinoma cell lines revealed differential FGFR1 dependence. JMSU1 cells were dependent on FGFR1 expression for survival but three other cell lines were not. Two cell lines (JMSU1 and UMUC3) were dependent on FGFR1 for growth in soft agar. Only one of the cell lines tested (UMUC3) was frankly tumorigenic; here, FGFR1 knockdown inhibited tumor growth. Our results indicate that FGFR1 has significant effects on urothelial cell phenotype and may represent a useful therapeutic target in some cases of urothelial carcinoma.

Page generated in 0.0797 seconds