• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 10
  • 10
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 421
  • 421
  • 168
  • 84
  • 81
  • 79
  • 55
  • 54
  • 40
  • 37
  • 37
  • 34
  • 33
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Per- and Polyfluoroalkyl Substance (PFAS) Emissions from Recycling Processes of Lithium-Ion Batteries

Rensmo, Amanda January 2022 (has links)
The lithium-ion battery (LIB) recycling industry is currently under development to improve the yields for critical metals. However, the organic components of LIBs must also be handled, which may result in harmful chemical emissions as by-products. Of particular concern are highly persistent and mobile per- and polyfluoroalkyl substances (PFAS) that could be released during LIB recycling since some of these compounds have been linked with adverse health effects. In this work, an extensive literature review was conducted to determine the presence of fluorinated materials in state-of-the-art LIBs and the recycling conditions which could lead to the release of problematic PFAS. This information was used to develop a new analytical approach to capture the broadest range of organic and inorganic fluorine species in samples taken in different stages of the recycling process. This new method is based on a sequential extraction procedure using different solvents, followed by combustion ion chromatography (CIC) to quantify the potential emission of fluorine-containing chemicals of different polarities. The results show that organofluorine compounds are formed during recycling, particularly for the cathodes, indicating that PFAS might be present. For other samples, such as the NiMnCo salt product of recycling, only low fluorine levels were detected which implies almost complete removal. Future work should further outline the emission paths of these processes. This study highlights the necessity to further investigate the emissions related to fluorinated materials during LIB recycling and indicates that post-treatments or changes in conditions might be necessary to avoid the formation and emission of PFAS.
392

Structural Battery Electrolytes / Strukturella Batteri-Elektrolyter

Öberg, Pernilla, Halvarsson, Amanda, Rune, Julia, Bjerkensjö, Max January 2021 (has links)
Strukturella batterier är multifunktionella; de tillhandahåller lagring av elektrokemisk energi samtidigt som de bidrar med en lastbärande funktion. Tillsammans möjliggör detta att batteriet kan integreras i karossen hos ett elektriskt fordon eller apparat. Denna multifunktionalitet möjliggör således en avsevärd reducering i fordonets vikt. Kompositmaterialet är förstärkt av kolfiberelektroder, innesluten i en elektrolytstruktur. För att förverkliga detta koncept måste batteriets elektrolyt kunna motstå mekanisk belastning, samtidigt som den transporterar joner mellan batteriets elektroder. Denna studie syftar till att bygga vidare på konceptet av fas-separerade polymerelektrolyter, skapade från polymerisationsinducerad fasseparation via termisk härdning, vilket är en teknik utvecklad av Schneider et al. och Ihrner et al. Vidare undersöks effekten av att dels använda en elektrolytlösning baserad på EC:PC, men även att inkorporera tioler till polymernätverket. Tvärbindningsmolekylerna som användes i denna studie inkluderade trimetylolpropan tris(3-merkaptopropionat) (3TMP), pentaerythritol tetrakis(3-merkaptopropionat) (4PER), och dipentaerythritol hexakis-(3-merkaptopropionat) (6DPER). Dessa skiljer sig i antal funktionella tiolgrupper. Konduktivitet, termo-mekanisk prestanda och strukturberoende egenskaper undersöktes genom tre laborativa faser. Den första fasen behandlade inverkan på elektrolytsystemet av ändrat lösningsmedel, tiol-funktionalitet samt tiolgruppförhållandet gentemot allyl gruppen på den primära monomeren. Sampolymeren innehållandes 6DPER uppvisade bäst multifunktionalitet, varpå denna utvecklades vidare i fas två där en optimal sammansättning fastställdes som bestod utav 45 viktprocent jonlösning. I den slutliga fasen konstruerades en halv-cell baserat på den tidigare optimerade elektrolytkompositionen; den uppmätta kapaciteten visar tydlig förbättring jämfört med tidigare forskning. Resultatet som erhölls i denna studie bidrar till förståendet av strukturella batteri-elektrolyter samt den forskning som en dag kan komma att förverkliga strukturella batterier och dess tillämpningskrav. / Structural batteries are multifunctional; providing electrochemical energy storage synergistically with a load-bearing function that enables their integration into the body panels of electric devices and vehicles. Thus, massless energy can be achieved. As a composite material, it is composed of reinforcing carbon fibre electrodes embedded in an electrolyte matrix. To realize this concept, the electrolyte must simultaneously transfer mechanical load and transport ions between electrodes. The following study builds on a phase-separated polymer electrolyte, created using polymerization-induced phase separation via thermal curing, formulated by Schneider et al. and Ihrner et al.. The impact of the incorporation of thiols for copolymerization and as cross-linking agents for the polymer network was researched along with use of an EC:PC-based solvent. The three thiols studied were: trimethylolpropane tris(3-mercaptopropionate) (3TMP), pentaerythritol tetrakis(3-mercaptopropionate) (4PER), and dipentaerythritol hexakis-(3-mercaptopropionate) (6DPER). These differed in regard to the amount of thiol functional groups present. Ionic conductivity, thermo-mechanical performance and structure-property relationships were studied across 3 laboratory phases. The first phase concerned the effect of thiol-functionality, the thiol functional group ratio relative to the allyl group present in the primary monomer, and the solvent interaction. 6DPER was concluded to be the most promising cross-linking agent. During the second phase, the effect of electrolyte content was evaluated with an optimum of 45 weight% determined. The third phase concluded the study, wherein a half-cell was assembled with the optimized electrolyte formulation showing improved capacity relative to previous studies. The results developed here contribute to the understanding of structural battery electrolyte systems and their continued research to meet application demands.
393

Relating Hull Cell Proccess Parameters to Coating Characteristics of Electroplated Zinc-Nickel

Hägg, Elin January 2024 (has links)
Corrosion can cause devastating damage to materials, and to protect materials from corrosion is crucial, especially in the aeronautical industry. An electroplated Zinc-Nickel coating provides excellent corrosion protection of steel. Electroplating of ZnNi is a sensitive process which needs frequent and fast feedback controls and adjustments of the process electrolyte. A common process control for electroplating processes is the Hull cell test, which is investigated in this study. The Hull cell test is a lab scaled electroplating unit, which spans a wide range of current densities. It is crucial to establish the relation between process parameters in the Hull cell and the resulting coating characteristics in order to implement it as a process control. The purpose of this study is to establish these relations for the ZnNi electroplating process, and evaluate if the Hull cell test is a suitable process control for this process. How the process parameters; current density, temperature, metal ion concentration, and carbonate contaminations affect the coating characteristics; visual appearance, thickness, composition, surface structure, and phase content has been established. Influence on the coatings were mainly seen at current densities higher and lower than the ones used in production. This demonstrates the strength of the Hull cell test for early detection of process deviations. Coating thickness and composition was measured with X-ray fluorescence. However, the composition values for thin coatings were discovered to be inaccurate, which was avoided by increasing the plating time. Once addressed, the Hull cell test is suitable as a process control for the electroplating process of ZnNi.
394

Development of covalent organic frameworks for energy storage applications : DAAQ-TFP COF and MXene composite electrodes for proton cycling

Singh, Simanjit January 2022 (has links)
The demand for today's material resources for energy storage is rapidly increasing and can result in both environmental and political conflicts that can affect the development of electronic devices due to high prices and limitations of raw materials for batteries. In this study, potential future composite electrodes were synthesised with an ex-situ approach by compositing redox-active 2,6-Diaminoanthraquinone and 1,3,5-Triformylphloroglucinol covalent organic framework (DAAQ-TFP COF) with conductive delaminated Ti3C2Tx MXene to maximise the number of redox-active moieties during cycling. In addition, solvothermal synthesis with the implementation of mechanical grinding as an exfoliation method was used to try to obtain DAAQ-TFP nanosheets to increase both the contact area between the two materials and the number of charge carriers. The sample was analysed with PXRD and BET surface analysis to characterise the crystallinity meanwhile SEM was utilised to study the morphology of the COF and the composite material. The specific capacitance of each electrode was estimated by cyclic voltammetry. The study showed a decrease in reduced specific capacitance with lower MXene content. Hence, this concludes pure Ti3C2Tx sheets have the highest capacitance contribution with a value of 48.79 Fg-1 meanwhile the composite electrode with a ratio of 1:1 was estimated to 32.26 Fg-1 with 0.0928 % of its moieties undergoing a redox reaction. A reduced capacitance with an increased COF-MXene ratio indicates that MXene contributes with more capacity relative to the COF, in combination with a non-successful exfoliation of DAAQ-TFP to single-layered nanosheets, reducing the interactions between the two materials.
395

A Quantum Chemical Investigation of Chemical Vapour Deposition of Fe using Ferrocene and Plasma Electrons

Andersson, Felicia January 2023 (has links)
Thin films provide a remarkable asset, as depositing a thin surface layer can completely alter a material’s characteristics and provide new, inexpensive, and valuable properties. In 2020, a new Chemical Vapour Deposition (CVD) approach was developed at Linköping University, using plasma electrons as reducing agents for the deposition of metallic thin films. To understand the CVD approach, comprehension of the deposition chemistry is crucial. In this thesis, I have performed a theoretical examination of the gas phase and surface chemistry of ferrocene in the recently developed CVD method to form metallic iron thin films, using plasma electrons as reducing agents. Results show that ferrocene anion formation and dissociation are probable in the gas phase, depending on the energy of the plasma electrons. It gets successively easier to dissociate the complex after gaining electrons. The most probable gas phase species leading to film formation was determined as FeCp2-, FeCp, and Cp− under the normal deposition parameters. An electron energy above 220 kJ/mol would suffice for ion formation and dissociation to form FeCp and Cp− fragments. On the surface, ferrocene’s vertical and horizontal adsorption is equally probable, with energies around -72 kJ/mol. Cp, Fe, and FeCp with Fe facing towards the surface interacts stronger with the surface than ferrocene, with adsorption energies of -179, -279 kJ/mol, and -284 kJ/mol. FeCp with Fe facing up from the surface had adsorption energy of -23 kJ/mol. As the surface bonding of Fe and FeCp with Fe facing the surface is stronger than for the other species, this poses a possible way of tuning the CVD method to limit carbon impurities. By providing above 180 kJ/mol energy, for example in the form of heating the substrate, the unwanted species FeCp2, Cp, and FeCp with the ring facing downwards would desorb from the surface, leaving the Fe and FeCp fragments with iron facing towards the surface still adsorbed. This poses a possible way of reducing carbon impurities.
396

Synthesis and Characterization of Copper Halide Complex Materials / Syntes och karakterisering av material baserade på kopparhalogenid-komplex

Tomita, Hiroki January 2021 (has links)
Energiförbrukning är ett hett ämne i världen idag, eftersom världens befolkning fortsätter att växa. Som ett resultat ökar också den globala energiförbrukningen snabbt och utsläppen av koldioxid därmed, vilket påverkar global uppvärmning och klimatförändringar. Således kommer utvecklingen av förnybara energikällor att bli en av nödvändighet. Solenergi utgör en förnybar energikälla och uppvisar en enorm potential för att tillgodose det globala energibehovet. En solcell är kan användas för att omvandla solljus till elektricitet. Många typer av solceller har utvecklats under det senaste decenniet, och forskning för att förbättra effektiviteten kommer att fortsätta i framtiden. Material baserade på kopparhalogenidkomplex har uppvisat intressanta optiska och elektrokemiska egenskaper på grund av flera laddningsöverföringsexciterade tillstånd. Genom att kombinera kopparhalogenidsystem med organiska ligander med två bindningsgrupper, kommer komplexet att kunna bilda nätverksstrukturer i flera dimensioner och därmed effektivt kunna leda ström. Eftersom kopparhalogenidkomplex uppvisar unika optiska och elektriska egenskaper, är det värt att undersöka dem för användning i solceller. Syftet med examensarbete har varit att undersöka kopparhalogenidkomplex med optiska och elektrokemiska egenskaper. Kopparhalogenidkomplex med bidentatligander har syntetiserats och applicera som tunna filmer undersöktes. I kapitel 1 och 2 av uppsatsen presenteras bakgrunden och en introduktion av denna studie, samt de experimentella metoderna. I kapitel 3 beskrivs syntesen av kopparjodid-4,4'-bipyridinkomplex och karakteriseringen av detsamma. Applicering av det resulterande materialet på glassubstrat diskuteras också. I kapitel 4 beskrivs syntesen av kopparhalogenid-N-oxid-4,4'-bipyridinkomplex med efterföljande karakterisering. I kapitel 5 undersöks metoder för att applicera kopparjodidpyridin på koppar-folie och FTO-belagda glassubstrat. / Energy consumption is presently a hot topic in the world since the world’s population continues to grow. As a result, global energy consumption is increasing rapidly and the emission of carbon dioxide is also increasing, which causes global warming and climate change. Thus, the development of renewable energy sources will be one of the solutions. Solar energy is one of the renewable energy sources and has a huge potential to satisfy the global energy demand. A solar cell harvests light and converts it to electricity. Many kinds of solar cells have been developed in the past decades, and investigation for the improvement of the efficiency will be continued in the future. Copper halide organic complex materials have some potential for optical and electrochemical properties due to several charge transfer states inside the structure. By combining copper halide with bidentate organic ligands, the complex will form high dimensional network structure and will have electrical property due to the formation of electron conducting paths. Since copper halide complex has potential for unique optical and electrical properties, it is worth investigating for the further photovoltaic application. The aim of the thesis is to investigate copper halide complex material showing optical and electrochemical property. Copper halide complex with bidentate ligands were synthesized and the way to apply copper halide complex to films were also investigated in this thesis. In chapter 1 and 2, the background and the introduction of this study and the experimental methods are presented. In chapter 3, the synthesis of copper iodide 4,4’-bipyridine complex and the characterization of the complex sample are presented. The application of the complex to glass substrate is also discussed. In chapter 4, the synthesis of copper halide N-oxide-4,4’-bipyridine complex and the characterization are discussed. In chapter 5, the way to apply copper iodide pyridine to copper foil and FTO-coated glass substrate is discussed.
397

Photochemistry of Copper Coordination Complexes / Fotokemi av kopparkoordinationskomplex

Blad, Amanda, Glisén, Helena, Ludvig, Filippa January 2021 (has links)
The United Nations have set a number of sustainability goals, Agenda 2030, in order to combat the worlds largest challenges and injustices. The energy market is one of these urgent issues which must be solved. Solar energy is expected to be the fastest growing energy source in the future energy mix. It can be a great way to provide zero emission energy and also become a key part in equality as it can provide energy to people who live off the grid today and raise quality of life all over the world. The aim of this study is to compare different ligands in a copper halide complex to conclude what structural properties of the ligand might be better suited for photoluminescent applications, and especially in solar cells. Eight ligands were chosen for the complexes depending on their level of conjugation: 4,4’-bipyridine, tri(o-tolyl)phosphine, 3,6-di-2-pyridyl-1,2,4,5-tetrazine, pyridine, pyrimidine, pyrazine, phenanthroline, and 2,2’-bipyridine. A series of analytical methods were used to compare the complexes properties; X-Ray diffraction, emission and excitation spectroscopy, time-resolved photoluminescence spectroscopy, microscopy and thermochromism. From these measurements, pyridine and pyrimidine proved to have the greatest potential for working in a solar cell. This was deduced because of the detected crystallinity, having luminescence under UV-light, forming distinct wavelength peaks during excitation and emission in the flourometer, having the longest excited state lifetime and and finally, emitting distinctive colours during thermochromism. When creating the solar cell, pyridine was chosen as ligand due to higher availability than pyrimidine. The method used in this project for making the solar cell is directly applied form a previously tested method, but which was designed for another type of electron donor. This project compared the different ways of applying the copper halide complex on to the cell. The methods used were spin-coating and SILAR for creating the copper iodide thin film and vapour diffusion and immersion to introduce the ligand. These four methods were combined systematically for all combinations. The solar cells were then put in a solar simulator where voltage, current, efficiency and fill factor was measured. The best results came form the solar cell where spin coating and immersion was used, though the overall efficiency of the created cells were low. Copper halide complexes in previous studies have been proven to be reactive with oxygen and the experiments in this project were not carried out in an inert environment. This could have had significant impact on the measurements, as reactions between the complexes and oxygen may have resulted in oxidation and thus inactivation of the complexes. Therefore, it would be interesting to conduct the syntheses again but instead in an inert environment to determine whether oxygen made a major impact on the measurements. In further studies, it would also be worthwhile to investigate how the different layers of the solar cell would have to be adapted for this particular complex to obtain higher efficiency and voltage. Also, making thin film of pyrimidine to be used in a solar cell as it showed the attributes required for a solar cell. Furthermore, it would be interesting to use derivatives of pyrimidine, such as uracil and cytosine which are abundant in nature, as they might be more sustainable choices. This is due to their inherent biodegradability and not posing a threat to either health or environment when handled.
398

Temperature Optimization and Internal Chemical Changes on Cathode Material During Solution Discharge Step in Lithium-Ion Battery Recycling / Temperaturoptimering och inre kemiska förändringar på katodmaterial under lösningsurladdningssteget vid återvinning av litiumjonbatteri

Karli, Berfu January 2021 (has links)
Sammanfattning på svenska: I nutiden, forskning och innovationer båda från akademi och industri försätter för att minska effekterna från klimatförändring. Ett av många viktiga område där utvecklingen fortsätter är litiumjonbatterier (LIB). På grund av den ökade energiförbrukningen i många områden (främst transporter) har ökat fossila bränsleförbrukningar och orsakat behovet av energi att lagras mer. Samhället kan inte bara fokusera på global miljövänlig batteriproduktion för att lösa detta problem. Samtidigt är det nödvändigt att koncentrera på hur man utvärderas begagnade batterierna som vi redan har. Återvinning av litiumjonbatterier har därför börjat få en ökad betydelse. Utmaningar för batteri återvinning är energi kravet för steg på processen och andra processer kan orsaka att skadliga ämnen släpps ut i naturen. Därför är det mycket viktigt att veta hur ett batteri påverkas av interna och externa förändringar från första till sista steget i återvinning och hur detta kommer att påverka de andra stegen. Detta examensarbete fokuserar på lösningsbaserade urladdningssteget i LIB-återvinning och syftar till att hitta den optimal temperatur genom att utforska möjliga förändringar som observerats på katodmaterialet. Inom ramen för projektet planerades temperaturoptimeringsstudien att göras genom att kombinera kemiska förändringar både inom och utanför batteriet i lösningsurladdningen. Detta är med en diskussion om särskilt fokus på att uppnå en hållbar återhämtning och kvaliteten på katodmaterialet. / In today's world, where global warming is felt in every sense, Research & Development (R&D) studies are continuing rapidly both in companies and in research networks to minimize its effects. One of the most important areas where developments continue is on lithium-ion batteries (LIBs). The increased energy consumption in many areas (mainly transportation), has increased fossil fuel consumption and caused the need for energy to be stored more. In this sense, focusing on only global-environmentally friendly battery production is insufficient to solve this problem. At the same time, it is necessary to concentrate on how to evaluate the used batteries that we already have. Therefore, lithium-ion battery recycling has begun to gain importance. Challenges for battery recycling are that some of the processes require energy inputs and others can generate harmful substances that require containment. Therefore, it is very important to know how a battery is affected by internal and external changes from the first to the last stage of recycling and how this will affect the other stages. This master thesis focuses on the solution discharge step in LIB recycling and aims to find the optimum temperature range for the discharge step of LIB recycling by exploration of the possible changes observed on the cathode material. In the scope of the project, the temperature optimization study was done by combining the chemical changes both inside and outside of the battery in the solution discharge. This is with a discussion of a particular focus on achieving a sustainable recovery and the quality of cathode material.
399

Optimering av process för tillverkning av protein-nanofibriller / Optimization of the process for the production of protein nanofibrils

Hidell, Jonna, Duvström, Anton, Labady, Kevin, Duru, Furkan Mikail January 2021 (has links)
Under flera månaders tid har ett kandidatexamensarbete utförts med syftet att optimera produktionen av protein-nanofibrer av vassleproteinisolat. Vassleproteinisolat består till stor del av proteinet β-laktoglobulin. Detta protein kan under upphettning bilda nanofibrer i sur miljö. Det var därför med avseende på parametrarna värme, koncentration och inkubationstid som processen optimerades eftersom det redan existerar ett pH-optimum vid pH-värdet 2. Lösningar av vassleproteinisolat med olika koncentrationer inkuberades under 24 timmar vid fyra olika temperaturer. Samtliga lösningar hade pH-värdet 2. För varje temperatur och inkubering togs proverna ut en åt gången för att sedan analyseras. De olika proverna analyserades sedan med Thioflavin T fluorescens för att se indikationer på fibrillering. De erhållna ThT spektrumen visade på fibrillbildning och resultaten för detta experiment visar på att utbytet av fibrilleringsreaktionen blir högre i takt med att hydrolysens hastighetskonstant blir lägre samt att lägre temperaturer kan gynna fibrillbildning . Ytterligare försök, tid och resurser bör läggas ner på detta område för att med säkerhet kunna optimera produktionen av nanofibrer av vassleproteinisolat. / This bachelor’s degree project’s aim was to optimize the production of protein nanofibrils originating from whey protein isolate. Whey protein isolate largely consists of the protein β-lactoglobulin, which can form nanofibrils while immersed in an acidic environment when heated. Therefore, the process was attempted to be optimized with regards to the yield of the final product of protein nanofibrils by varying parameters such as incubation time, initial concentration and temperature, with a constant pH-value of 2. Solutions of the whey protein isolate at different concentrations were incubated during a time interval of 24 hours and at different temperatures. For every temperature and time period of incubation, one sample at a time was taken out to be measured and analyzed, a total of four samples per initial concentration. The samples were analyzed with Thioflavin T fluorescence to see indications of the existence of fibrillation. The obtained ThT spectra showed intensity diagrams that can be related to the amount of formed nanofibrils, and this experiment shows that the yield of fibrils increases while the rate constant of the hydrolysis decreases, and that the fibrillation is favoured by lower temperatures. To optimize the production of nanofibrils of whey protein with certainty, further experiments, time and resources should be invested in this area.
400

Surfactant Driven Assembly of Freeze-casted, Polymer-derived Ceramic Nanoparticles on Grapehene Oxide Sheets for Lithium-ion Battery Anodes

Khater, Ali Zein 01 January 2018 (has links)
Traditional Lithium-Ion Batteries (LIBs) are a reliable and cost-efficient choice for energy storage. LIBs offer high energy density and low self-discharge. Recent developments in electric-based technologies push for replacing historically used Lead-Acid batteries with LIBs. However, LIBs do not yet meet the demands of modern technology. Silicon and graphene oxide (GO) have been identified as promising replacements to improve anode materials. Graphene oxide has a unique sheet-like structure that provides a mechanically stable, light weight material for LIB anodes. Due to its structure, reduced graphene oxide (rGO) is efficiently conductive and resistive to environmental changes. On the other hand, silicon-based anode materials offer the highest theoretical energy density and a high Li-ion loading capacity of various elements [20]. Silicon-based anodes that have previously been studied demonstrated extreme volumetric expansion over long cycles due to lithiation. Polysiloxane may be an interesting alternative as it is a Si-based material that can retain the high Li-ion loading capacity of Si while lacking the unattractive volumetric expansions of Si. Polymer derived ceramic-decorated graphene oxide anodes have been suggested to increase loading capacity, thermal resistance, power density, and mechanical stability of LIBs. Coupled with mechanically stable graphene oxide, polymer derived ceramic nanoparticle decorated graphene oxide anodes are studied to establish their efficiencies under operating conditions.

Page generated in 0.4959 seconds