• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 212
  • 46
  • 22
  • 17
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 641
  • 641
  • 322
  • 153
  • 123
  • 89
  • 88
  • 87
  • 83
  • 80
  • 61
  • 59
  • 51
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Le réseau Kondo à basse température: du liquide de Fermi au liquide de spin

Burdin, Sebastien 23 October 2001 (has links) (PDF)
Cette thèse est organisée autour d'une problématique centrale : l'étude théorique de l'effet Kondo dans les fermions lourds, lorsque les ions magnétiques sont en forte concentration.<br /><br />Dans une première partie, l'influence sur le réseau Kondo, d'une variation du nombre d'électrons de conduction est étudiée à basse température (problème de l'épuisement). Cet effet peut s'observer expérimentalement sur des composés de Cérium ou d'Uranium, dont la température de cohérence peut être bien plus petite que la température de Kondo à une impureté. Par des approches analytiques et numériques, le problème est résolu dans la limite ``grand-N'',<br />où N est le nombre de composantes du spin effectif. Alors que les modèles à une seule impureté sont caractérisés à basse température par une unique échelle d'énergie T_K, cette thèse confirme l'existence, pour le réseau Kondo, d'une deuxième échelle T*, caractéristique de l'apparition du comportement de liquide de Fermi, et définie à partir des propriétés physiques du système (thermodynamiques, magnétiques et de transport).<br /><br />Dans la deuxième partie, les effets du désordre et de la frustration magnétique du réseau Kondo sont étudiés analytiquement, dans le formalisme de la théorie du champ dynamique moyen, en considérant la limite ``grand-N''. Un point critique quantique (QCP) est obtenu, entre un régime de liquide de Fermi lourd et un régime de liquide de<br />spin. Les propriétés physiques du système sont calculées dans la phase Kondo, qui présente une très forte diminution de T* et de T_K à l'approche du QCP. Ce résultat est à corréler avec la forte masse effective observée expérimentalement pour le composé LiV$_{2}$O$_{4}$.<br /><br />Enfin, la troisième partie présente une étude préliminaire et les étapes principales du calcul permettant de déterminer numériquement le diagramme de phase magnétique du modèle d'Anderson périodique, par la méthode du champ dynamique moyen.
402

Etude non-perturbative de corrélateurs en QCD

Lokhov, Alexey 08 June 2006 (has links) (PDF)
Une étude non-perturbative des corélateurs en QCD est présentée. La méthode principale employée<br />est la simulation numérique sur réseau. Cet outil a été largement utilisé en phénoménologie,<br />mais il peut aussi servir pour étudier les paramètres fondamentaux de la théorie (tels que la<br />constante de couplage) et ses propriétés fondamentales. Ceci est le but principal de la présente<br />thèse. Nous avons étudié les fonctions de corrélation de la théorie Yang-Mills pure en jauge<br />de Landau, notamment les propagateurs du gluon et du fantôme. Nous nous sommes particulièrement<br />intéressés au paramètre LQCD qui est extrait à l'aide des prédictions de la théorie des<br />perturbations (jusqu'à l'ordre NNNLO). Les corrections dominantes en puissance sont aussi considérées,<br />nous montrons qu'elles sont importantes même à des énergies assez grandes (de l'ordre<br />de 10 GeV). Une méthode de soustraction de ces termes correctifs est proposée, ce qui permet<br />une meilleur estimation de LQCD. Notre résultat final est Lambda_nf_MSbar = 269(5)+12−9 MeV. Une autre<br />question que nous considéons est celle du comportement infrarouge des fonctions de Green (aux<br />énergies de l'ordre de ou inférieur à LQCD). A ces énergies le comportement des fonctions de<br />Green change de manière radicale, et cela est probablement lié au confinement. Nous cherchons<br />à clarifier la nature de ces changements afin de comprendre ses origines. Beaucoup de questions<br />se posent: l'ambigu¨té de Gribov, la portée de diverses relations non-perturbatives entre les<br />fonctions de Green, la cohéence de l'approche nuérique aux petites énergies. Les simulations<br />sur réseau permettent de vérifier les prédicitons analytiques, elles donnent accès aux corrélateurs<br />non-perturbatifs. Notre analyse suggère que le propagateur du gluon est fini et non nul dans<br />l'infrarouge, et que le comportement en puissance du propagateur du fanôme est le même que<br />dans le cas libre.
403

Yang-Mills Theory in Gauge-Invariant Variables and Geometric Formulation of Quantum Field Theories

Slizovskiy, Sergey January 2010 (has links)
In Part I we are dealing with effective description of Yang-Mills theories based on gauge-invarint variables. For pure Yang-Mills we study the spin-charge separation varibles. The dynamics in these variables resembles the Skyrme-Faddeev model. Thus the spin-charge separation is an important intermediate step between the fundamental Yang-Mills theory and the low-energy effective models, used to model the low-energy dynamics of gluons. Similar methods may be useful for describing the Electroweak sector of the Standard Model in terms of gauge-invariant field variables called supercurrents. We study the geometric structure of spin-charge separation in 4D Euclidean space (paper III) and elaborate onconnection with gravity toy model. Such reinterpretation gives a way to see how effective flat background metric is created in toy gravity model by studying the appearance of dimension-2 condensate in the Yang-Mills (paper IV). For Electroweak theory we derive the effective gauge-invariant Lagrangian by doing the Kaluza-Klein reduction of higher-dimensional gravity with 3-brane, thus making explicit the geometric interpretation for gauge-invariant supercurrents. The analogy is then made more precise in the framework of exact supergravity solutions. Thus, we interpret the Higgs effect as spontaneous breaking of Kaluza-Klein gauge symmetry and this leads to interpretation of Higgs field as a dilaton (papers I and II). In Part II of the thesis we study rather simple field theories, called “geometric” or “instantonic”. Their defining property is exact localization on finite-dimensional spaces – the moduli spaces of instantons. These theories allow to account exactly for non-linearity of space of fields, in this respect they go beyond the standard Gaussian perturbation theory. In paper V we show how to construct a geometric theory of chiral boson by embedding it into the geometric field theory. In Paper VI we elaborate on the simplest geometric field theory – the supersymmetric Quantum Mechanics and construct new non-perturbative topological observables that have a transparent meaning both in geometric and in the Hamiltonian formalisms. In Paper VII we are motivated by making perturbations away from the simple instantonic limit. For that we need to carefully define the observables that are quadratic in momenta and develop the way to compute them in geometric framework. These correspond geometrically to bivector fields (or, in general, the polyvector fields). We investigate the local limit of polyvector fields and compare the geometric calculation with free-field approach.
404

Singularities of two-point functions in Quantum Field Theory

Wrochna, Michal 16 August 2013 (has links)
No description available.
405

Une méthode d'éléments finis pour résoudre l'équation de Bloch-Torrey appliquée à l'imagerie par résonance magnétique de diffusion dans des tissus biologiques

Nguyen, Dang Van 07 March 2014 (has links) (PDF)
L'imagerie de résonance magnétique de diffusion (IRMD) est une technique d'imagerie non-invasive qui donne l'accès aux caractéristiques de diffusion de l'eau dans des tissus biologiques, notamment, dans le cerveau. Les restrictions que la structure cellulaire microscopique impose à la diffusion des molécules d'eau, sont agrégées statistiquement dans un mesurable signal d'IRMD macroscopique. L'inférence de la structure microscopique du tissu à partir du signal d'IRMD permet de détecter des régions pathologiques et d'observer les propriétés fonctionnelles du cerveau. A cet effet, il est important de mieux comprendre la relation entre la microstructure du tissu et le signal d'IRMD ce qui nécessite des nouvelles outils numériques capable de faire les calculs dans des géométries complexes modèles des tissus. Nous proposons une telle méthode numérique basée sur les éléments finis linéaires ce qui permet de décrire précisément des géométries complexes. La discrétisation par des éléments finis est couplée à la méthode adaptative des pas de temps de Runge-Kutta Chebyshev. Cette méthode qui assure la convergence du second ordre à la fois en temps et en espace, est implémentée sous la plateforme FeniCS C++. Nous utilisons aussi le générateur de maillage Salome pour travailler de manière efficace avec des géométries périodiques à plusieurs compartiments. Nous considérons quatre applications de la méthode pour étudier la diffusion dans des modèles à plusieurs compartiments. Dans la première application, nous étudions le comportement au temps long et démontrons la convergence d'un coefficient de diffusion apparent vers un tenseur de diffusion effectif obtenu par l'homogénéisation. La deuxième application vise à vérifier numériquement qu'un modèle à deux compartiments permet d'approximer le modèle à trois compartiments dans lequel le compartiment cellulaire et le compartiment extra-cellulaire sont complétés par un compartiment membranaire. La troisième application consiste à valider le modèle de Karger du signal d'IMRD macroscopique qui prend en compte l'échange entre compartiments. La dernière application se focalise sur le signal d'IMRD issu des neurones isoles. Nous proposons un modèle efficace unidimensionnel pour calculer le signal d'IRMD de manière précise dans un réseau des neurites de rayons variés. Nous testons la validité d'une expression semi-analytique du signal d'IRMD issu des réseaux de neurites.
406

A Covariant Natural Ultraviolet Cutoff in Inflationary Cosmology

Chatwin-Davies, Aidan January 2013 (has links)
In the field of quantum gravity, it is widely expected that some form of a minimum length scale, or ultraviolet cutoff, exists in nature. Recently, a new natural ultraviolet cutoff that is fully covariant was proposed. In the literature, most studies of ultraviolet cutoffs are concerned with Lorentz-violating ultraviolet cutoffs. The difficulty in making a minimum length cutoff covariant is rooted in the fact that any given length scale can be further Lorentz contracted. It was shown that this problem is avoided by the proposed covariant cutoff by allowing field modes with arbitrarily small wavelengths to still exist, albeit with exceedingly small, covariantly-determined bandwidths. In other words, the degrees of freedom of sub-Planckian modes in time are highly suppressed. The effects of this covariant ultraviolet cutoff on the kinematics of a scalar quantum field are well understood. There is much to learn, however, about the effects on a field’s dynamics. These effects are of great interest, as their presence may have direct observational consequences in cosmology. As such, this covariant ultraviolet cutoff offers the tantalizing prospect of experimental access to physics at the Planck scale. In cosmology, the energy scales that are probed by measurements of cosmic microwave background (CMB) statistics are the closest that we can get to the Planck scale. In particular, the statistics of the CMB encodes information about the quantum fluctuations of the scalar inflaton field. A measure of the strength of a field’s quantum fluctuations is in turn given by the magnitude of the field’s Feynman propagator. To this end, in this thesis I study how this covariant ultraviolet cutoff modifies the Feynman propagator of a scalar quantum field. In this work, I first calculate the cutoff Feynman propagator for a scalar field in flat spacetime, and then I address the cutoff Feynman propagator of a scalar field in curved spacetime. My studies culminate with an explicit calculation for the case of a power-law Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime. This last calculation is cosmologically significant, as power-law FLRW spacetime is a prototypical and realistic model for early-universe inflation. In preparation for studying the covariant cutoff on curved spacetime, I will review the necessary back- ground material as well as the kinematic influence of the covariant cutoff. I will also discuss several side results that I have obtained on scalar quantum field theories in spacetimes which possess a finite start time.
407

Aspects géométriques et intégrables des modèles de matrices aléatoires

Olivier, Marchal 21 December 2010 (has links) (PDF)
Cette thèse traite des aspects géométriques et d'intégrabilité associés aux modèles de matrices aléatoires. Son but est de présenter diverses applications des modèles de matrices aléatoires allant de la géométrie algébrique aux équations aux dérivées partielles des systèmes intégrables. Ces différentes applications permettent en particulier de montrer en quoi les modèles de matrices possèdent une grande richesse d'un point de vue mathématique. Ainsi, cette thèse abordera d'abord l'étude de la jonction de deux intervalles du support de la densité des valeurs propres au voisinage d'un point singulier. On montrera plus précisément en quoi ce régime limite particulier aboutit aux équations universelles de la hiérarchie de Painlevé II des systèmes intégrables. Ensuite, l'approche des polynômes (bi)-orthogonaux, introduite par Mehta pour le calcul des fonctions de partition, permettra d'énoncer des problèmes de Riemann-Hilbert et d'isomonodromies associés aux modèles de matrices, faisant ainsi le lien avec la théorie de Jimbo-Miwa-Ueno. On montrera en particulier que le cas des modèles à deux matrices hermitiens se transpose à un cas dégénéré de la théorie isomonodromique de Jimbo-Miwa-Ueno qui sera alors généralisé. La méthode des équations de boucles avec ses notions centrales de courbe spectrale et de développement topologique permettra quant à elle de faire le lien avec les invariants symplectiques de géométrie algébrique introduits récemment par Eynard et Orantin. Ce dernier point fera également l'objet d'une généralisation aux modèles de matrices non-hermitien ($\beta$ quelconque) ouvrant ainsi la voie à la ''géométrie algébrique quantique'' et à la généralisation de ces invariants symplectiques pour des courbes ''quantiques''. Enfin, une dernière partie sera consacrée aux liens étroits entre les modèles de matrices et les problèmes de combinatoire. En particulier, l'accent sera mis sur les aspects géométriques de la théorie des cordes topologiques avec la construction explicite d'un modèle de matrices aléatoires donnant le dénombrement des invariants de Gromov-Witten pour les variétés de Calabi-Yau toriques de dimension complexe trois utilisées en théorie des cordes topologiques.
408

Étude de la localisation pour des systèmes désordonnés sur un graphe quantique

Sabri, Mostafa 07 May 2014 (has links) (PDF)
Ce travail est consacré à l'étude de certaines propriétés spectrales des opérateurs de Schrödinger aléatoires. Il est divisé en deux parties : 1. Une étude de la localisation d'Anderson pour des systèmes multi-particules sur un graphe quantique. 2. Une formulation abstraite de quelques estimées de Wegner, suivie par une liste d'applications pour des modèles concrets. Au Chapitre 1 on essaie d'introduire les problèmes et les résultats de la thèse de façon élémentaire. La première partie occupe les chapitres 2 et 3. Le Chapitre 2 consiste essentiellement en notre article "Anderson Localization for a multi-particle quantum graph" [97] sur le sujet. Au Chapitre 3 on discute quelques propriétés supplémentaires du modèle, et on donne surtout des démonstrations alternatives de certains résultats du Chapitre 2. La deuxième partie occupe les chapitres 4 et 5. Le Chapitre 4 reproduit essentiellement notre article "Some abstract Wegner estimates with applications" [98]. Au Chapitre 5 on poursuit l'étude des estimées de Wegner, en donnant notamment quelques théorèmes abstraits supplémentaires dans la Section 5.2 et encore d'autres applications dans la Section 5.3. On conclut avec deux annexes A et B. Dans la première on expose de manière très détaillée les développements en fonctions propres généralisées. Dans l'Annexe B, on démontre quelques résultats classiques utilisés dans le texte.
409

Spectral Theory of Modular Operators for von Neumann Algebras and Related Inverse Problems

Boller, Stefan 28 November 2004 (has links) (PDF)
In dieser Arbeit werden die Modularobjekte zu zyklischen und separierenden Vektoren für von-Neumann-Algebren untersucht. Besondere Beachtung erfahren dabei die Modularoperatoren und deren Spektraleigenschaften. Diese Eigenschaften werden genutzt, um Klassifikationen für Lösungen einiger inverser Probleme der Modulartheorie anzugeben. Im ersten Teil der Arbeit wird zunächst der Zusammenhang zwischen dem zyklischen und separierenden Vektor und seinen Modularobjekten mit Hilfe (verallgemeinerter) Spurvektoren für halbendliche und Typ $III_{\lambda}$ Algebren ($0<\lambda<1$) näher untersucht. Diese Untersuchungen erlauben es, das Spektrum der Modularoperatoren für Typ $I$ Algebren anzugeben. Dazu werden die Begriffe {\em zentraler Eigenwert} und zentrale Vielfachheit eingeführt. Weiterhin ergibt sich, dass die Modularoperatoren durch ihre Spektraleigenschaften eindeutig charakterisiert sind. Modularoperatoren für Typ $I_{n}$ Algebren sind genau die $n$-zerlegbaren Operatoren, die multiplikatives, zentrales Spektrum vom Typ $I_{n}$ besitzen. ähnliche Ergebnisse werden auch für Typ $II$ und $III_{\lambda}$ Algebren gewonnen unter der Vorausetzung, dass die zugehörigen Vektoren diagonalisierbar sind. Im zweiten Teil der Arbeit werden diese Ergebnisse exemplarisch auf ein inverses Problem der Modulartheorie angewendet. Dabei stellt sich heraus, dass die Begriffe zentraler Eigenwert und zentrale Vielfachheit Invarianten des inversen Problems sind und eine vollständige Klassifizierung seiner Lösungen unter obigen Voraussetzungen erlauben. Außerdem wird eine Klasse von Modularoperatoren untersucht, für die das inversese Problem nur ein oder zwei Lösungsklassen besitzt. / In this work modular objects of cyclic and separating vectors for von~Neumann~algebras are considered. In particular, the modular operators and their spectral properties are investigated. These properties are used to classify the solutions of some inverse problems in modular theory. In the first part of the work the correspondence between cyclic and separating vectors and their modular objects are considered for semifinite and type $III_{\lambda}$ algebras ($0<\lambda<1$) in more detail, where (generalized) trace vectors are used. These considerations allow to compute the spectrum of modular operators for type $I$ algebras. To this end, the notions of central eigenvalue and central multiplicity are introduced. Furthermore, it is stated that modular operators are uniquely determined by their spectral properties. Modular operators for type $I_{n}$ algebras are exactly the $n$-decomposable operators, which possess {\em multiplicative central spectrum of type $I_{n}$}. Similar results are derived for type $II$ and $III_{\lambda}$ algebras under the assumption that the corresponding vectors are diagonalizable. In the second part of this work these results are applied to an inverse problem of modular theory. It comes out, that the central eigenvalues and central multiplicities are invariants of this inverse problem and that they give a complete classification of its solutions. Moreover, a class of modular operators is investigated, whose inverse problem possesses only one or two classes of solutions.
410

Modèles intégrables avec fonction twist et modèles de Gaudin affines / Integrable models with twist function and affine Gaudin models

Lacroix, Sylvain 04 July 2018 (has links)
Cette thèse a pour sujet une classe de théories des champs intégrables appelées modèles avec fonction twist. Les principaux exemples de tels modèles sont les modèles sigma non-linéaires intégrables, tel le Modèle Principal Chiral, et leurs déformations. Un premier résultat obtenu est la preuve que le modèle dit de Bi-Yang-Baxter, qui est une déformation à deux paramètres du Modèle Principal Chiral, est lui aussi un modèle avec fonction twist. Il est ensuite montré que les déformations de type Yang-Baxter modifient certaines symétries globales du modèle non déformé en symétries de Poisson-Lie. Un autre chapitre concerne la construction d'une infinité de charges locales en involution pour tous les modèles sigma intégrables et leurs déformations : ce résultat repose sur le formalisme général partagé par tous ces modèles en tant que théories des champs avec fonction twist.La seconde partie de la thèse a pour sujet les modèles de Gaudin. Ceux-ci sont des modèles intégrables associés à des algèbres de Lie. En particulier, les théories des champs avec fonction twist sont liées aux modèles de Gaudin associés à des algèbres de Lie affines. Une approche standard pour l'étude du spectre des modèles de Gaudin quantiques sur des algèbres finies est celle de Feigin-Frenkel-Reshetikhin. Dans cette thèse, des généralisations de cette approche sont conjecturées, motivées et testées. L'une d'elles concerne les modèles de Gaudin finis dits cyclotomiques. La seconde porte sur les modèles de Gaudin associés à des algèbres affines. / This thesis deals with a class of integrable field theories called models with twist function. The main examples of such models are integrable non-linear sigma models, such as the Principal Chiral Model, and their deformations. A first obtained result is the proof that the so-called Bi-Yang-Baxter model, which is a two-parameter deformation of the Principal Chiral Model, is also a model with twist function. It is then shown that Yang-Baxter type deformations modify certain global symmetries of the undeformed model into Poisson-Lie symmetries. Another chapter concerns the construction of an infinite number of local charges in involution for all integrable sigma models and their deformations: this result is based on the general formalism shared by all these models as field theories with twist function.The second part of the thesis concerns Gaudin models. These are integrable models associated with Lie algebras. In particular, field theories with twist function are related to Gaudin models associated with affine Lie algebras. A standard approach for studying the spectrum of quantum Gaudin models over finite algebras is the one of Feigin-Frenkel-Reshetikhin. In this thesis, generalisations of this approach are conjectured, motivated and tested. One of them deals with the so-called cyclotomic finite Gaudin models. The second one concerns the Gaudin models associated with affine Lie algebras.

Page generated in 0.1035 seconds