Spelling suggestions: "subject:"amathematical problem"" "subject:"dmathematical problem""
21 |
MIDDLE SCHOOL DEAF STUDENTS’ PROBLEM-SOLVING BEHAVIORS AND STRATEGY USELee, Chongmin 17 December 2010 (has links)
No description available.
|
22 |
Att introducera problemformulering i årskurs 4-6 / To introduce problem-posing in grades 4-6Rudnick, Kimberly January 2024 (has links)
Problemformulering, som ett arbetssätt inom matematikundervisning, har potentialen att förbättra elevernas problemlösningsförmåga, stimulera deras matematiska kreativitet och öka deras motivation. Trots detta har problemformulering inte fått särskilt mycket uppmärksamhet inom forsknings- eller skolvärlden i svensk skolkontext. Den här fallstudien fokuserar på att identifiera och överkomma utmaningar och kritiska aspekter när lärare introducerar problemformulering i matematikundervisningen för elever i årskurs 4-6. Frågeställningen i studien är: "Vilka utmaningar och kritiska aspekter finns när lärare introducerar arbetssättet problemformulering i matematikundervisning för elever i årskurs 4-6?". För att utforska detta användes tidigare forskning för att utforma ett teoretiskt ramverk, som sedan tillämpades för att analysera tre olika fall. Dessa fall bestod av klassrumsobservationer när problemformulering introducerades för eleverna, följt av intervjuer med de lärare som genomförde lektionerna. Resultaten visade att brist på erfarenhet hos både lärare och elever var en av de främsta utmaningarna vid introduceringen av problemformulering. Vidare visade resultaten att andra kritiska aspekter vid introduceringen; kreativitet, lösbarhet och svårighetsgrad, kan överkommas genom tydliga instruktioner och stöttning i form av scaffolding av läraren. / Problem-posing, a method within mathematics education, has the potential to enhance students' problem-solving abilities, stimulate their mathematical creativity, and increase their motivation. Despite this, problem-posing has not received a lot of attention within research nor education in Swedish school context. This case study focuses on identifying and overcoming challenges and critical aspects when teachers introduce problem-posing in mathematics education for students in grades 4-6. The research question of this study is: “What challenges and critical aspects arise when teachers introduce the method of problem-posing in mathematics education for students in grades 4-6?”. To explore this, previous research was utilized to design a theoretical framework, which was then applied to analyze three different cases. These cases consisted of classroom observations when problem-posing was introduced to the students, followed by interviews with the teachers who conducted the lessons. The results indicated that lack of experience for both the teacher and the students was one of the primary challenges in introducing problem-posing. Furthermore, the results showed that other critical aspects of the introduction; creativity, solvability, and level of difficulty, could be overcome through clear instructions and teacher support in the form of scaffolding.
|
23 |
Desempenho matemático, problemas matemáticos aditivos e memória de trabalho : um estudo com alunos de 4ª série do ensino fundamentalMachado, Rita de Cassia Madeira January 2010 (has links)
Este estudo analisa a relação entre desempenho matemático (DM), memória de trabalho (MT) e desempenho na resolução de problemas matemáticos aditivos (RPMV) em alunos de 4ª série do Ensino Fundamental. O objetivo desta dissertação justifica-se pela necessidade de compreender os processos cognitivos relacionados com a aprendizagem da matemática. Foram avaliadas 29 crianças de 4ª série do Ensino Fundamental de duas escolas estaduais, com 10 anos de idade. Aplicou-se a Prova de Aritmética (Capovilla, Montiel e Capovilla, 2007), para avaliar o desempenho matemático, uma tarefa de repetição de dígitos na ordem direta, para avaliar a memória de curto prazo (MCP) (Capelline, Smyte, 2008) e uma tarefa de repetição de dígitos ordem inversa para avaliar a memória de trabalho, (também de Capelline, Smyte, 2008). Aplicou-se ainda uma tarefa de resolução de problemas matemáticos verbais (aditivos) com diferentes posições da incógnita. Os dados foram analisados qualitativa e quantitativamente. Aplicou-se uma análise de correlação de Pearson entre as funções avaliadas DM, MT, MCP e RPMV. A técnica de Cluster separou a amostra total em dois grupos, um grupo com bom desempenho e um grupo com baixo desempenho. Posteriormente, aplicou-se o teste T de Studant para obter-se a diferença entre os grupos com bom e baixo desempenho em cada uma das funções avaliadas. As estratégias utilizadas na resolução de problemas foram analisadas qualitativamente, buscando comparar as estratégias utilizadas pelos alunos do grupo com bom desempenho com as estratégias utilizadas pelos alunos do grupo com baixo desempenho. Os resultados corroboram os dados da literatura, pois apresentaram correlações estatisticamente significativas entre as funções RPMV e MT, DM e MT e entre DM e RPMV. A maioria dos alunos com bom desempenho matemático apresentou bom desempenho na capacidade de memória de trabalho e na resolução de problemas matemáticos verbais. Os alunos com baixo desempenho matemático apresentaram baixo desempenho na capacidade de memória de trabalho e na resolução de problemas matemáticos verbais. Os grupos com bom e baixo desempenho diferiram especialmente na utilização de estratégias na resolução de problemas matemáticos. O grupo com bom desempenho demonstrou senso numérico mais desenvolvido, mais habilidades de contagem, menor uso de contagens imaturas e uma melhor compreensão das atividades. Os alunos do grupo com bom desempenho resolveram alguns problemas através da recuperação dos fatos básicos na memória de longo prazo. O grupo com baixo desempenho utilizou com mais freqüência estratégias imaturas de contagem, levou mais tempo para realizar as tarefas e necessitou da interação do pesquisador para compreender as tarefas de resolução de problemas matemáticos verbais. Todos os alunos com baixo desempenho demonstraram dificuldades para recuperar fatos básicos da memória de longo prazo (MLP). / This study examines the relationship between mathematical performance (MP) working memory (WM) and mathematical problem solving (MPSV) students in the 4th grade of elementary school. The objective of this thesis is justified by the need to understand the cognitive processes related to learning mathematics. We evaluated 29 children from the 4th elementary school's of two state schools, with 10 years of age. We applied the Arithmetic Test (Capovilla, Montiel & Capovilla, 2007), to evaluate the mathematical performance, task repetition of digits in forward order to assess the short-term memory (STM) (Capellini, Smyte, 2008) and a task repetition of digits in reverse order to assess working memory (also Capellini, Smyte, 2008). Applied also a task of problem-solving additives with different positions of the unknown. The data were analyzed qualitatively and quantitatively. We applied an analysis of Pearson correlation between the functions evaluated MP, WM, STM and MPSV. The technique of cluster separated the total sample into two groups, one group with good performance and a group with low performance. Subsequently, we applied the Student's t test for the difference between the groups with good and poor performance in each of the evaluated functions. The strategies used in problem solving were analyzed qualitatively, trying to compare the strategies used by students in the group with good performance with the strategies used by students in the group with low performance. The results corroborate the literature data, because it showed statistically significant correlations between the functions and MPSV and WM, MP and WM and between MP and MPSV. Most students with good mathematical performance showed good performance in the capacity of working memory and solve mathematical problems. Students with low mathematical performance showed a low performance in the capacity of working memory and solve mathematical problems. The groups with good and poor performance differed mainly in the use of strategies to solve mathematical problems. The group with good number sense performance showed more developed, counting skills, less use of immature scores and a better understanding of the activities. Students in the group with good performance solved some problems through the recovery of the basic facts in long-term memory. The group with low performance used more often immature counting strategies, took longer to perform the tasks and required the interaction of the researcher to understand the tasks of solving problems. All low-performing students showed difficulties in retrieving basic facts of long-term memory (LMT).
|
24 |
Investigating The Use Of Technology On Pre-service Elementary Mathematics TeachersKoyuncu, Ilhan 01 February 2013 (has links) (PDF)
The purpose of this study was to investigate plane geometry problem solving strategies of pre-service elementary mathematics teachers in technology and paper-and-pencil environments after receiving an instruction with GeoGebra. Qualitative research strategies were used to investigate teacher candidates&lsquo / solution strategies. The data was collected and analyzed by means of a multiple case study design. The study was carried out with 7 pre-service elementary mathematics teachers. The main data sources were classroom observations and interviews. After receiving a three-week instructional period, the participants experienced data collection sessions during a week. The data was analyzed by using records of the interviews, answers to the instrument, and transcribing and examining observation records. Results revealed that the participants developed three solution strategies: algebraic, geometric and harmonic. They used mostly algebraic solutions in paper-and-pencil environment and
v
geometric ones in technology environment. It means that different environments contribute separately pre-service teachers&lsquo / mathematical problem solving abilities. Different from traditional environments, technology contributed students&lsquo / mathematical understanding by means of dynamic features. In addition, pre-service teachers saved time, developed alternative strategies, constructed the figures precisely, visualized them easily, and measured accurately and quickly. The participants faced some technical difficulties in using the software at the beginning of the study but they overcome most of them at the end of instructional period. The results of this study has useful implications for mathematics teachers to use technology during their problem solving activities as educational community encourages to use technology in teaching and learning of mathematics.
|
25 |
A Study On Preservice Elementary Mathematics TeachersKayan, Fatma 01 January 2007 (has links) (PDF)
This study analyzes the kinds of beliefs pre-service elementary mathematics teachers hold about mathematical problem solving, and investigates whether, or not, gender and university attended have any significant effect on their problem solving beliefs. The sample of the present study consisted of 244 senior undergraduate students studying in Elementary Mathematics Teacher Education programs at 5 different universities located in Ankara, Bolu, and Samsun. Data were collected in spring semester of 2005-2006 academic years. Participants completed a survey composed of three parts as demographic information sheet, questionnaire items, and non-routine mathematics problems.
The results of the study showed that in general the pre-service elementary mathematics teachers indicated positive beliefs about mathematical problem solving. However, they still had several traditional beliefs related to the importance of computational skills in mathematics education, and following predetermined sequence of steps while solving problems. Moreover, a number of pre-service teachers appeared to highly value problems that are directly related to the mathematics curriculum, and do not require spending too much time. Also, it was found that although the pre-service teachers theoretically appreciated the importance and role of the technology while solving problems, this belief was not apparent in their comments about non-routine problems. In addition to these, the present study indicated that female and male pre-service teachers did not differ in terms of their beliefs about mathematical problem solving. However, the pre-service teachers&rsquo / beliefs showed significant difference when the universities attended was concerned.
|
26 |
Fundamentos teóricos do método de resolução de problemas ampliados /Bergamo, Geraldo Antonio. January 2006 (has links)
Orientador: Sueli Terezinha Ferreira Martins / Banca: Itacy Salgado Basso / Banca: Nereide Saviani / Banca: José Misael Ferreira do Vale / Banca: Adil Poloni / Resumo: Este trabalho trata da fundamentação teórica do Método de Resolução de Problemas Ampliados (MRPA), que foi elaborado para a disciplina Matemática no Ensino Básico e trabalhado na Faculdade de Ciências/UNESP, no período 2000-2002, em cursos para professores de matemática. A partir de um aporte teórico inicial, foi reformulado conforme os professores relatavam aplicações em suas salas de aula. O MRPA visa uma educação emancipadora e propõe um tratamento "não-internalista" para a disciplina. Concebe os enunciados de matemática constituídos num campo semântico e amplia o significado dos conceitos, através de relações de similitude ou contraste, para os campos social, político e econômico. Na prática, parte de enunciados típicos de problemas escolares de matemática e amplia esses enunciados com questões dos outros campos. A fundamentação teórica principia com uma exposição sintética do materialismo histórico e dialético. Procede a uma caracterização do movimento dialético das categorias e apresenta uma maneira do método marxista, bem como das categorias do materialismo histórico e dialético, ser aplicado em Educação, trabalhando com as categorias produção de conhecimento e produção de conhecimento escolar enquanto formas particulares da produçao em geral. A escola existente é caracterizada como instituição social de potenciação... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This study is about the theoretical foundations of the Método de Resolução de Problemas Ampliados - MRPA (Broadened Problem Solving Method), developed and applied in the course Mathematics in Elementary Education, proffered to mathematics teachers at the State University of São Paulo (UNESP) in the period from 2000 to 2002. The theoretical base that formed the starting point for the study was reformulated over the course of the study to reflect the teacher's reports of their own experiences when applying the method in the classroom. The MRPA involves a view of education as emancipatory, and proposes a "non-internalistic" approach for the course. Mathematical enunciations are conceived of as being constituted within a semantic field, and the meaning of the concepts is broadened, through their relations of similarity and contrast, to the social, political, and economic spheres. In practice, one begins with mathematical statements used in the school and broadens them by introducing questions... (Complete abstract, click electronic access below) / Doutor
|
27 |
Desempenho matemático, problemas matemáticos aditivos e memória de trabalho : um estudo com alunos de 4ª série do ensino fundamentalMachado, Rita de Cassia Madeira January 2010 (has links)
Este estudo analisa a relação entre desempenho matemático (DM), memória de trabalho (MT) e desempenho na resolução de problemas matemáticos aditivos (RPMV) em alunos de 4ª série do Ensino Fundamental. O objetivo desta dissertação justifica-se pela necessidade de compreender os processos cognitivos relacionados com a aprendizagem da matemática. Foram avaliadas 29 crianças de 4ª série do Ensino Fundamental de duas escolas estaduais, com 10 anos de idade. Aplicou-se a Prova de Aritmética (Capovilla, Montiel e Capovilla, 2007), para avaliar o desempenho matemático, uma tarefa de repetição de dígitos na ordem direta, para avaliar a memória de curto prazo (MCP) (Capelline, Smyte, 2008) e uma tarefa de repetição de dígitos ordem inversa para avaliar a memória de trabalho, (também de Capelline, Smyte, 2008). Aplicou-se ainda uma tarefa de resolução de problemas matemáticos verbais (aditivos) com diferentes posições da incógnita. Os dados foram analisados qualitativa e quantitativamente. Aplicou-se uma análise de correlação de Pearson entre as funções avaliadas DM, MT, MCP e RPMV. A técnica de Cluster separou a amostra total em dois grupos, um grupo com bom desempenho e um grupo com baixo desempenho. Posteriormente, aplicou-se o teste T de Studant para obter-se a diferença entre os grupos com bom e baixo desempenho em cada uma das funções avaliadas. As estratégias utilizadas na resolução de problemas foram analisadas qualitativamente, buscando comparar as estratégias utilizadas pelos alunos do grupo com bom desempenho com as estratégias utilizadas pelos alunos do grupo com baixo desempenho. Os resultados corroboram os dados da literatura, pois apresentaram correlações estatisticamente significativas entre as funções RPMV e MT, DM e MT e entre DM e RPMV. A maioria dos alunos com bom desempenho matemático apresentou bom desempenho na capacidade de memória de trabalho e na resolução de problemas matemáticos verbais. Os alunos com baixo desempenho matemático apresentaram baixo desempenho na capacidade de memória de trabalho e na resolução de problemas matemáticos verbais. Os grupos com bom e baixo desempenho diferiram especialmente na utilização de estratégias na resolução de problemas matemáticos. O grupo com bom desempenho demonstrou senso numérico mais desenvolvido, mais habilidades de contagem, menor uso de contagens imaturas e uma melhor compreensão das atividades. Os alunos do grupo com bom desempenho resolveram alguns problemas através da recuperação dos fatos básicos na memória de longo prazo. O grupo com baixo desempenho utilizou com mais freqüência estratégias imaturas de contagem, levou mais tempo para realizar as tarefas e necessitou da interação do pesquisador para compreender as tarefas de resolução de problemas matemáticos verbais. Todos os alunos com baixo desempenho demonstraram dificuldades para recuperar fatos básicos da memória de longo prazo (MLP). / This study examines the relationship between mathematical performance (MP) working memory (WM) and mathematical problem solving (MPSV) students in the 4th grade of elementary school. The objective of this thesis is justified by the need to understand the cognitive processes related to learning mathematics. We evaluated 29 children from the 4th elementary school's of two state schools, with 10 years of age. We applied the Arithmetic Test (Capovilla, Montiel & Capovilla, 2007), to evaluate the mathematical performance, task repetition of digits in forward order to assess the short-term memory (STM) (Capellini, Smyte, 2008) and a task repetition of digits in reverse order to assess working memory (also Capellini, Smyte, 2008). Applied also a task of problem-solving additives with different positions of the unknown. The data were analyzed qualitatively and quantitatively. We applied an analysis of Pearson correlation between the functions evaluated MP, WM, STM and MPSV. The technique of cluster separated the total sample into two groups, one group with good performance and a group with low performance. Subsequently, we applied the Student's t test for the difference between the groups with good and poor performance in each of the evaluated functions. The strategies used in problem solving were analyzed qualitatively, trying to compare the strategies used by students in the group with good performance with the strategies used by students in the group with low performance. The results corroborate the literature data, because it showed statistically significant correlations between the functions and MPSV and WM, MP and WM and between MP and MPSV. Most students with good mathematical performance showed good performance in the capacity of working memory and solve mathematical problems. Students with low mathematical performance showed a low performance in the capacity of working memory and solve mathematical problems. The groups with good and poor performance differed mainly in the use of strategies to solve mathematical problems. The group with good number sense performance showed more developed, counting skills, less use of immature scores and a better understanding of the activities. Students in the group with good performance solved some problems through the recovery of the basic facts in long-term memory. The group with low performance used more often immature counting strategies, took longer to perform the tasks and required the interaction of the researcher to understand the tasks of solving problems. All low-performing students showed difficulties in retrieving basic facts of long-term memory (LMT).
|
28 |
Desempenho matemático, problemas matemáticos aditivos e memória de trabalho : um estudo com alunos de 4ª série do ensino fundamentalMachado, Rita de Cassia Madeira January 2010 (has links)
Este estudo analisa a relação entre desempenho matemático (DM), memória de trabalho (MT) e desempenho na resolução de problemas matemáticos aditivos (RPMV) em alunos de 4ª série do Ensino Fundamental. O objetivo desta dissertação justifica-se pela necessidade de compreender os processos cognitivos relacionados com a aprendizagem da matemática. Foram avaliadas 29 crianças de 4ª série do Ensino Fundamental de duas escolas estaduais, com 10 anos de idade. Aplicou-se a Prova de Aritmética (Capovilla, Montiel e Capovilla, 2007), para avaliar o desempenho matemático, uma tarefa de repetição de dígitos na ordem direta, para avaliar a memória de curto prazo (MCP) (Capelline, Smyte, 2008) e uma tarefa de repetição de dígitos ordem inversa para avaliar a memória de trabalho, (também de Capelline, Smyte, 2008). Aplicou-se ainda uma tarefa de resolução de problemas matemáticos verbais (aditivos) com diferentes posições da incógnita. Os dados foram analisados qualitativa e quantitativamente. Aplicou-se uma análise de correlação de Pearson entre as funções avaliadas DM, MT, MCP e RPMV. A técnica de Cluster separou a amostra total em dois grupos, um grupo com bom desempenho e um grupo com baixo desempenho. Posteriormente, aplicou-se o teste T de Studant para obter-se a diferença entre os grupos com bom e baixo desempenho em cada uma das funções avaliadas. As estratégias utilizadas na resolução de problemas foram analisadas qualitativamente, buscando comparar as estratégias utilizadas pelos alunos do grupo com bom desempenho com as estratégias utilizadas pelos alunos do grupo com baixo desempenho. Os resultados corroboram os dados da literatura, pois apresentaram correlações estatisticamente significativas entre as funções RPMV e MT, DM e MT e entre DM e RPMV. A maioria dos alunos com bom desempenho matemático apresentou bom desempenho na capacidade de memória de trabalho e na resolução de problemas matemáticos verbais. Os alunos com baixo desempenho matemático apresentaram baixo desempenho na capacidade de memória de trabalho e na resolução de problemas matemáticos verbais. Os grupos com bom e baixo desempenho diferiram especialmente na utilização de estratégias na resolução de problemas matemáticos. O grupo com bom desempenho demonstrou senso numérico mais desenvolvido, mais habilidades de contagem, menor uso de contagens imaturas e uma melhor compreensão das atividades. Os alunos do grupo com bom desempenho resolveram alguns problemas através da recuperação dos fatos básicos na memória de longo prazo. O grupo com baixo desempenho utilizou com mais freqüência estratégias imaturas de contagem, levou mais tempo para realizar as tarefas e necessitou da interação do pesquisador para compreender as tarefas de resolução de problemas matemáticos verbais. Todos os alunos com baixo desempenho demonstraram dificuldades para recuperar fatos básicos da memória de longo prazo (MLP). / This study examines the relationship between mathematical performance (MP) working memory (WM) and mathematical problem solving (MPSV) students in the 4th grade of elementary school. The objective of this thesis is justified by the need to understand the cognitive processes related to learning mathematics. We evaluated 29 children from the 4th elementary school's of two state schools, with 10 years of age. We applied the Arithmetic Test (Capovilla, Montiel & Capovilla, 2007), to evaluate the mathematical performance, task repetition of digits in forward order to assess the short-term memory (STM) (Capellini, Smyte, 2008) and a task repetition of digits in reverse order to assess working memory (also Capellini, Smyte, 2008). Applied also a task of problem-solving additives with different positions of the unknown. The data were analyzed qualitatively and quantitatively. We applied an analysis of Pearson correlation between the functions evaluated MP, WM, STM and MPSV. The technique of cluster separated the total sample into two groups, one group with good performance and a group with low performance. Subsequently, we applied the Student's t test for the difference between the groups with good and poor performance in each of the evaluated functions. The strategies used in problem solving were analyzed qualitatively, trying to compare the strategies used by students in the group with good performance with the strategies used by students in the group with low performance. The results corroborate the literature data, because it showed statistically significant correlations between the functions and MPSV and WM, MP and WM and between MP and MPSV. Most students with good mathematical performance showed good performance in the capacity of working memory and solve mathematical problems. Students with low mathematical performance showed a low performance in the capacity of working memory and solve mathematical problems. The groups with good and poor performance differed mainly in the use of strategies to solve mathematical problems. The group with good number sense performance showed more developed, counting skills, less use of immature scores and a better understanding of the activities. Students in the group with good performance solved some problems through the recovery of the basic facts in long-term memory. The group with low performance used more often immature counting strategies, took longer to perform the tasks and required the interaction of the researcher to understand the tasks of solving problems. All low-performing students showed difficulties in retrieving basic facts of long-term memory (LMT).
|
29 |
Metacognition in group problem solving—a quest for socially shared metacognitionHurme, T.-R. (Tarja-Riitta) 14 September 2010 (has links)
Abstract
The aim of this study was to explore metacognition, specifically socially shared metacognition within computer-supported collaborative problem solving. Another aim of this study was to find methodological solutions for uncovering how metacognition becomes visible and shared in group problem solving in a text-based and asynchronous learning environment.
During this dissertation study, two empirical experiments were performed. Participants in the first experiment were secondary school students (N=16) who worked with the Knowledge Forum (KF) learning environment. In the second experiment, triads of pre-service teachers’ (N=18) problem solving was supported by the Workmates (WM) learning environment. The data of this study consist of discussion forum data, self-report questionnaires, and individual’s feeling of difficulty graphs. In the data analysis, quantitative and qualitative research methods, along with individual and group level analyses, were combined to provide a deeper understanding of the phenomena being studied. A qualitative content analysis of the computer notes at the cognitive, metacognitive and social level were first analysed at the individual level, which made visible individual thinking and characterized the nature of the online discussions. In the interpretation phase, the categorizations were interpreted as group level processes in order to examine the contextual development of collaborative problem solving. To accomplish this, a process-oriented graph of group problem solving was developed. Further, to understand how socially shared metacognition in group problem solving can be related to individual metacognition, especially metacognitive experiences, group members’ individual feelings of difficulty were combined with the results of the discussion forum data.
The results of this study show that the process of socially shared metacognition is a differentiator in the success of a group’s mathematical problem solving. Socially shared metacognition requires that group members participate in joint problem solving intentionally and reciprocally, acknowledge each other’s thinking and develop their ideas further. In other words, the process of socially shared metacognition has intention to steering the discussion rather than exchanging ideas about possible ways to solve the tasks. Further, the results of this study suggest that if the process of socially shared metacognition emerges, then the most of students will be able to reduce their feelings of difficulty. The results of this study suggest that socially shared metacognition is a complex and extra-ordinary group-level phenomenon. Socially shared metacognition could become more visible if participants focus on analysing the task and verifying the process as well as the outcome of the problem solving instead of exploring and implementing various unelaborated solution efforts. While socially shared metacognition fosters success in group problem solving, it also helps individual’s thinking grow as a part of the group. / Tiivistelmä
Tässä tutkimuksessa selvitetään metakognition, erityisesti sosiaalisesti jaetun metakognition, ilmenemistä tietokoneavusteisessa yhteisöllisessä matematiikan ongelmanratkaisussa. Tutkimuksen tavoitteena on myös kehittää aineiston analysointimenetelmiä metakognition ja erityisesti sosiaalisesti jaetun metakognition tutkimiseksi.
Tutkimus koostuu kahdesta empiirisestä osatutkimuksesta. Ensimmäisessä tutkimuksessa koehenkilöinä olivat erään perusasteen yläkoulun seitsemännen luokan suomalaiset oppilaat. Toisessa tutkimuksessa koehenkilöinä toimivat ensimmäisen vuosikurssin suomalaiset luokanopettajaopiskelijat. Molemmissa tutkimuksissa yhteisöllisen ongelmanratkaisuprosessin tukena käytettiin tekstipohjaiseen, eriaikaiseen vuorovaikutukseen perustuvia oppimisympäristöjä: Knowledge Forumia ja Työporukkaa (engl. WorkMates, WM). Tutkimusaineisto koostuu verkkokeskustelukommenteista, kyselylomakkeista sekä ongelmanratkaisutehtävän jälkeen piirretyistä graafeista, jotka ilmentävät tehtävän aikana koettua vaikeuden tunnetta.
Ongelmanratkaisuprosessia kuvaavassa analyysissa yhdistetään sekä kvalitatiivisia että kvantitatiivisia menetelmiä sosiaalisesti jaetun metakognition tutkimiseksi. Verkkokeskusteluaineistoa analysoidaan yksilötasolla kvalitatiivisen sisällönanalyysin periaatteiden mukaisesti. Osallistujien tallentamat verkkokeskustelukommentit on luokiteltu kognitiivisiksi, metakognitiivisiksi tai sosiaalisiksi viesteiksi. Viestien sisällön tulkinta perustuu ainoastaan kirjoitettuun tekstiin eikä osallistujien ajatteluun viestien taustalla. Verkkokeskusteluaineistoa tulkitaan ryhmätasolla erilaisten visualisointimenetelmien, kuten sosiaalisen verkostoanalyysin ja ryhmän ongelmanratkaisua kuvaavan graafin, avulla. Sosiaalisesti jaetun metakognition yhteyttä yksilön metakognitioon, erityisesti tehtävään liittyvään vaikeuden tunteeseen, tutkitaan ryhmän ongelmanratkaisua kuvaavien graafien, verkkokeskustelukommenttien ja ongelmanratkaisutehtävän jälkeen piirrettyjen tehtävän aikana koettua vaikeutta kuvaavien graafien avulla.
Sosiaalisesti jaettua metakognitiota ei ilmene yleisesti ryhmän ongelmanratkaisussa. Tähän vaikuttaa muun muassa se, ettei ryhmissä kiinnitetä huomiota tehtävänantoon ja saadun ratkaisun oikeellisuuteen, vaan pääpaino ongelmanratkaisussa on ratkaisumenetelmien etsimisessä ja esitettyjen ehdotusten toteuttamisessa. Tämän tutkimuksen tulokset kuitenkin osoittavat, että sosiaalisesti jaettu metakognitio on ilmiönä monitahoinen. Tulosten perusteella sosiaalisesti jaettu metakognitio on myös tärkeä tekijä ryhmän ongelmanratkaisussa. Onnistuneessa ongelmanratkaisussa ryhmän jäsenet sitoutuvat yhteiseen prosessiin ja toimivat vastavuoroisesti perustellen esittämänsä ajatukset sekä huomioiden ratkaisun kannalta tärkeät kysymykset ja ratkaisuehdotukset. Tällöin on mahdollista, että sosiaalisesti jaettu metakognitio vähentää useimpien ryhmän jäsenten kokemaa vaikeuden tunnetta.
Sosiaalisesti jaetulla metakognitiolla näyttää olevan tärkeä tehtävä paitsi ryhmän myös yksilön ajattelussa.
|
30 |
INVESTIGATING THE ADULT LEARNERS’ EXPRERIENCE WHEN SOLVING MATHEMATICAL WORD PROBLEMSBrook, Ellen 13 May 2014 (has links)
No description available.
|
Page generated in 0.1672 seconds