• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 39
  • 20
  • 13
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

O potencial heurístico dos três problemas clássicos da matemática grega / The heuristic potential of the three classical problems of Greek mathematics

Gervázio, Suemilton Nunes 15 December 2015 (has links)
Este trabalho consiste em uma pesquisa acerca da análise do potencial heurístico resultado da não solução dos três problemas clássicos da matemática grega, via regra do uso exclusivo do compasso e da régua não graduada. Para uma melhor compreensão deste potencial, apresentaremos o histórico de tais problemas, fazendo posteriormente uma síntese geral sobre as principais concepções de filósofos e matemáticos sobre Heurística. Em seguida, demonstraremos algumas soluções alternativas para estes problemas, identificando nelas processos heurísticos. Finalmente introduziremos tais processos na resolução de problemas matemáticos, acompanhadas de possíveis implicações pedagógicas para o ensino dessa ciência. / This work consists of research about the potential of heuristic analysis result of no solution of the three classical problems of Greek mathematics, via rule of exclusive use of the compass and no graduated scale. For a better understanding of this potential, it presents the history of such problems, then making a general overview about the main ideas of philosophers and mathematicians on Heuristics. Then we demonstrate some alternative solutions to these problems, identifying them heuristic processes. Finally we introduce such processes in mathematical problem solving, accompanied by possible pedagogical implications for the teaching of science.
32

O potencial heurístico dos três problemas clássicos da matemática grega / The heuristic potential of the three classical problems of Greek mathematics

Suemilton Nunes Gervázio 15 December 2015 (has links)
Este trabalho consiste em uma pesquisa acerca da análise do potencial heurístico resultado da não solução dos três problemas clássicos da matemática grega, via regra do uso exclusivo do compasso e da régua não graduada. Para uma melhor compreensão deste potencial, apresentaremos o histórico de tais problemas, fazendo posteriormente uma síntese geral sobre as principais concepções de filósofos e matemáticos sobre Heurística. Em seguida, demonstraremos algumas soluções alternativas para estes problemas, identificando nelas processos heurísticos. Finalmente introduziremos tais processos na resolução de problemas matemáticos, acompanhadas de possíveis implicações pedagógicas para o ensino dessa ciência. / This work consists of research about the potential of heuristic analysis result of no solution of the three classical problems of Greek mathematics, via rule of exclusive use of the compass and no graduated scale. For a better understanding of this potential, it presents the history of such problems, then making a general overview about the main ideas of philosophers and mathematicians on Heuristics. Then we demonstrate some alternative solutions to these problems, identifying them heuristic processes. Finally we introduce such processes in mathematical problem solving, accompanied by possible pedagogical implications for the teaching of science.
33

擴散性思考、數學問題發現與學業成就的關係 / The Relationships Between Divergent Thinking, Mathematical Problem Finding, and Mathematical Achievement

邵惠靖, Shao, Hui-Ching Unknown Date (has links)
本研究先藉由文獻分析法瞭解擴散性思考、數學問題發現與數學學業成就三者的內涵,繼而依據它們的內涵並佐以學習、問題解決的角度,建立起三者間關係的假設,並透過實證調查研究法來驗證這些假設。本研究之研究對象為台北縣市五所國中的318位國三學生,研究工具為「新編創造思考測驗」、「數學問題發現測驗」、「第一次數學科基本學力測驗」,並以次數統計、集群分析、相關分析、變異數分析、逐步迴歸分析進行資料分析。本研究主要的研究結果如下: 一、學生能夠發現各種思考產物類型與數學類型的問題。其中,關係性問題與發現性問題最多人提出,而單位性、類別性與驗證性問題則較少人提出。 二、學生的數學問題發現型態有個別差異。 三、擴散性思考與數學問題發現間為顯著中低度相關。 四、擴散性思考與數學學業成就多為顯著中低度相關。 五、數學問題發現與數學學業成就間為顯著中低度相關。 六、能問大量且層次高數學問題的學生其數學學業成就比較不會問數學問題的學生為佳。 七、擴散性思考之流暢力、數學學業成就、擴散性思考之變通力可以有效預測數學問題發現之問題數。 八、擴散性思考之流暢力、數學學業成就、擴散性思考之變通力可以有效預測數學問題發現之問題獨特性。 九、數學學業成就與擴散性思考之流暢力可以有效預測數學問題發現之問題品質。 十、數學問題發現之問題品質、數學問題發現之問題數可以有效預測數學學業成就。 本研究最後針對數學教育以及未來研究提出若干具體建議。 / First, this study probed into the contents of divergent thinking, mathematical problem finding, and mathematical achievement by literature review. Then the researcher made hypotheses of the relationships between divergent thinking, mathematical problem finding, and mathematical achievement based on the contents of them and the views of learning and problem solving, and designed survey research to examine these hypotheses. The subjects were 318 9th grade students from five junior high schools in Taipei county and Taipei city. The data- collection instruments included:(a) New Creativity Test; (b) Mathematical Problem Finding Test; (c) Basic Educational Indicator Tests of Mathematics. After utilizing frequency, cluster analysis, correlation analysis, ANOVA, and stepwise regression, the main results of this investigation are:(a) Students can find problems of all kinds of intellectual products and mathematics. Among them, problems of relations and problems to find were found most and problems of units and classes and problems to prove were found least ; (b) There are individual differences between mathematical problem finding styles; (c) The correlations between divergent thinking and mathematical problem finding are significantly positive; (d) Most of the correlations between divergent thinking and mathematical achievement are significantly positive; (e) The correlations between mathematical problem finding and mathematical achievement are significantly positive; (f) Students who can finds many high-level problems have higher mathematical achievement than those who can not; (g) Fluency of divergent thinking, mathematical achievement, and flexibility of divergent thinking can be used to predict the number of problems of mathematical problem finding effectively; (h) Fluency of divergent thinking, mathematical achievement, and flexibility of divergent thinking can be used to predict the rarity of problems of mathematical problem finding effectively; (i) Mathematical achievement and fluency of divergent thinking can be used to predict the quality of problems of mathematical problem finding effectively; (j) The quality of problems and the number of problems can be used to predict mathematical achievement effectively. Finally, the researcher brings up some suggestions on mathematical education and the future research.
34

Fundamentos teóricos do método de resolução de problemas ampliados

Bergamo, Geraldo Antonio [UNESP] 23 June 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:40Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-06-23Bitstream added on 2014-06-13T20:22:40Z : No. of bitstreams: 1 bergamo_ga_dr_bauru.pdf: 825872 bytes, checksum: d3ab2d8147131b1965b7c40817cb9e35 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho trata da fundamentação teórica do Método de Resolução de Problemas Ampliados (MRPA), que foi elaborado para a disciplina Matemática no Ensino Básico e trabalhado na Faculdade de Ciências/UNESP, no período 2000-2002, em cursos para professores de matemática. A partir de um aporte teórico inicial, foi reformulado conforme os professores relatavam aplicações em suas salas de aula. O MRPA visa uma educação emancipadora e propõe um tratamento não-internalista para a disciplina. Concebe os enunciados de matemática constituídos num campo semântico e amplia o significado dos conceitos, através de relações de similitude ou contraste, para os campos social, político e econômico. Na prática, parte de enunciados típicos de problemas escolares de matemática e amplia esses enunciados com questões dos outros campos. A fundamentação teórica principia com uma exposição sintética do materialismo histórico e dialético. Procede a uma caracterização do movimento dialético das categorias e apresenta uma maneira do método marxista, bem como das categorias do materialismo histórico e dialético, ser aplicado em Educação, trabalhando com as categorias produção de conhecimento e produção de conhecimento escolar enquanto formas particulares da produçao em geral. A escola existente é caracterizada como instituição social de potenciação... / This study is about the theoretical foundations of the Método de Resolução de Problemas Ampliados - MRPA (Broadened Problem Solving Method), developed and applied in the course Mathematics in Elementary Education, proffered to mathematics teachers at the State University of São Paulo (UNESP) in the period from 2000 to 2002. The theoretical base that formed the starting point for the study was reformulated over the course of the study to reflect the teacher's reports of their own experiences when applying the method in the classroom. The MRPA involves a view of education as emancipatory, and proposes a non-internalistic approach for the course. Mathematical enunciations are conceived of as being constituted within a semantic field, and the meaning of the concepts is broadened, through their relations of similarity and contrast, to the social, political, and economic spheres. In practice, one begins with mathematical statements used in the school and broadens them by introducing questions... (Complete abstract, click electronic access below)
35

Relevante mathematische Kompetenzen von Ingenieurstudierenden im ersten Studienjahr - Ergebnisse einer empirischen Untersuchung

Lehmann, Malte 31 July 2018 (has links)
Fehlende Kompetenzen in Mathematik und Naturwissenschaften werden von Studierenden als ein Grund für den Studienabbruch in Ingenieurwissenschaften angegeben (Heublein et al., 2017). Welche Kompetenzen für Studierende zu Beginn des Ingenieurstudiums relevant sind, ist jedoch bisher wenig empirisch untersucht. Das Ziel der vorliegenden Studie ist, relevante mathematische Kompetenzen von Ingenieurstudierenden zu analysieren und dabei sowohl Wissensbestände als auch die Anwendung von Wissen und die Zusammenhänge zwischen beiden Bereichen zu berücksichtigen. Dazu wurde eine Studie im Mixed-Methods Design entwickelt. In dieser werden die Studierenden hinsichtlich ihrer Dispositionen in Mathematik und Physik zu Beginn des Studiums und am Ende des ersten Studienjahres mit quantitativen Methoden getestet. Zu diesen beiden und einem weiteren Zeitpunkt am Ende des ersten Semesters wurden zudem die situationsspezifischen Fähigkeiten bei der Bearbeitung von Mathematik- und Physikaufgaben mit Hilfe eines theoretischen Rahmens zum mathematischen Problemlösen mit qualitativen Methoden untersucht. Dieser Theorierahmen umfasste für die Mathematikaufgaben die Aspekte Heurismen (Bruder & Collet, 2011; Schoenfeld, 1980) und Problemlösephasen (Polya, 1957) sowie das Modell der Epistemic Games (Tuminaro, 2004) zur Analyse der Bearbeitung von Physikaufgaben. Die Ergebnisse zeigen Zusammenhänge zwischen mathematischen und physikali-schen Dispositionen. Zusätzlich wird die Bedeutung von Aspekten des Problemlösens deutlich, um die Prozesse bei den Bearbeitungen von Mathematik und Physikaufgaben im ersten Studienjahr zu analysieren. Auf Grundlage der qualitativen Beschreibungen konnten Cluster von Fällen von Studierenden gebildet werden. Mit Hilfe dieser Cluster zeigen sich Zusammenhänge zwischen den Dispositionen und situationsspezifischen Fähigkeiten bei den besonders leistungsstarken und leistungsschwachen Studierenden. / Missing competences in mathematics and sciences are cited by students as a reason for the drop-out in engineering sciences (Heublein et al., 2017). However, the competences that are relevant for students at the beginning of their engineering studies have so far not been investigated in an empirical way. The aim of this study is to analyse relevant mathematical competences of engineering students, taking into account both knowledge and the application of knowledge and the interrelationships between the two. A study in mixed method design was developed for this purpose. In this study, students are tested with regard to their dispositions in mathematics and physics at the beginning of their studies and at the end of the first year of their studies using quantitative methods. At these two points in time and a further time at the end of the first semester, the situation-specific skills in processing math and physics tasks were examined with the help of a theoretical framework for solving mathematical problems, using qualitative methods. This theoretical framework included for the mathematical tasks the aspects heuristics (Bruder & Collet, 2011; Schoenfeld, 1980) and problem solving phases (Polya, 1957) as well as the model of Epistemic Games (Tuminaro, 2004) for the analysis of the processing of physical tasks. The results show interrelationships between mathematical and physical dispositions. In addition, it became clear that there is a need of problem solving aspects in order to analyse the processes involved in the working on maths and physics tasks in the first year of studies. Based on the qualitative descriptions, clusters of student cases could be formed. These clusters show the interrelationships between dispositions and situation-specific skills of particularly high-performing and underperforming students.
36

Mediation and a Problem Solving Approach to Junior Primary Mathematics

Dirks, Denise January 1996 (has links)
Magister Educationis - MEd / This study argues that not all children in the Junior Primary phase benefit from the Problem Centred Approach in mathematics that was adapted by the Research, Unit for Mathematics at the University of Stellenbosch (RUMEUS). \One of the reasons could be that not all pupils can construct their own knowledge and methods. There are the highly capable pupils who cope well with this approach. These pupils are able to solve mathematical problems with little or no teacher interaction. Then there are the average and weaker pupils who cannot solve a mathematical problem on their own. These pupils need strategies and skills to solve problems and they need the teacher to mediate these strategies and skills to them, which will help these pupils to become autonomous problem solvers. ,Working in groups can, to some extent, supplement mediation or teacher interaction. Peer group teaching can be effective, whereby pupils are placed in groups so that the more capable pupils can teach concepts or make concepts clearer to the average or weaker pupils). There is, however, the possibility that when pupils of mixed abilities are placed in groups of four there might be one pupil who might refuse to work with the group. This pupil will work on her own and will not share ideas with the other members of the group. If this happens, mediation is necessary for those pupils who cannot solve a mathematical problem on their own. The purpose of this study is to investigate how exposure to mediation can improve pupils' problem solving abilities. As directions for my research I've chosen the first six criteria of Feuerstein's Mediated Learning Experiences (MLE). The first three parameters: intentionality and reciprocity, mediation of transcendence and mediation of meaning _are conditions for an interaction to qualify as MLE. Mediation of competence and regulation of behaviour are functions of specific experiences that combine with the first three to make an adult-child interaction one of mediated learning. Mediation of sharing behaviour . can be added. Here the child and the mediator are engaged in a shared quest for structural change in the child. In addition to this, the five mechanisms of mediational teaching, i.e. process questioning; challenging or asking reasons; bridging; teaching about rules; and emphasising order, predictability, system, sequence and strategy are also used in the implementation of mediation as described by Haywood. Two methods of investigation were chosen. The pupils' problem solving abilities were studied by means of eight word sums, of which the first four word sums were done in the pre-test and the other four word sums in the post-test. After the pre-test and before the post-test there was a period of mediational teaching for the experimental group. During this period and during the post-test the control group was denied mediation. After this research, mediation was also available for the control group. Two pupils from the experimental group were then chosen for further in-depth, think-aloud, person-to-person interviews. The aim of the interviews was to determine why these pupils could not solve the problem in the pre-test, but could successfully solve the post-test question. The results of the word sums in the pre-test and the post-test were compared. The role of strategies and thinking skills is concentrated on in the results. Mediation was not equally successful in all of the four different types of problem sums. Questions one and five contained two or more numbers and here pupils tended to either plus or minus these numbers. Questions two and six also contained numbers, but this is a problem situated in a real life situation. Questions three and seven contained no numbers and questions four and eight compelled pupils to first work out a plan. Mediation was most successful in problem sums situated in a real life situation, followed by problem sums which compelled pupils to first work out a plan, and then by problem sums where there were no numbers. Mediation was least; successful in problem sums that contained two or more numbers. Analysis of these results shows that with mediation there is an improvement in the pupils' problem solving abilities; Mediation can be viewed as S-H-O-H-R, in which the human mediator (H) is interposed between the stimulus (S) and the organism (0), and between the organism and the response (R). We can argue that the Problem Centred Approach without mediation can produce individuals who are little, if at all, affected by their encounter and interaction with new situations. Due to the lack of support in the Problem Centred Approach to Mathematics, it is the aim of this mini-thesis to propose mediation as an essential component in the Problem Centred Approach to Mathematics in the Junior Primary phase.
37

Lärares uppfattningar om införandet av programmering i gymnasieskolans matematikämne / Teachers' perception about the introduction of programming in the subject of upper secondary school mathematics

Sjöberg, Lars January 2019 (has links)
Vi lever i ett samhälle där datorer och annan digitalteknik blir allt mer central i vår vardag. Sveriges regering har därför ålagt Skolverket att stärka elevernas digitala kompetens. Som en del av detta införs programmering som ett digitalt verktyg i matematikundervisningen både i grundskolan och på gymnasiet. Det krävs dock i nuläget inga kurser i programmering för att bli en legitimerad matematiklärare. Syftet med undersökningen som presenteras i denna rapport är att undersöka matematiklärares uppfattningar som uppkommit på grund av att Skolverkets revidering av läroplanerna i matematik. Denna revidering innebär att vissa matematikkurser på gymnasiet innefattar att programmering skall användas som problemlösningsverktyg. Underlaget till denna undersökning är en transkribering och tematisering av kvalitativa intervjuer med tio matematiklärare, samt tidigare forskning. Undersökningen fann en viss oro bland lärarna som till stor del handlade om bristande kunskap i programmering samt problematiken med att hinna med att få in ytterligare ett moment i undervisningen. Under intervjuerna framgick det att lärarna var allmänt fundersamma om vilka digitala verktyg de skulle använda för att lösa detta nya krav. En majoritet av lärarna förordade dock Excel och Geogebra. Det framkom ett visst missnöje med att detta nya krav infördes med mycket kort varsel. Många lärare förväntade sig och litade på att läroboksförfattarna skulle komma med en uppdatering av läroböckerna i matematik. En uppdatering som förväntades innefatta programmering och som därmed skulle lösa den nya pedagogiska utmaningen. / Computers and other digital technology are becoming increasingly important in our society. Due to that, the Swedish Government has instructed their National Agency for Education to strengthen the students' digital competence. One outcome of this was that programming become a part of teaching mathematics both in primary and upper secondary school. Programming is not a part of the mandatory studies needed to become a certified mathematics teacher. The purpose of this study is to investigate the ideas, attitudes and ideas of mathematics teachers that have arisen because of the National Agency for Education's revision of the curricula in mathematics. According to this revision of the curricula, students should use programming as a problem-solving tool. The basis for this study is a transcription of qualitative interviews with ten mathematics teachers and an examination of previous research. This study found that there was some concern among the teachers. Most of the concern was about lack of knowledge in programming. The majority of teachers preferred to use Excel and Geogebra as a digital tool to teach programming. Many teachers expressed spontaneously a general dissatisfaction with the impact that calculators already have in mathematics education. There was some dissatisfaction with the introduction of this new requirement at very short notice. Many teachers expected and trusted that the textbook authors would come up with an update of the textbooks in mathematics. An update that would thus solve their new educational challenge.
38

Problemlösning på lågstadiet : Hur lärare beskriver ett matematiskt problem och sitt arbete med problemlösning / Problem solving in primary school : How teachers describe a mathematical problem and their way of working with problem solving

Hana Ashmoni, Mina January 2023 (has links)
Syftet med studien är att undersöka hur fem undervisande lärare i årskurserna F-3 beskriver ett matematiskt problem och hur de förhåller sig till undervisning i problemlösning. Den valda metoden är semistrukturerade intervjuer. Insamlade data bearbetades enligt de två kategorierna: Lärarnas beskrivningar av ett matematiskt problem och Lärarnas arbetssätt. Studien utgår från fem undervisningspraktiker i matematik (Smith & Stein, 2014) och Skolverkets (2021) beskrivning av ett matematiskt problem. Resultaten visar att lärarna beskriver ett matematiskt problem som 1) något eleverna inte vet svaret på i förväg och att upplevelsen av ett problem kan vara individuellt 2) något som sker i flera steg 3) en uppgift som ska ha en vardagsanknytning och 4) en berättelse- eller textuppgift. Det framgår även att lärarna arbetar med problemlösning på olika sätt där flera av lärarna följer lärarhandledningar och resterande hämtar problem från andra källor. Studiens slutsatser är att lärarna behöver skaffa sig en insikt om att Skolverket (2021) har en gemensam beskrivning av ett matematiskt problem, att kreativa resonemang i matematik kan gynna alla elever, om problematiken med det didaktiska kontraktet och att lotsning kan medföra förluster i elevers lärande.
39

Roller vid matematisk problemlösning : En kvalitativ studie om vilka roller som framträder vid och inverkar på matematisk problemlösning i grupp. / Roles in mathematical problem solving : A qualitative study on which roles appear in and influence mathematical problem solving in groups.

Persson, Ellen, Tornström, Molly, Stenemo, Emma January 2024 (has links)
Samarbete i form av grupparbete är ett gynnsamt arbetssätt för att utveckla problemlösningsförmågan, vilket är väsentligt som samhällsmedborgare. För att grupparbete ska vara gynnsamt krävs det att gruppsammansättningarna skapar förutsättning för samarbete. I sociala sammanhang intas eller tilldelas olika roller, vilket ligger till grund för vilka förväntningar som förekommer mellan gruppmedlemmarna. Syftet med den här kvalitativa studien är därmed att bringa kunskap om roller i relation till elevers arbete med matematisk problemlösning i grundskolans årskurs 3. Studiens två forskningsfrågor: “Vilka roller kan identifieras vid grupparbete med problemlösning?” och “På vilket sätt kan dessa roller påverka elevers arbete med problemlösning?”, har besvarats genom att genomföra semistrukturerade intervjuer i grupper om tre elever. Intervjuerna har genomförts med ljudinspelning som sedan transkriberats och analyserats med utgångspunkt i Goffmans rollteori för att nå ett resultat. Studiens resultat synliggör åtta olika roller, varav fyra roller var sedan tidigare befintliga och resterande fyra har benämnts i denna studie. Rollerna är: Den dominanta initiativtagaren, den samarbetsvilliga initiativtagaren, den samarbetsvilliga utvärderaren, den osäkra medlaren, ofrivilligt passiv, initiativtagarens högra hand, utmanare och provokatör. Rollerna har haft olika inverkan, såväl positivt som negativt, på problemlösningsprocessen och elevernas möjlighet att utveckla problemlösningsförmågan. Utifrån resultatet är vår förhoppning att bidra med kunskap om roller som lärare kan använda för att konstruera gruppsammansättningar som är fördelaktiga för elevernas lärande.
40

The development of mathematical problem solving skills of Grade 8 learners in a problem-centered teaching and learning environment at a secondary school in Gauteng / The development of mathematical problem solving skills of Grade eight learners in a problem-centered teaching and learning environment at a secondary school in Gauteng

Chirinda, Brantina 06 1900 (has links)
This mixed methods research design, which was modelled on the constructivist view of schooling, sets out to investigate the effect of developing mathematical problem solving skills of grade 8 learners on their performance and achievement in mathematics. To develop the mathematical problem solving skills of the experimental group, a problem-centred teaching and learning environment was created in which problem posing and solving were the key didactic mathematical activity. The effect of the intervention programme on the experimental group was compared with the control group by assessing learners’ problem solving processes, mathematical problem solving skills, reasoning and cognitive processes, performance and achievement in mathematics. Data were obtained through questionnaires, a mathematical problem solving skills inventory, direct participant observation and questioning, semi-structured interviews, learner journals, mathematical tasks, written work, pre- and post- multiple-choice and word-problem tests. Data analysis was largely done through descriptive analysis and the findings assisted the researcher to make recommendations and suggest areas that could require possible further research. / Mathematics Education / M. Ed. (Mathematical Education)

Page generated in 0.0956 seconds