• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 10
  • Tagged with
  • 46
  • 31
  • 29
  • 28
  • 24
  • 18
  • 17
  • 17
  • 11
  • 11
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Konstruktion und toxikologische Nutzung von transgenen Mäusen mit den allelischen Varianten von humanen SULT1A-Genen / Construction and characterisation of transgenic mice for human sulfotransferases with polymorphic SULT1A genes

Wend, Korinna January 2009 (has links)
Eine besondere Rolle im Fremdstoffmetabolismus hat die SULT1A1 beim Menschen aufgrund der hohen Expression und breiten Gewebeverteilung. Während die humane SULT1A1 in sehr vielen Geweben exprimiert wird, wurde die murine SULT1A1 vor allem in der Leber, Lunge und Colon gefunden. Neben der Gewebeverteilung spielt auch der Polymorphismus im humanen SULT1A1-Gen eine bedeutende Rolle. Der häufigste Polymorphismus in diesem Gen führt zu einer Aminosäuresubstitution von Arginin zu Histidin an Position 213. Die Genvariante mit Histidin (auch als SULT1A1*2 bezeichnet) codiert für ein Protein mit einer geringen Enzymaktivität und einer reduzierten Enzymmenge in Thrombocyten. Über den Einfluss dieser allelischen Varianten in anderen Geweben ist bislang wenig bekannt. In vorausgegangenen epidemiologischen Studien wurden mögliche Korrelationen zwischen den Genvarianten und der Krebsentstehung in verschiedenen Geweben untersucht. Diese Daten liefern jedoch widersprüchliche Ergebnisse zum Krebsrisiko. Aufgrund der strittigen epidemiologischen Daten sollten Tiermodelle generiert werden, um die häufigsten SULT1A1-Allele hinsichtlich der Empfindlichkeit gegenüber Nahrungs- und Umweltkanzerogenen zu untersuchen. Zur Erzeugung transgener (tg) Mauslinien wurde mittels Mikroinjektion der codierenden Genbereich und große flankierende Humansequenzen stromaufwärts und stromabwärts in das Mausgenom integriert. Es wurden mehrere Mauslinien hergestellt. Zwei davon, die Mauslinie 31 mit dem SULT1A1*1-Allel und die Mauslinie 28 mit dem SULT1A1*2-Allel, wurden eingehend analysiert. In beiden Linien wurde eine identische Kopienzahl des Transgens ermittelt. Proteinbiochemische Charakterisierungen zeigten eine weitgehend dem Menschen entsprechende Gewebeverteilung und zelluläre und subzelluläre Lokalisation der humanen SULT1A1 in der Linie (Li) 28. In Li 31 wurden Unterschiede zu Li 28 sowohl in der Gewebeverteilung als auch in der zellulären Lokalisation des exprimierten humanen Proteins ermittelt. Dabei war die Expression auf Proteinebene in der SULT1A1*2-tg Linie generell stärker als in der SULT1A1*1-Linie. Dieses Ergebnis war überraschend, denn in humanen Thrombocyten führt das SULT1A1*1-Allel zu einem höheren Gehalt an SULT1A1-Protein als das SULT1A1*2-Allel. Zur Analyse der unterschiedlichen Proteinexpressionen in den tg Mauslinien wurde die cDNA und der 5´-flankierende Bereich des SULT1A1-Gens sequenziert. In beiden tg Linien entsprach die Sequenz der cDNA der Referenzsequenz aus der Gendatenbank (Pubmed). In der 5´-flankierenden Region wurden bekannte Polymorphismen analysiert und unterschiedliche Haplotypen in den tg Linien an den Positionen -624 und -396 ermittelt. Dabei wurde in der Li 31 der Haplotyp detektiert, der in der Literatur mit einer höheren SULT1A1-Enzymaktivität beschrieben wird. Der mögliche Zusammenhang zwischen Transkriptionsrate und Proteinexpression wurde in RNA-Expressionsanalysen im codierenden und 5´-nicht codierenden Bereich (mit den alternativen Exons 1B und 1A) untersucht. Im codierenden Bereich und im Exon 1B konnte in den untersuchten Organen eine höhere RNA-Expression in der Li 28 im Vergleich zur Li 31 ermittelt werden. Außer in der Lunge wurde für Exon 1B eine identische RNA-Expression detektiert. RNA, die Exon 1A enthielt, wurde in allen untersuchten Organen der Li 28, aber nur in der Lunge bei der Li 31 gefunden. In beiden tg Linien konnten mit den Exon 1A-Primern jedoch auch größere PCR-Produkte ermittelt werden. Dieser Unterschied im Exon 1A und mögliche Spleißvarianten könnten damit für die unterschiedliche Proteinexpression des humanen SULT1A1-Proteins in den beiden tg Mauslinien sein. Die in dieser Arbeit generierten und charakterisierten tg Mausmodelle wurden in einer toxikologischen Studie eingesetzt. Es wurde das heterozyklische aromatische Amin 2-Amino-1-methyl-6-phenylimidazo-[4,5-b]pyridin (PhIP) verwendet. PhIP wird beim Erhitzen und Braten von Fleisch und Fisch gebildet und könnte mit der erhöhten Krebsentstehung im Colon in der westlichen Welt im Zusammenhang stehen. Mittels 32P-Postlabelling sollte der Einfluss der zusätzlichen Expression der humanen SULT-Proteine auf die PhIP-DNA-Adduktbildung analysiert werden. Dabei wurden mehr DNA-Addukte in den tg Tieren als in den Wildtyp-Mäusen ermittelt. Die Konzentration der gebildeten DNA-Addukte korrelierte mit der Expressionsstärke des humanen SULT1A1-Proteins in den tg Mäusen. An den in dieser Arbeit generierten tg Mauslinien mit den häufigsten allelischen Varianten des SULT1A1-Gens konnten Unterschiede auf RNA- und Protein-Ebene ermittelt werden. Zudem konnte gezeigt werden, dass die Expression der humanen SULT1A1 eine Auswirkung sowohl auf die Stärke als auch das Zielgewebe der DNA-Adduktbildung in vivo hat. / In humans, SULT1A1 and its polymorphic variants play an important role in xenobiotic metabolism and display a broad tissue distribution and high expression level. This enzyme is expressed in almost every human organ whereas in mice SULT1A1 can only be detected in liver, lung and colon. The most common polymorphism of this gene leads to an amino acid substitution from arginine to histidine at the position 213. In platelets, the allele encoding histidine (also designated as SULT1A1*2) is associated with both low activity and low thermal stability of the SULT protein. However, so far only little is known about the significance of these allelic variants in the other tissues with hSULT1A1 expression. Previous epidemiological studies have made attempts to correlate SULT1A1 allelic variants and cancer development, their data, however, have been contradictory for an appropriate cancer risk assessment. In this thesis, we addressed the effect of the hSULT1A1 genetic variability on the susceptibility to nutritional and environmental carcinogens using transgenic (tg) mouse models. We generated tg mice carrying the most common allelic variants of the human SULT1A1 gene. The coding region and large flanking human sequences upstream and downstream of the hSULT1A1 gene were integrated randomly into the mouse genome by microinjection. Several tg mouse lines were generated. Two of them, line (li) 31 with the SULT1A1*1 allele and li 28 with the SULT1A1*2 allele, were analysed in detail. At first, an identical transgene copy number was detected in both lines. Furthermore, biochemical characterization of li 28 showed that the tissue distribution, the cellular and subcellular localisation of the protein were very similar to those in humans. In contrast, li 31 exhibited differences in tissue distribution and cellular localisation of the human protein compared to li 28. The protein expression level in the tg line with SULT1A1*2 (li 28) was generally higher than in SULT1A1*1 (li 31) mice. These results were surprising since the SULT1A1*1 allele in human platelets usually leads to a higher amount of SULT1A1 protein compared to the SULT1A1*2 allele. To investigate these differences, we sequenced the cDNA and 5´-flanking region of the SULT1A1 gene. In both tg mouse lines, the cDNA sequence was identical to the reference sequence from the gene databank (Pubmed). We subsequently analysed the common polymorphisms of the 5´-flanking region, and determined different haplotypes at position -624 and -396 in the tg mouse lines. According to the literature, the haplotype associated with a higher SULT1A1 enzyme activity, we detected in li 31. We analyzed the possible correlation between gene transcription and protein expression by measuring RNA expression levels of the coding and the non-coding region (with alternative exons 1B and 1A). We detected a higher RNA expression level of the coding region and exon 1B in li 28 compared to li 31, whereas RNA for exon 1A was only found in li 28 in all investigated tissues, but only in lung in li 31. Furthermore we detected with exon 1A-primers larger RNA in both lines. These differences in exon 1A expression accompanied by potential splicing variants could be responsible for the different expression and activity of the human SULT1A1 protein in both tg mouse lines. In order to validate our generated and characterized tg mouse models as toxicological in vivo models, we used them for the evaluation of the heterocyclic aromatic amine 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP). PhIP is typically generated during heating and roasting of meat and fish and is suggested to be associated with an increased colon cancer incidence in the western world. We measured the impact of the additionally expressed human SULT proteins on the PhIP-DNA adduct level by 32P-postlabelling. We detected significantly higher DNA adduct levels in tg compared to wildtype mice, which correlated positively with the expression pattern of the human SULT1A1 protein in the tg mice. In conclusion, in this thesis, we have successfully generated and validated the transgenic mouse lines carrying the most common allelic variants of the human SULT1A1 gene. Interestingly, these lines exhibited differences in both the SULT1A1 RNA and protein levels. Using these transgenic mouse models as in vivo toxicological tools we have shown that the expression of human SULT1A1 in mice has a decisive impact on the strength and the target tissue of DNA adducts.
22

Modifikation der Strahlenreaktion der Mundschleimhaut (Maus) durch Hemmung der Stickstoffmonoxid-Synthase mittels nitro-L-Arginin-Methyl-Ester (L-NAME)

Schöllner, Jessica 04 November 2015 (has links)
Modification of the radiation response of oral mucosa (mouse) by inhibition of nitric oxide synthase via nitro-L-arginin-methyl-ester (L-NAME)
23

Role of amyloid beta protein modulation in Alzheimer's disease / Rolle der Beta-Amyloid Protein Modulierung in der Alzheimer-Krankheit

Hillmann, Antje 04 July 2012 (has links)
No description available.
24

Transgene Redoxindikator-Mäuse mit mitochondrialer roGFP1-Expression: Phänotypisierung, neuronales Verteilungsmuster und Sensorfunktionalität / Transgenic redox indicator mice expressing mitochondrial roGFP1: phenotypic characterization, neuronal expression pattern and sensor functionality

Wagener, Kerstin Charlotte 06 December 2017 (has links)
No description available.
25

Normal brain tissue reaction after proton irradiation

Suckert, Theresa Magdalena 09 December 2021 (has links)
Protonentherapie ist eine wichtige Behandlungsmodalität in der Radioonkologie. Aufgrund einer vorteilhaften Dosisverteilung im bestrahlten Volumen kann diese Bestrahlungsmethode das tumorumgebende Normalgewebe schützen. Dadurch können Nebenwirkungen in bestimmten Patientenpopulationen, zum Beispiel Kindern oder Patienten mit Gehirntumoren, verringert werden. Trotzdem können nach Protonenbestrahlung von Gehirntumorpatienten Normalgewebsschäden auftreten. Gründe dafür können der notwendige klinische Sicherheitssaum im Normalgewebe, der Einfluss der relativen biologischen Wirksamkeit RBE sowie eine erhöhte Strahlensensitivität bestimmter Gehirnregionen sein. Um diese Aspekte zu beleuchten, werden geeignete präklinische Modelle für die Normalgewebsreaktion im Gehirn nach Protonenbestrahlung benötigt. Darüber hinaus kann eine Risikostratifizierung der Patienten durch die Vorhersage von Nebenwirkungswahrscheinlichkeiten oder der Tumorantwort den Behandlungserfolg erhöhen. Auch hier können präklinische Modelle helfen, um neue prädiktive Biomarker zu finden und um die zugrunde liegenden Mechanismen strahleninduzierter Gehirnschäden besser zu verstehen. Das Ziel dieser Dissertation war die Etablierung und Charakterisierung von adäquaten präklinischen Modellen für die Untersuchung von strahleninduzierten Normalgewebsschäden im Gehirn. Diese Modelle bilden die Grundlage für zukünftige Studien zur Untersuchung von RBE Effekten, der spezifische Strahlensensitivität einzelner Gehirnregionen und neuer Biomarker. Die getesteten Modellsysteme waren in vitro Kulturen von adulten organotypischen Gehirnschnitten, Tumorschnittkultur sowie in vivo Bestrahlung von Gehirnsubvolumina, jeweils mit dem Modellorganismus Maus. Die Etablierung eines Bestrahlungssetups in der experimentellen Protonenanlage und dessen dosimetrische Charakterisierung waren von großer Bedeutung für die Durchführung der biologischen Experimente. Ein weiteres Hauptziel war die Definition klinisch relevanter Endpunkte für frühe und späte Nebenwirkungen. Die Gewebsschnitte wurden durch Messungen des Zellüberlebens und der Entzündungsreaktion, sowie mittels in situ Analyse von Zellmorphologie und DNA Schäden untersucht. Als ergänzendes Modell wurde die Tumorschnittkultur etabliert und ähnliche Endpunkte analysiert. Adulte Gehirnschnitte stellten sich als ungeeignet für präklinische Experimente in der Radioonkologie heraus. Die Messungen von Zelltod und Entzündungswerten zeigten eine starke Zellreaktion auf die Inkulturnahme, aber keine auf die Protonenbestrahlung. In der Histologie wurden gestörte Zellmorphologie, reduzierte Vitalität und eingeschränkte Reparaturfähigkeit von DNA Schäden beobachtet. Daher sollten für strahlenbiologische Experimente andere 3D Zellkulturmodelle in Betracht gezogen werden, wie zum Beispiel Organoide oder durch Tissue Engineering hergestellte Kulturen. Durch die Publikation der Daten leistet diese Dissertation einen wichtigen Beitrag zur aktuellen Forschung, da so künftig die limitierten Ressourcen, die für strahlenbiologische Experimente mit Protonen zur Verfügung stehen, auf relevantere Modelle verwendet werden können. Die Bestrahlung von Gehirnsubvolumina in Mäusen wurde mit dem Ziel etabliert, klinisch vergleichbare Felder zu erreichen. Das gewählte Zielvolumen war der rechte Hippocampus; der Protonenstrahl sollte in der Mitte des Gehirns stoppen. Im Rahmen des Projekts wurde ein Arbeitsablauf für präzise und reproduzierbare Bestrahlung entwickelt. Zur Verifizierung wurde der induzierte DNA Schaden ausgewertet und anschließend mit Monte-Carlos Dosissimulationen korreliert. Die Maushirnbestrahlung lieferte wertvolle Ergebnisse für frühe Zeitpunkte (d.h. innerhalb 24 h nach Bestrahlung). Im Verlauf des Projekts wurde ein Algorithmus erstellt, der schnell und zuverlässig die räumliche Verteilung des DNA Schadens in Relation zur Gesamtzellzahl analysiert. Diese Auswertung zeigte, wie bei der Bestrahlungsplanung vorgesehen, ein Stoppen des Protonenstrahls im Gehirn. Eine anschließende Korrelation der Schadensverteilung mit der applizierten Dosis weist nach, dass das Modell einen wichtigen Beitrag zur Untersuchung des RBE leisten kann. In einer darauf folgenden Studie wurde der Dosis-Zeitverlauf der beobachteten Strahlenreaktion des Normalgewebes genauer beleuchtet. Dafür wurden Untersuchungen des Allgemeinzustands der Versuchstiere, regelmäßige Magnetresonanztomografie (MRI) Messungen über einen Zeitraum von sechs Monaten, sowie abschließende Histologie korreliert. Die Volumenzunahme des Kontrastmittelaustritts, die den Zusammenbruch der Blut-Hirn-Schranke anzeigt, wurde konturiert; aus diesen Daten entstand ein prädiktives Dosis-Volumen Modell. Die Pilotstudie konnte eine dosisabhängige Strahlenreaktion nachweisen, die sich im Zusammenbruch der Blut-Hirn-Schranke, einer Hautreaktion mit vorrübergehender Alopezie, Gewichtsabnahme und zelluläre Veränderung äußerte. Das von den MRI Messungen abgeleitete Modell konnte zuverlässig das Eintreten der Nebenwirkungen, den Krankheitsverlauf, sowie die geschätzte Überlebensdauer der Mäuse vorhersagen. Zusätzlich konnte ein Zusammenhang zwischen den MRI Bildänderungen und den pathologischen Gewebsveränderungen beobachtet werden. Durch die außerordentlich homogene Strahlenreaktion der Tiere können aus den vorliegenden Daten künftig zuverlässig geeignete Dosen für spezifische experimentelle Endpunkte bestimmt werden. Zusammenfassend wurden in dieser Arbeit zwei präklinische Modelle für die Protonengehirnbestrahlung etabliert, nämlich organotypische Gewebsschnitte als 3D Zellkulturmodell sowie in vivo Bestrahlung von Gehirnsubvolumina in Mäusen. Während Zellkulturexperimente die Erwartungen nicht erfüllen konnten, stellen sich die Tierexperimente als hervorragendes Modell für translationale Radioonkologie heraus, welches zusätzlich für andere Strahlenqualitäten eingesetzt werden kann. Darauf basierend können aktuelle und zukünftige Studien die Ursachen von strahleninduzierten Normalgewebsschäden im Gehirn beleuchten, RBE Effekte untersuchen und neue prädiktive Biomarker erforschen.:Contents Abstract i Zusammenfassung v Publications ix List of Figures xiii List of Acronyms and Abbreviations xiv 1 Introduction 3 2 Background 5 2.1 Proton therapy for brain cancer treatment 5 2.1.1 Fundamentals of radiobiology 5 2.1.2 Proton therapy 6 2.1.3 Tumors of the central nervous system 8 2.2 Radiation effects on brain cells 8 2.2.1 Neurons and myelin 9 2.2.2 Blood-brain barrier 9 2.2.3 Astrocytes 10 2.2.4 Microglia 10 2.3 Principles of histology 11 2.3.1 Hematoxylin & eosin staining 12 2.3.2 Immunohistochemistry 13 2.3.3 Bioimage analysis 13 2.4 Techniques in medical imaging 14 2.4.1 Projectional radiography 14 2.4.2 Computed tomography 14 2.4.3 Magnetic resonance imaging 15 2.5 Preclinical models for radiation injury 17 2.5.1 Technical requirements 17 2.5.2 In vitro models 17 2.5.3 Small animal models 18 3 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy 19 3.1 Aim of the study 19 3.2 Conclusion 19 3.3 Author’s contribution 19 3.4 Publication 21 4 High-precision image-guided proton irradiation of mouse brain sub-volumes 41 4.1 Aim of the study 41 4.2 Conclusion 41 4.3 Author’s contribution 41 4.4 Publication 43 5 Late side effects in normal mouse brain tissue after proton irradiation 51 5.1 Aim of the study 51 5.2 Conclusion 51 5.3 Author’s contribution 52 5.4 Publication 53 6 Discussion 71 6.1 Establishment of preclinical models for radiooncology 71 6.1.1 3D cell culture 71 6.1.2 In vivo irradiation of brain subvolumes 73 6.2 Current applications of the mouse model 75 6.2.1 Ongoing data analysis 75 6.2.2 Innovating on-site imaging 76 6.2.3 RBE investigations 77 6.3 Future studies of radiation-induced brain tissue toxicities 79 Acknowledgement XV Supplementary Material XVII 1 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy XVII 2 High-precision image-guided proton irradiation of mouse brain sub-volumes XXVI 3 Late side effects in normal mouse brain tissue after proton irradiation XXXI / Proton therapy is an important modality in radiation oncology. Due to a favorable dose distribution in the irradiated volume, this treatment allows to spare tumor-surrounding normal tissue. Although this protection can lead to reduced side effects in certain patient populations, such as brain tumor or pediatric patients, normal tissue toxicities can occur to some extend. This could be due to clinical safety margins around the tumor that lead to dose deposition in the normal tissue. The underlying causes might also be related to relative biological effectiveness (RBE) variations or elevated radiosensitivity of certain brain regions. To address these issues, suitable preclinical models for normal brain tissue reaction after proton therapy are needed. In addition, patient stratification to predict the tumor response or the probability of side effects will contribute to increased treatment effectiveness. Preclinical models can improve the process of finding new predictive biomarkers and help to understand underlying mechanisms of radiation-induced brain injury. The aim of this thesis was to establish and characterize suitable preclinical models of brain tissue irradiation effects and set the base for future studies designed to reveal RBE effects, brain region specific radiation sensitivities, and novel biomarkers. The tested model systems were in vitro organotypic brain slice culture (OBSC) and in vivo irradiation of brain subvolumes, both on mouse brain tissue. Setup establishment at the experimental proton beam line and subsequent dosimetry built the foundation for conducting the biological experiments. Additionally, one main goal was defining clinically relevant endpoints for both short- and long-term effects. For OBSC, assays for cell death and inflammation, as well as in situ analysis of cell morphology and DNA damage induction were tested. As comparative model to OBSC, tumor slice culture was established and the results were also used for proton investigation. Adult OBSC turned out as inadequate model for preclinical experiments in radiation oncology. The assays measuring cell death and inflammation indicated a severe reaction during the first days in culture, but no response to irradiation. Histology revealed deficient cell morphology, reduced vitality and impaired DNA damage repair. In conclusion, other 3D cell culture models, such as organoids or tissue engineered constructs, should be considered for radiobiological experiments with protons. By publishing the observations, this thesis contributes to conserving the limited resources of proton radiobiology for more meaningful models. A methodology for irradiation of mouse brain subvolumes was established with a focus on creating fields comparable to clinical practice. The chosen target was the right hippocampus and the goal was to stop the proton beam in the middle of the brain. The project included a workflow for this precise irradiation in a robust and reproducible manner. Evaluation of the induced DNA damage and its correlation to Monte Carlo dose simulations were used for verification. Irradiation of mouse brain subvolumes yielded valuable results for early (i.e. within 24 h after irradiation) time points. An evaluation algorithm was designed for fast and robust analysis of spatial DNA damage distribution in relation to the total cell count. This ratio showed that the beam stopped in the brain tissue, in accordance to the treatment planning. Furthermore, the DNA damage could be reliably correlated with the dose simulation, which proves the value of the presented model for future RBE studies. In a follow-up experiment, the dose-time relationship of induced normal tissue reactions was analysed. For this, scoring of the animals' health status was combined with regular MRI measurements over the course of up to 6 months, and final histopathology. The volume increase of contrast agent leakage - representing breakdown of the blood brain barrier (BBB) - was contoured and the data was used to create a dose-volume response model. This pilot study on long-term radiation effects revealed dose-dependent normal tissue toxicities, including breakdown of the BBB, a skin reaction with temporary alopecia, weight reduction and changes on the cellular level. The model derived from MRI data reliably predicts onset of side effects, volume of brain damage as well as the expected animal survival. In addition, MRI image changes could be correlated to underlying tissue alterations by histopathology. Due to the uniform radiation response of the animals this data set enables to determine endpoint-specific dose values in future experiments. In conclusion, two preclinical models for proton brain irradiation were established, namely OBSC as 3D cell culture model and in vivo irradiation of mouse brain subvolumes. While the former could not yield the anticipated results, the latter emerged as excellent model for translational radiooncology, which can also be applied for experiments with other radiation types. Ongoing and future studies will focus on revealing the causes of normal brain tissue toxicities, studying RBE effects, and investigating new predictive biomarkers.:Contents Abstract i Zusammenfassung v Publications ix List of Figures xiii List of Acronyms and Abbreviations xiv 1 Introduction 3 2 Background 5 2.1 Proton therapy for brain cancer treatment 5 2.1.1 Fundamentals of radiobiology 5 2.1.2 Proton therapy 6 2.1.3 Tumors of the central nervous system 8 2.2 Radiation effects on brain cells 8 2.2.1 Neurons and myelin 9 2.2.2 Blood-brain barrier 9 2.2.3 Astrocytes 10 2.2.4 Microglia 10 2.3 Principles of histology 11 2.3.1 Hematoxylin & eosin staining 12 2.3.2 Immunohistochemistry 13 2.3.3 Bioimage analysis 13 2.4 Techniques in medical imaging 14 2.4.1 Projectional radiography 14 2.4.2 Computed tomography 14 2.4.3 Magnetic resonance imaging 15 2.5 Preclinical models for radiation injury 17 2.5.1 Technical requirements 17 2.5.2 In vitro models 17 2.5.3 Small animal models 18 3 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy 19 3.1 Aim of the study 19 3.2 Conclusion 19 3.3 Author’s contribution 19 3.4 Publication 21 4 High-precision image-guided proton irradiation of mouse brain sub-volumes 41 4.1 Aim of the study 41 4.2 Conclusion 41 4.3 Author’s contribution 41 4.4 Publication 43 5 Late side effects in normal mouse brain tissue after proton irradiation 51 5.1 Aim of the study 51 5.2 Conclusion 51 5.3 Author’s contribution 52 5.4 Publication 53 6 Discussion 71 6.1 Establishment of preclinical models for radiooncology 71 6.1.1 3D cell culture 71 6.1.2 In vivo irradiation of brain subvolumes 73 6.2 Current applications of the mouse model 75 6.2.1 Ongoing data analysis 75 6.2.2 Innovating on-site imaging 76 6.2.3 RBE investigations 77 6.3 Future studies of radiation-induced brain tissue toxicities 79 Acknowledgement XV Supplementary Material XVII 1 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy XVII 2 High-precision image-guided proton irradiation of mouse brain sub-volumes XXVI 3 Late side effects in normal mouse brain tissue after proton irradiation XXXI
26

Modifikation der Strahlenreaktion der Mundschleimhaut (Maus) durch Hemmung der Stickstoffmonoxid-Synthase mittels nitro-L-Arginin-Methyl-Ester (L-NAME): Modifikation der Strahlenreaktion der Mundschleimhaut (Maus) durch Hemmung der Stickstoffmonoxid-Synthase mittels nitro-L-Arginin-Methyl-Ester (L-NAME)

Schöllner, Jessica 25 August 2015 (has links)
Modification of the radiation response of oral mucosa (mouse) by inhibition of nitric oxide synthase via nitro-L-arginin-methyl-ester (L-NAME)
27

Plaque deposition and microglia response under the influence of hypoxia in a murine model of Alzheimer\'s disease

Viehweger, Adrian 10 January 2013 (has links)
Clinical findings have linked multiple risk factors and associated pathologies to Alzheimer\''s disease (AD). Amongst them are vascular risk factors such as hypertension and pathologies such as stroke. Coexistence of AD and these associated pathologies worsenes dementia, the clinical hallmark of the disease, as compared to pure AD. One general common denominator of these associated pathologies is the presence of hypoxic tissue conditions. It was asked the question, whether there exists a mutual, causal interaction between hypoxia and AD pathology, that could explain the clinical observations. Alternatively, the worsened clinical state of multiple brain pathologies could \"simply\" be the consequence of multimorbidity, i.e. accumulated disease load, without any causal interaction between the constituents. To approach this question whether hypoxia influences AD progression, use was made of a murine animal model of AD (transgenic mice: APPswe, PSEN1dE). Animals of two ages (8 and 14 months, \"young\" and \"old\" respectively) and two genotypes (transgenic and wild- type) were either treated under hypoxia or normoxia, corresponding to 8% and 21% oxygen, for 20 consecutive days. The resulting changes in the brain were assessed with a variety of techniques, namely by histology, ELISA, dot and Western blotting. Additional experiments in primary cell cultures were performed. Animals exposed to hypoxia showed an increased hematocrit (HCT), weight loss, reactive angiogenesis, but no infarctions. This illustrates that our hypoxic treatment put significant stress on the animals, without causing major pathologies. A large number of variables exists that could potentially be measured to assess the effect of hypoxia on AD. The focus was put on three of them: First, there is the Abeta1-42- protein, known to be the Abeta- isoform associated with the most detrimental disease progression. In AD, the self-combinatory Amyloid- beta peptide (Abeta) accumulates in the brain in so- called plaques, which is a main histologic finding of the disease. Its quantity was determined through histology and ELISA. Secondly, it was attempted to estimate the structural quality of the Abeta- protein by assessing the amount of A!- oligomers present. Abeta- protein does self- accumulate in various grades of complexity, i.e. as monomer, oligomer or fibril. Since oligomers are known to be the most neurotoxic \"species\" of the Abeta- protein, it was hypothesized that under hypoxic treatment their quantity could increase. And third, the organism\''s response to the Abeta- protein stimulus was investigated. Microglial cells have been described as the first cells to encounter the Abeta- protein \"threat\" in the shape of plaques, i.e. Abeta- protein aggregates. They then try to encapsulate and subsequently degrade them. Therefore, the attention was put on this cellular population. It was asked whether hypoxia could change the Abeta- protein quantity in the brain. This was assessed in two ways: First histologically, by staining for Abeta- protein depositions and quantifying them. Second, an ELISA was performed. Our findings state that hypoxic treatment does not alter the Abeta1-42 protein load in the brain, neither in young nor old animals, as assessed by histology and by total ELISA quantification of Abeta1-42 protein. Since hypoxia did not alter the quantity of the Abeta- protein, it was asked whether it influenced it qualitatively? If hypoxia increased oligomer formation, this change in the spectrum of the Abeta- species could, without any change in total Abeta- protein load, lead to increased neurotoxicity in animals under hypoxia. Initial experiments showed that oligomer formation in the brain seems to increase. However, this was not statistically significant and future experiments are necessary to evaluate this hypothesis further. It was then asked, whether hypoxia alters the cellular response to the protein. The total number of microglia in the hippocampal dentate gyrus, our structure of interest for practical purposes, and, it can be argued, by extension the brain, changes dynamically with various factors. First, transgenic animals present an increase in microglia. Second, microglia increase with age. Third, microglia decrease under hypoxia, but only do so significantly in old animals. Next, a parameter called \"plaque occupancy\" was coined to assess the microglia function to confront Abeta- plaques. Plaque occupancy is defined as the number of microglia in spatial proximity to one square millimeter of Abeta- plaque. This means, that microglia restricting one plaque are counted, and then normalized to this plaque\''s area. It was hypothesized that hypoxia would decrease plaque occupancy. Indeed, plaque occupancy roughly halved under hypoxia. Summarizing, our results demonstrate that long- term exposure to hypoxia significantly reduces the number of microglia. The reduced number results in significantly reduced plaque occupancy and compromizes the function of microglia to confront Abeta- plaques. The Abeta1-42 load, however, is not affected. On the other hand, Abeta shows an increased trend towards oligomer formation. A variety of possible explanations to these phenomena have been presented, that in our opinion deserve further investigation.
28

Einfluss der Herzinsuffizienz auf Membranstrukturen und lokale cAMP-Dynamiken der SERCA2a-Mikrodomäne / Effects of heart failure on membrane structures and local cAMP dynamics of the SERCA2a microdomain

Hofmann, Sandra 05 July 2016 (has links)
Die Herzinsuffizienz ist trotz zahlreicher Therapiemöglichkeiten immer noch eine der häufigsten chronischen Erkrankung und Todesursachen in westlichen Industrienationen. Eine zentrale Rolle in der Regulation der effizienten Herzkontraktion nimmt die zyklisches Adenosin-3’,5’-monophophat(cAMP)-Signalkaskade ein, wobei Veränderungen in der Kompartimentierung des sekundären Botenstoffes bisher nicht vollständig verstanden sind. Ziel dieser Studie war es deshalb Regulationsmechanismen des lokalen cAMP-Pools der Mikrodomäne der ATP-abhängigen Calciumpumpe 2a des sarkoplasmatischen und endoplasmatischen Retikulums (SERCA2a) in kardialen Mausmyozyten unter den pathologischen Rahmenbedingungen der Herzinsuffizienz zu untersuchen. Hierfür wurde ein post-Myokardinfarkt Mausmodell an einer transgene Mauslinie verwendet, die einen cAMP-abhängigen auf Förster-Resonanz-Energietransfer(FRET)-basierenden Biosensor, lokalisiert in der SERCA2a-Mikrodomäne, in vivo exprimiert. Mit Hilfe von Echtzeit-FRET-Messungen an frisch isolierten, lebenden Kardiomyozyten wurden die Beiträge der am Herzen relevanten Phosphodiesterase(PDE)-Familien zur Begrenzung des lokalen cAMP-Pools in der SERCA2a-Domäne 12 Wochen nach Myokardinfarkt gemessen und mit einer Kontrollgruppe (Sham) verglichen. Hierbei zeigte sich, dass in der Mikrodomäne sowohl unter Ruhebedingungen, als auch nach β-adrenerger Vorstimulation, eine signifikante Aktivitätsminderung der PDE4, verglichen mit der Sham-Gruppe, nachweisbar ist. Da dies mit Veränderungen im lokalen cAMP-Pool der die SERCA2a reguliert einhergeht, bietet diese Studie also eine interessante Grundlage für die weitere Untersuchung der im Krankheitsfall auftretenden Funktionsabweichungen.
29

Mechanismen der antikörpervermittelten T-Zell-Depletion in vivo im Maus-Modell

Engelschalt, Vivienne 26 November 2010 (has links)
Monoklonale Antikörper (mAk) werden bereits erfolgreich zur therapeutischen Depletion verschiedener Zellpopulationen in vivo verwendet, die Mechanismen der Depletion sind jedoch unklar geblieben. In dieser Arbeit wurden im Mausmodell die molekularen Grundlagen der CD4+ T-Zelldepletion (CD4 TZD) nach einmaliger Gabe (i.p.) von 100 µg des anti-CD4-mAk YTS191.1 untersucht. Dabei konnte eine starke Korrelation zwischen Depletion und der Modulation des CD4-Moleküls von der Oberfläche beobachtet werden. Gleichzeitig zeigten sich organabhängige Unterschiede, sowohl im zeitlichen Verlauf, als auch in der Effizienz der Depletion. Im Thymus konnten weder Depletion noch Modulation detektiert werden, in Milz und Lymphknoten (Lk) war die CD4 TZD nach starker CD4-Modulation bereits nach 48 h mit 80-90 % maximal, in den Peyer-Plaques jedoch niedriger und verzögert (50-60 % nach 72 h). Anhand C3-defizienter Mäuse konnte ferner kein wesentlicher Beitrag von Komplement an der CD4 TZD beobachtet werden. Im Gegensatz dazu konnte durch die Verwendung verschiedener FcGamma-Rezeptor (FcGammaR)-defizienter Mäuse (FcGammaRI, FcGammaRII, FcGammaRIII, FcGammaRI/III und FcRGamma) wie auch durch die Blockade des FcGammaRIV eine starke, zudem organabhängige Beteiligung von FcGammaR an der CD4 TZD gezeigt werden. Während in der Milz die CD4 TZD von FcGammaRIV vermittelt wurde, waren in den Lk und Peyer-Plaques FcGammaRI/III involviert. Diese Befunde korrelierten mit der starken Expression von FcGammaRIV in Milz, Lunge, Darm, Niere und Leber, während in den Lk nur eine schwache und in Thymus und Peyer-Plaques keine Expression detektiert werden konnte. Innerhalb der Milz konnten erstmalig F4/80hoch Makrophagen als FcGammaRIV+ identifiziert und somit als potenzielle Effektorzellen der CD4 TZD bestimmt werden. Der direkte Vergleich der Depletion von CD4+ T-Zellen mit der Depletion von ICOS+ T-Zellen verdeutlichte darüber hinaus, dass die Effizienz der Zelldepletion nicht nur von den Eigenschaften des verwendeten mAk, sondern auch von denen des Zielmoleküls abhängig ist. / Monoclonal antibodies (mAb) are efficiently used for the therapeutic depletion of various cells in vivo yet the mechanisms of depletion are still unclear. In this work, the molecular principles of CD4+ T cell depletion (CD4 Tcd) by a single application of 100 µg of the anti-CD4 mAb YTS191.1.1 were investigated in the mouse. A strong correlation between the depletion and the surface modulation of the CD4 molecule could be observed. At the same time, organ-dependent differences in the kinetics as well as in the efficiency of depletion could be detected. In the thymus, neither modulation nor depletion were detectable. In the spleen and the lymph nodes (Ln), the modulation was strong and the depletion was maximal (80-90%) 48 h after mAb treatment. Interestingly, both modulation and depletion were decreased and delayed (50-60% after 72 h) in the Peyer`s patches. By using C3-deficient mice, no major contribution of complement to the CD4 Tcd was seen. On the contrary, with the help of different FcGamma-receptor (FcGammaR)-deficient mice (FcGammaRI, FcGammaRII, FcGammaRIII, FcGammaRI/III, and FcRGamma) and through the blockade of FcGammaRIV, a strong organ dependent involvement of FcGammaR could be shown. While the depletion in the spleen was clearly dependent on FcGammaRIV, in the Ln and the Peyer`s patches, FcGammaRI/III were involved. These findings correlated with the strong expression of FcGammaRIV in the spleen, the lung, the colon, the kidney, and the liver, while in the Ln the expression was weak and undetectable in the thymus and the Peyer`s patches. For the first time, F4/80high macrophages in the spleen could be identified as also being FcGammaRIV+, and are therfore considered as the potential effector cells of the CD4 Tcd. The direct comparison of the depletion of T cells via CD4 or ICOS pointed out that the target cell depletion is not only dependent on the properties of the mAb used, but also on those of the target molecule.
30

Das humane CD4 Molekül als Zielstruktur zur therapeutischen Beeinflussung zellulärer Immunantworten in einem transgenen Tiermodell

Köhler, Stefan 18 June 2015 (has links) (PDF)
In einem komplexen tierexperimentellen Ansatz wurde das Potenzial der anti huCD4-Antikörper MAX16H5 und MAX12F6 zur Modulierung zellvermittelter Immun-reaktionen in vivo untersucht. Dafür kam ein mehrfach transgenes Mausmodell zur Anwendung, in dem das humane Zielmolekül und dessen physiologischer Ligand als Transgene exprimiert waren. Als T-Zell vermittelte Immunreaktion wurde eine Kon-taktreaktion (delayed type hypersensitivity, DTH) gegen DNFB etabliert und validiert. An der DTH wurde untersucht, ob und wie die verschiedenen Antikörper die Sen-sibilisierungs- und die Auslösungsphase beeinflussen. Die experimentellen Ergeb-nisse zeigen, dass die Antikörper epitop- und isotypabhängig die beiden Phasen der DTH unterschiedlich beeinflussen. Die Applikation der Antikörper während der Sensi-bilisierung führte zu einer unterschiedlich ausgeprägten Suppression der DTH. Dage-gen hatten sie gegensätzliche Effekte auf die Auslösung. Während nach MAX12F6-Behandlung eine stärkere und prolongierte DTH gemessen wurde, verlief die DTH-Reaktion nach MAX16H5-Applikation deutlich abgeschwächt. Mittels flowzytometri-scher Analysen konnte gezeigt werden, dass die Antikörper unterschiedliche Subpo-pulationen der T-Helferzellen depletieren. Darüber hinaus führte MAX16H5 offen-sichtlich zur Induktion regulatorischer T-Zellen. Die Daten erklären unterschiedliche Erfolge aus ersten klinischen Studien mit verschiedenen anti huCD4 Antikörpern. Auch eignet sich CD4 auch als diagnostisches Target zur in vivo Diagnostik T-Zell vermittelter Entzündungsreaktionen. Mit Antikörperfragmenten von MAX16H5 wurde ein immunszintigraphisches Verfahren entwickelt, das die spezifische Darstellung der mit der DTH einhergehenden Entzündungsreaktion ermöglicht.

Page generated in 0.0568 seconds