• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 17
  • 17
  • 9
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 105
  • 105
  • 42
  • 32
  • 26
  • 24
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Valorization Of Whole Stillage With Filamentous Fungi Cultivation Using Membrane Bioreactors

Bulkan, Gülru January 2018 (has links)
A significant by-product of bioethanol plants is whole stillage, commonly used to produce animal feed due to its nutritious value, has a potential to be used to produce various value-added products while eliminating a costly process step is an alternative approach. In this study, production and separation of additional ethanol, fungal biomass and enzyme were successfully achieved with the cultivation in membrane bioreactors in batch process condition. Process optimization studies regarding fermentation and filtration conditions were carried out. Up to 10.4 g/l ethanol per litre of used whole stillage can be produced in simultaneous saccharification and fermentation (SSF) condition without any pH adjustment and additional pretreatment step. Also, 50% diluted whole stillage provided 87% higher ethanol production comparing to non-diluted medium. Moreover, 71 % higher biomass production was obtained with the filtrate of 50% diluted whole stillage comparing to 25% diluted one. Considering the achieved results, a two-stage cultivation using SHF (Separate Hydrolysis and Fermentation) strategy in membrane bioreactors for separation of ethanol, lignin-rich stream, protein-rich fungal biomass and enzymes was proposed. The present thesis showed that the integration of filamentous fungi with membrane bioreactors can increase the range of products that can be produced from whole stillage.
52

Utveckling av en kontinuerlig process som renar vatten från läkemedel med hjälp av biopolymertäckta celler / Development of a continuous process for the removal of pharmaceuticals in wastewater using biopolymer covered Escherichia coli

Lindroos, Magnus January 2015 (has links)
No description available.
53

Review of Methods of Wastewater Reuse to Diminish Non-Biodegradable Organic Compounds.

Bitow Meles, Desbele January 2014 (has links)
Wastewater reuse is very important in water resource management for both environmental and economic reasons. Unfortunately, wastewater from textile industries is difficult to treat by convectional wastewater treatment technologies. Now days, polluted water due to color from textile dyeing and finishing industries is burning issue for researchers. Textile or industrial wastewaters contain non-biodegradable organic compounds, which cannot be easily biodegraded because of their complex chemical structure. Dye wastewater discharged from textile wastewaters is one example of non-biodegradable organic compounds and it is difficult to remove dye effluent by convectional wastewater treatment methods. Therefore, this thesis deals about a review of advanced treatment technologies, which can de-colorize and remove non-biodegradable organic compounds from textile wastewater effluents. In addition to this, the potential and limitation of these advanced treatment methods are reviewed. Advanced treatment technologies reviewed in this paper are; Adsorption process, Membrane bioreactor (MBR) and advanced oxidation process (AOPs).
54

Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

Werner, Craig M. 06 1900 (has links)
Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater treatment process. The anaerobic electrochemical membrane bioreactor described here integrates a microbial electrolysis cell with a membrane bioreactor using conductive hollow fiber membrane to produce hydrogen gas, treat wastewater and reclaim treated water. The energy recovered as hydrogen gas in this system was sufficient to offset all the electrical energy requirements for operation. The findings from these studies significantly improve the prospects for simultaneous wastewater treatment, energy recovery and water reclamation in a single reactor but challenges such as membrane biofouling and conversion of hydrogen to methane by methanogenesis require further study.
55

Removal Characteristics and Predictive Model of Pharmaceutical and Personal Care Products (PPCPs) in Membrane Bioreactor (MBR) Process / 膜分離活性汚泥法における残留医薬品類の除去特性と予測モデルの開発

Junwon, Park 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19984号 / 工博第4228号 / 新制||工||1654(附属図書館) / 33080 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 米田 稔, 講師 山下 尚之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
56

Pharmaceutical compounds; a new challenge for wastewater treatment plants

Dlugolecka, Maja January 2007 (has links)
Analytical analyses conducted at the Himmerfjärden WWTP (285.000 PE connected) identified 70 pharmaceutical compounds belonging to different therapeutic classes. Such organic micropollutants at low detected concentration range of µg - ng l-1 did not affect the treatment processes at WWTP. Results from analytical studies indicated continuous discharge of organic micropollutants to the surface water with a calculated load amounting to 1.51 kg day-1. Metoprolol, carbamazepine and naproxen were chosen for testing different removal methods. Oxygen Uptake Rate (OUR) tests were conducted to assess the bacterial activity of an activated sludge taken from a full scale aeration plant with the presence of selected target compounds. A semi-technical scale membrane bioreactor ZeeWeed10™, treating final effluent from the Himmerfjärden WWTP (Sweden) was seeded with activated sludge from full scale biological stage. The membrane bioreactor (MBR) system placed after the final treatment appeared to be an insufficient technology for removal of residual amounts of organic micropollutants from WWTP effluents. Batch test studies with activated sludge taken from the membrane bioreactor and with application of granular activated carbon (GAC) filtration resulted in giving an overall assessment of removal efficiency. Metoprolol and carbamazepine tend to be resistant to the biodegradation process and in the dosed high concentration lead to bacterial cell decomposition in the activated sludge. Apparently, removal efficiency for naproxen exceeded the value of 46% with the spiked initial amount of 3.3 mg NAP g-1 MLSS. Application of the GAC filtration proved to be an efficient technique for removal of pharmaceutical compounds from treated wastewater. Application of the statistical programme Modde7 was a time saving tool in studies of fouling occurrence. The effect of fouling phenomenon, which is a highly limiting factor for MBR performance, was minimised by adjusting the operational parameters as predicted by the Modde7 programme. / QC 20101104
57

REDUCING BIOFOULING IN MEMBRANE BIOREACTORS TREATING SYNTHETIC EARLY PLANETARY BASE WASTEWATER

ZHANG, KAI January 2007 (has links)
No description available.
58

Performance Evaluation and Characterization of an Innovative Membrane Bioreactor in the Treatment of Wastewater and Removal of Pharmaceuticals and Pesticides

Zhang, Qiang 16 July 2009 (has links)
No description available.
59

Biological Nitrogen Removal in a Gravity Flow Biomass Concentrator Reactor

Scott, Daniel 20 April 2011 (has links)
No description available.
60

Biologisk vattenrening inom textilåtervinningsindustri : En utvärdering av Moving Bed Biofilm Reactor för att reducera BOD7 hos Renewcell

Ericsson, Jonas January 2021 (has links)
Klädindustrin är idag en stor bidragande orsak till negativa miljöpåverkningar. Om avtrycket från den industrin ska minska behöver det ”fast fashion” fasas ut och ett nytt sätt att se på kläder implementeras. De enklaste sätten att minska avtrycket är att återanvända eller återvinna kläder. Renewcell återvinner textilier och bryter ner bomullen och återvinner den som nytt material - Circulose®. Det materialet skickas vidare för att bli nya kläder och på så sätt stängs loopen för textilindustrin. Av produktionen av Circulose® tillkommer ett nytt slags processavlopp som inte hunnits forskas mycket på. Paralleller till textilindustrin kan visserligen dras och där är processavloppen av heterogen karaktär. Renewcell vill se om det går att reducera det organiska materialet i avloppet till en nivå på 10 mg/l. Den här studien vill hjälpa till att fylla det forskningsgap som finns för reningsteknik inom textilåtervinningsindustrin idag. Med en ny marknad i uppstart är det viktigt att avlopp hanteras på ett bra och ansvarsfullt sätt. Syftet med studien var att undersöka experimentellt och litterärt om det går att reducera ner BOD7 i Renewcells processavloppet till 10 mg/l. En MBBR har efterforskats och jämförts med en MBR, där en MBBR ansågs vara mer resistent mot variationer och farliga ämnen. Det byggdes en MBBR i laborationsskala kopplat till processavloppet för att analysera reduktionen av BOD7 och för att göra en experimentell undersökning hur den kemiska fällningen påverkas om vattnet behandlades biologiskt först. Studien resulterade i att Renewcells karaktär på processavlopp är heterogent och är hanterbart av mikroorganismer. Dock, på grund av att ingen fullt utvecklad biofilm nåddes samt variationer i processen är det fortfarande osäkert om det fungerar att implementera en MBBR hos Renewcell. Processförändringar som ett produktionsstopp är inga problem för en fullt utvecklad MBBR att hantera. Processavloppet innehåller en stor mängd organiskt material, men saknar tillräckligt med näringsämnen. För detta projekt var 58 % reduktion av BOD7 den högsta som redovisades och det nåddes inte heller en fullt utvecklad biofilm. Att biologiskt behandla avloppet innan en kemisk fällning gav positiva resultat då reduktionen av metalljoner förbättrades. Allt som allt anses det vara möjligt att implementera en MBBR hos Renewcell om rätt förutsättningar finns och det ges en möjlighet att utveckla en biofilm fullt ut. Förhoppningsvis kan denna förstudie visa vägen för vidare studier inom området. / The clothing industry is one of the major causes for negative environmental impacts. The “fast-fashion” needs to be phased out and a more climate-friendly way of using clothes implemented. The easiest ways to do this is to reuse or recycle clothes. Renewcell recycles used textiles and dissolve the cotton into pulp and makes a new material of it - Circulose®, which is sent to become new clothes and, in that way, helps to close the loop for textile industry. With the production of Circulose® a new kind of wastewater is produced which has not yet been thoroughly researched. A parallel to the textile industry’s wastewater can be drawn, and that is of heterogeneous nature and can change quickly from day to day. It is in Renewcell’s interest to reduce the organic matter in the wastewater, more than they do today with their current chemical and mechanic wastewater treatment plant does. This study wants to help fill the research gap that exists for purification technology in the textile recycling industry today. Since it is a new field of technology, it is of importance to thoroughly invest in how to treat the wastewater responsibly. The purpose of this study was to investigate, both experimentally and literary, whether the possibility to reduce BOD7 to 10 mg/l in the wastewater treatment plant. With an investigation of MBBR and by compare it with an MBR it was concluded that a MBBRis a better fit for Renewcell since it is considered to be more resistant to variations and hazardous substances. To strengthen that conclusion a MBBR in laboratory scale was built and wastewater directly from the recycling process treated. The reduction of BOD7 and how it would come to affect the chemical precipitation was analyzed. The results of the study concluded that Renewcells wastewater is heterogenous and manageable for microorganisms. However, the due to the variations in the process such as dosing of biologically harmful substances it might not be possible for Renewcell to implement a MBBR. Process variations as a stop in production of wastewater for a shorter time period is manageable. The wastewater contains enough organic matter, but an extra addition of nutrients is needed. For this project the MBBR-process fluctuated in reduction of organic matter and the highest amount achieved was 58 %. No fully developed biofilm was achieved either. Biologically treating the process effluent before the chemical precipitation gave positive results as the reduction of metal ions was improved. All in all, it is believed to be possible to implement a MBBR at Renewcell if the process is given the required conditions from the beginning and a biofilm can be fully developed. Hopefully, this pilot study can show the way for future research within the field.

Page generated in 0.2014 seconds