• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 408
  • 39
  • 30
  • 26
  • 15
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 648
  • 648
  • 127
  • 84
  • 80
  • 67
  • 61
  • 48
  • 48
  • 46
  • 44
  • 38
  • 38
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Výzkum vzájemné interakce membránových receptorů NKR-P1D a Clrb / Studies on interactions between NKR-P1D and Clrb membrane receptors

Hanč, Pavel January 2011 (has links)
Studies on interactions between NKR-P1D and Clrb membrane receptors Interaction between murine NKR-P1D and Clrb receptors was originally described as a novel type of "MHC class-I independent missing-self recognition" and was shown to confer protection from killing by natural killer cells.[1] However, further study brought conflicting results suggesting that NKR-P1D does not binds Clrb strongly if it does at all.[2] In order to address the issues arising from these conflicting results, we have recombinantly expressed the extracellular domains of both receptors in E. coli cells and refolded the proteins in vitro. The quality of refolding was confirmed both by determining the disulphide bonding pattern using FTMS and measuring 1 H/15 N-HSQC spectra. By means of size exclusion chromatography and analytical ultracentrifuge we were unable to provide convincing results for the interaction itself. However, using SPR technique, a weak, specific, pH-dependent interaction was observed. Interaction between the proteins in solution was immobilized using chemical cross-linking technique. Three cross-linking reagents, EDC, DSG and DSS were used. The reaction mixture was separated by means of SDS-PAGE and protein bands corresponding to dimers were digested in gel. Using FT-MS we were able to find peptides from both...
572

A Role for TNMD in Adipocyte Differentiation and Adipose Tissue Function: A Dissertation

Senol-Cosar, Ozlem 30 June 2016 (has links)
Adipose tissue is one of the most dynamic tissues in the body and is vital for metabolic homeostasis. In the case of excess nutrient uptake, adipose tissue expands to store excess energy in the form of lipids, and in the case of reduced nutrient intake, adipose tissue can shrink and release this energy. Adipocytes are most functional when the balance between these two processes is intact. To understand the molecular mechanisms that drive insulin resistance or conversely preserve the metabolically healthy state in obese individuals, our laboratory performed a screen for differentially regulated adipocyte genes in insulin resistant versus insulin sensitive subjects who had been matched for BMI. From this screen, we identified the type II transmembrane protein tenomodulin (TNMD), which had been previously implicated in glucose tolerance in gene association studies. TNMD was upregulated in omental fat samples isolated from the insulin resistant patient group compared to insulin sensitive individuals. TNMD was predominantly expressed in primary adipocytes compared to the stromal vascular fraction from this adipose tissue. Furthermore, TNMD expression was greatly increased in human preadipocytes by differentiation, and silencing TNMD blocked adipogenic gene induction and adipogenesis, suggesting its role in adipose tissue expansion. Upon high fat diet feeding, transgenic mice overexpressing Tnmd specifically in adipose tissue developed increased epididymal adipose tissue (eWAT) mass without a difference in mean cell size, consistent with elevated in vitro adipogenesis. Moreover, preadipocytes isolated from transgenic epididymal adipose tissue demonstrated higher BrdU incorporation than control littermates, suggesting elevated preadipocyte proliferation. In TNMD overexpressing mice, lipogenic genes PPARG, FASN, SREBP1c and ACLY were upregulated in eWAT as was UCP-1 in brown fat, while liver triglyceride content was reduced. Transgenic animals displayed improved systemic insulin sensitivity, as demonstrated by decreased inflammation and collagen accumulation and increased Akt phosphorylation in eWAT. Thus, the data we present here suggest that TNMD plays a protective role during visceral adipose tissue expansion by promoting adipogenesis and inhibiting inflammation and tissue fibrosis.
573

Identification of Molecular Determinants that Shift Co- and Post-Translational N-Glycosylation Kinetics in Type I Transmembrane Peptides: A Dissertation

Malaby, Heidi L. H. 07 April 2014 (has links)
Asparagine (N)-linked glycosylation occurs on 90% of membrane and secretory proteins and drives folding and trafficking along the secretory pathway. The N-glycan can be attached to an N-X-T/S-Y (X,Y ≠ P) consensus site by one of two oligosaccharyltransferase (OST) STT3 enzymatic isoforms either during protein translation (co-translational) or after protein translation has completed (post-translational). While co-translational N-glycosylation is both rapid and efficient, post-translational N-glycosylation occurs on a much slower time scale and, due to competition with protein degradation and forward trafficking, could be detrimental to the success of a peptide heavily reliant on post-translational N-glycosylation. In evidence, mutations in K+ channel subunits that shift N-glycosylation kinetics have been directly linked to cardiac arrhythmias. My thesis work focuses on identifying primary sequence factors that affect the rate of N-glycosylation. To identify the molecular determinants that dictate whether a consensus site acquires its initial N-glycan during or after protein synthesis, I used short (~ 100-170 aa) type I transmembrane peptides from the KCNE family (E1-E5) of K+ channel regulatory subunits. The lifetime of these small membrane proteins in the ER translocon is short, which places a significant time constraint on the co-translational N-glycosylation machinery and increases the resolution between co- and post-translational events. Using rapid metabolic pulse-chase experiments described in Chapter II, I identified several molecular determinants among native consensus sites in the KCNE family that favor co-translational N-glycosylation: threonine containing-consensus sites (NXT), multiple N-terminal consensus sites, and long C-termini. The kinetics could also be shifted towards post-translational N-glycosylation by converting to a serine containing-consensus site (NXS), reducing the number of consensus sites in the peptide, and shortening the C-termini. In Chapter III, I utilized an E2 scaffold peptide to examine the N-glycosylation kinetics of the middle X residue in an NXS consensus site. I found that large hydrophobic and negatively charged residues hinder co-translational N-glycosylation, while polar, small hydrophobic, and positively charged residues had the highest N-glycosylation efficiencies. Poorly N-glycosylated NXS consensus sites with large hydrophobic and negatively charged X residues had a significantly improved co-translational N-glycosylation efficiency upon conversion to NXT sites. Also in Chapter III, I adapted a siRNA knockdown strategy to definitively identify the OST STT3 isoforms that perform co- and post-translational N-glycosylation for type I transmembrane substrates. I found that the STT3A isoform predominantly performs co-translational N-glycosylation while the STT3B isoform predominantly performs post-translational N-glycosylation, in agreement with the roles of these enzymatic subunits on topologically different substrates. Taken together, these findings further the ability to predict the success of a consensus site by primary sequence alone and will be helpful for the identification and characterization of N-glycosylation deficiency diseases.
574

Lipid Flippases from Plasmodium Parasites : from Heterologous Production towards Functional Characterization / Flippases de parasites du genre Plasmodium : de la production hétérologue vers la caractérisation fonctionnelle

Lamy, Anaïs 23 November 2018 (has links)
Le paludisme est une maladie dévastatrice causée par un parasite du genre Plasmodium. Du fait de la propagation de souches résistantes aux actuels antipaludéens, il est nécessaire de comprendre les fonctions physiologiques essentielles du parasite afin de trouver de nouvelles cibles thérapeutiques. Les transporteurs membranaires sont une classe importante de cibles chez l'homme du fait de leur rôle physiologique essentiel pour la cellule. Cependant, chez les parasite du genre Plasmodium, seulement quelques transporteurs ont été biochimiquement caractérisés. Des études récentes de délétion de gènes dans un model murin ont montrées que l’ATPase de type P4, ou flippase, ATP2 de Plasmodium est essentielle pour le parasite. Chez les Eucaryotes, l’activité de translocation des lipides des ATPases de type P4 est nécessaire pour maintenir l’asymétrie des membranes, un élément clé dans de nombreux processus essentiels comme la formation de vésicules ou l’apoptose. Les flippases forment des complexes hétéromériques avec les protéines de la famille Cdc50 qui sont également trouvées dans le génome de Plasmodium. Pour comprendre le rôle fonctionnel de ces transporteurs putatifs durant l’infection par le parasite, nous avons besoin d’étudier leur mécanisme de transport et d’identifier leur (s) substrat (s). Nous avons entrepris l’expression hétérologue chez Saccharomyces cerevisiae d’ATP2, en complexe avec les sous unités Cdc50, de trois espèces différentes de Plasmodium. Nous avons réussi à co-exprimer l’orthologue ATP2 de P. chabaudi (PcATP2) et les sous unités PcCdc50 correspondantes. Par co-immunoprécipitation et une chromatographie d’exclusion stérique détectée par fluorescence, nous sommes parvenus à identifier la sous unité s’associant à PcATP2 : PcCdc50.1. Nous avons ensuite purifié le complexe PcATP2/PcCdc50.1 en utilisant des nanobodies reconnaissant la GFP fusionnée à l’extrémité C-terminale de PcATP2 et nous avons initié la caractérisation fonctionnelle avec des tests de phosphorylation et d’activité ATPasique. / Malaria is a devastating disease caused by a parasite of the genus Plasmodium. Due to the spread of strains resistant to current antimalarial drugs, it is necessary to understand essential physiological functions of the parasite in order to find new drug targets. Membrane transport proteins are an important class of drug targets in humans, as they perform essential physiological roles of the cell. However, for Plasmodium parasites, just a few membrane transporters have been biochemically described. Recent gene-deletion studies in malaria mouse models have shown that the Plasmodium P4-ATPase, or lipid flippase, ATP2 is essential for the parasite. In eukaryotes, the phospholipid translocation activity of P4-ATPases is needed to maintain the asymmetric distribution of membranes, a key element in many essential processes like vesicle budding or apoptosis. Lipid flippases form heteromeric complexes with members of the Cdc50 protein family, also found in the genomes of Plasmodium parasites. To understand the functional role of these still putative transporters during malaria infection we need to study their transport mechanism and identify their substrate(s). We have conducted the heterologous expression in Saccharomyces cerevisiae of ATP2 in complex with the Cdc50 subunits from three different Plasmodium species. We succeeded to co-express the ATP2 ortholog of P. chabaudi (PcATP2) and the related putative PcCdc50 proteins. By co-immunoprecipitation and Fluorescence-detection Size Exclusion Chromatography, we have managed to identify the Cdc50 β-subunit that associates to PcATP2: PcCdc50.1. We then purified the complex PcATP2/PcCdc50.1 using immobilized nanobodies that recognize the GFP fused at the C-terminal end of PcATP2 and we initiated the functional characterization using ATPase and phosphorylation activity assays.
575

Growth rate control of periplasmic product retention in Escherichia coli

Bäcklund, Emma January 2008 (has links)
The recombinant product is secreted to the periplasm in many processes where E. coli is used as host. One drawback with secretion is the undesired leakage of the periplasmic products to the medium. The aim of this work was to find strategies to influence the periplasmic retention of recombinant products. We have focused on the role of the specific growth rate, a parameter that is usually controlled in industrial bioprocesses. The hypothesis was that the stability of the outer membrane in E. coli is gained from a certain combination of specific phospholipids and fatty acids on one side and the amount and specificity of the outer membrane proteins on the other side, and that the specific growth rate influences this structure and therefore can be used to control the periplasmic retention. We found that is possible to control the periplasmic retention by the growth rate. The leakage of the product increased as the growth rate increased. It was however also found that a higher growth rate resulted in increased productivity. This resulted in equal amounts of product inside the cells regardless of growth rate. We also showed that the growth rate influenced the outer membrane composition with respect to OmpF and LamB while OmpA was largely unaffected. The total amount of outer membrane proteins decreased as the growth rate increased. There were further reductions in outer membrane protein accumulation when the recombinant product was secreted to the periplasm. The lowered amount of outer membrane proteins may have contributed to the reduced ability for the cell to retain the product in the periplasm. The traditional way to control the growth rate is through a feed of substrate in a fed-batch process. In this work we used strains with a set of mutations in the phosphotransferase system (PTS) with a reduced uptake rate of glucose to investigate if these strains could be used for growth rate control in batch cultivations without the use of fed-batch control equipment. The hypothesis was that the lowering of the growth rate on cell level would result in the establishment of fed-batch similar conditions. This study showed that it is possible to control the growth rate in batch cultivations by using mutant strains with a decreased level of substrate uptake rate. The mutants also produced equivalent amounts of acetic acid as the wild type did in fed-batch cultivation with the same growth rate. The oxygen consumption rates were also comparable. A higher cell density was reached with one of the mutants than with the wild type in batch cultivations. It is possible to control the growth rate by the use of the mutants in small-scale batch cultivations without fed-batch control equipment. / QC 20101108
576

Regulating Lipid Organization and Investigating Membrane Protein Properties in Physisorbed Polymer-tethered Membranes

Siegel, Amanda P. 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cell membranes have remarkable properties both at the microscopic level and the molecular level. The current research describes the use of physisorbed polymer-grafted lipids in model membranes to investigate some of these properties on both of these length scales. On the microscopic scale, plasma membranes can be thought of as heterogenous thin films. Cell membranes adhered to elastic substrates are capable of sensing substrate/film mismatches and modulating their membrane stiffness to more closely match the substrate. Membrane/substrate mismatch can be modeled by constructing lipopolymer-enriched lipid monolayers with different bending stiffnesses and physisorbing them to rigid substrates which causes buckling. This report describes the use of atomic force microscopy and epimicroscopy to characterize these buckled structures and to illustrate the use of the buckled structures as diffusion barriers in lipid bilayers. In addition, a series of monolayers with varying bending stiffnesses and thicknesses are constructed on rigid substrates to analyze changes in buckling patterns and relate the experimental results to thin film buckling theory. On the molecular scale, plasma membranes can also be thought of as heterogeneous mixtures of lipids where the specific lipid environment is a crucial factor affecting membrane protein function. Unfortunately, heterogeneities involving cholesterol, labeled lipid rafts, are small and transient in live cells. To address this difficulty, the present work describes a model platform based on polymer-supported lipid bilayers containing stable raft-mimicking domains into which transmembrane proteins are incorporated (αvβ3, and α5β1integrins). This flexible platform enables the use of confocal fluorescence fluctuation spectroscopy to quantitatively probe the effect of cholesterol concentrations and the binding of native ligands (vitronectin and fibronectin for αvβ3, and α5β1) on protein oligomerization state and on domain-specific protein sequestration. In particular, the report shows significant ligand-induced integrin sequestration with a low level of dimerization. Cholesterol concentration increases rate of dimerization, but only moderately. Ligand addition does not affect rate of dimerization in either system. The combined results strongly suggest that ligands induce changes to integrin conformation and/or dynamics without inducing changes in integrin oligomerization state, and in fact these ligand-induce conformational changes impact protein-lipid interactions.
577

CHARACTERIZATION OF OUTER MEMBRANE PROTEINS AND OUTER MEMBRANE VESICLES AND COMPARATIVE GENOMICS TO IDENTIFY VACCINE CANDIDATES IN FUSOBACTERIUM NECROPHORUM

Prabha K Bista (14206271) 02 December 2022 (has links)
<p>  </p> <p><em>Fusobacterium necrophorum</em> is a Gram-negative, anaerobic, opportunistic pathogen that causes necrotic infections in cattle leading to liver abscess, foot rot, and calf diphtheria. Particularly, liver abscess in cattle is reported at 20.7% annually, and leads to liver condemnation and an annual economic burden of about 62 million dollars to the feedlot industry. Antibiotic administration is the mainstay of treating these infections, but antibiotic resistance is unavoidable and demand for antibiotic-free, natural, and organic beef has demanded alternative therapies and preventatives. Vaccination is one of the best alternatives to prophylactic antibiotic administration. In this study, we have explored outer membrane proteins (OMPs) and outer membrane vesicles (OMVs) for potential vaccine candidates. OMPs and OMVs are vaccine targets because of their antigenic properties and host specificity. Additionally, we performed comparative genomic analysis of <em>F. necrophorum</em> species to identify additional virulence genes with vaccine potential, unique to the <em>F. necrophorum</em> and its virulent subspecies <em>necrophorum</em>. </p> <p>Protein- protein interaction investigation through binding assay and pulldown assay identified novel OMPs, namely 17kDa, 22kDa, and 66.3 kDa proteins, which were further characterized as OmpH, OmpA and Cell Surface Protein (CSP), respectively. In this study, these novel OMPs including previously characterized 43kDa OMPs were cloned, and recombinant proteins were expressed and purified. These recombinant proteins were used to generate polyclonal antibodies in rabbits, and their efficacy was studied using <em>in vitro</em> adhesion inhibition assays. The combination of two or more antibodies raised against the recombinant OMPs was significantly effective in reducing/neutralizing bacterial binding to bovine endothelial cells compared to individual antibody treatment. This suggests that a multiple subunit vaccine could be effective and provide sufficient evidence to perform <em>in vivo</em> studies. </p> <p>Similarly, we purified OMVs of <em>F. necrophorum</em> subspecies <em>necrophorum</em> 8L1 and analyzed its content using proteomics and lipidomics. Out of 342 proteins identified by tandem liquid chromatography mass spectrometry (LC-MS), OMPs and toxins were the most abundant. These included OMPs and toxins namely, 43 kDa OMP, OmpH, OmpA, CSP, FadA, leukotoxin family filamentous adhesin, N-terminal domain of hemagglutinin and other OMP transport and assembly factor protein. The presence of a subset of these proteins was further confirmed by western blot analysis. Lipidomics analysis showed that OMVs contained phospholipid, sphingolipid, and acetyl carnitine as the main lipid contents. Cytotoxicity assay on BL-3 cell line showed that these OMVs have a toxic effect on host immune cells and could impart immunomodulatory effect. All these findings suggest the vaccine potential of OMVs and demand dose-based <em>in vivo</em> study.</p> <p>In addition, we identified and characterized 5 clinical isolates of <em>F. necrophorum</em> using comparative genomics, UBCG (Up-to-date Bacterial Core Gene) based analysis enabled phylogenetic characterization of 46 <em>F. necrophorum</em> genomes into subspecies specific clades. The pangenome and recombination analysis showed the extensive disparity in accessory genes resulting in species divergence. Strikingly, we detected antimicrobial resistance gene for macrolides and tetracycline in one strain of <em>F. necrophorum</em>, a harbinger of the start of resistance and necessitating search for an alternative prophylactic method. We also noted common virulence genes, including toxins, outer membrane adhesion proteins, cell envelope, type IV secretion system, ABC (ATP-binding cassette) transporters and transporter proteins in <em>F. necrophorum</em> strains. A focused study on these genes could help identify the main genes of virulence and inform effective vaccination strategies against fusobacterial infections. </p> <p>Overall, the studies suggest adhesins and toxin and/or OMV-based subunit vaccine could be potential targets for vaccine development against fusobacterial infections.  </p>
578

Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics

Piguet, Joachim January 2010 (has links)
Membrane protein dynamics is of great importance for living organisms. The precise localization of proteins composing a synapse on the membrane facing a nerve terminus is essential for proper functioning of the nervous system. In muscle fibers, the nicotinic acetylcholine is densely packed under the motor nerve termini. A receptor associated protein, rapsyn, acts as a linker between the receptor and the other components of the synaptic suramolecular assembly. Advances in fluorescence microscopy have allowed to measure the behavior of a single receptor in the cell membrane. In this work single-molecule microscopy was used to track the motion of ionotropic acetylcholine (nAChR) and serotonin (5HT3R) receptors in the plasma membrane of cells. We present methods for measuring single-molecule diffusion and their analysis. Single molecule tracking has shown a high dependence of acetylcholine receptors diffusion on its associated protein rapsyn. Comparing muscle cells that either express rapsyn or are devoid of it, we found that rapsyn plays an important role on receptor immobilization. A three-fold increase of receptor mobility was observed in muscle cells devoid of rapsyn. However, in these cells, a certain fraction of immobilized receptors was also found immobile. Furthermore, nAChR were strongly confined in membrane domains of few tens of nanometers. This showed that membrane composition and membrane associated proteins influence on receptor localization. During muscle cell differentiation, the fraction of immobile nAChR diminished along with the decreasing nAChR and stable rapsyn expression levels. The importance of rapsyn in nAChR immobilization has been further confirmed by measurements in HEK 293 cells, where co-expression of rapsyn increased immobilization of the receptor. nAChR is a ligand-gated ion-channel of the Cys-loop family. In mammals, members of this receptor family share general structural and functional features. They are homo- or hetero-pentamers and form a membrane-spanning ion channel. Subunits have three major regions, an extracellular ligand binding domain, a transmembrane channel and a large intracellular loop. 5HT3R was used as a model to study the effect of this loop on receptor mobility. Single-molecule tracking experiments on receptors with progressively larger deletions in the intracellular loop did not show a dependence of the size of the loop on the diffusion coefficient of mobile receptors. However, two regions were identified to play a role in receptor mobility by changing the fractions of immobile and directed receptors. Interestingly, a prokaryotic homologue of cys-loop receptors, ELIC, devoid of a large cytoplasmic loop was found to be immobile or to show directed diffusion similar as the wild-type 5HT3R. The scaffolding protein rapsyn stabilizes nAChR clusters in a concentration dependent manner. We have measured the density and self-interactions of rapsyn using FRET microscopy. Point-mutations of rapsyn, known to provoke myopathies, destabilized rapsyn self-interactions. Rapsyn-N88K, and R91L were found at high concentration in the cytoplasm suggesting that this modification disturbs membrane association of rapsyn. A25V was found to accumulate in the endoplasmic reticulum. Fluorescent tools to measure intracellular concentration of calcium ions are of great value to study the function of neurons. Rapsyn is highly abundant at the neuromuscular junction and thus is a genuine synaptic marker. A fusion protein of rapsyn with a genetically encoded ratiometric calcium sensor has been made to probe synapse activity. This thesis has shown that the combined use of biologically relevant system and modern fluorescence microscopy techniques deliver important information on pLGIC behaviour in the cell membrane. / <p>QC 20151217</p>
579

Design and synthesis of inositol phosphate-based probes

Slowey, Aine January 2013 (has links)
Inositol phosphates play a fundamental role in many intracellular processes. Of particular importance is the role of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] in the protein kinase B (PKB/Akt) signalling pathway. PtdIns(3,4,5)P3 recruits PKB to the cell membrane through binding interactions with its pleckstrin homology (PH) domain. In several human cancers, this signalling pathway is upregulated, resulting in increased cell growth and proliferation. In order to investigate the therapeutic potential of the PtdIns(3,4,5)P3–PH domain binding interaction, it is necessary to develop inositol phosphate-based probes. This DPhil dissertation highlights the synthesis of a number of derivatives of the PtdIns(3,4,5)P3 head group – inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. These derivatives incorporated phosphate isosteres at both the 3- and 5-positions of Ins(1,3,4,5)P4, through the utilisation of novel protection and deprotection strategies. In addition, this dissertation highlights the efficient synthesis of the natural product inositol 1,3-bisphosphate [Ins(1,3)P2] and our work towards the synthesis of inositol pyrophosphate derivatives.
580

Applications of droplet interface bilayers : specific capacitance measurements and membrane protein corralling

Gross, Linda C. M. January 2011 (has links)
Droplet Interface Bilayers (DIBs) have a number of attributes that distinguish them from conventional artificial lipid bilayers. In particular, the ability to manipulate bilayers mechanically is explored in this thesis. Directed bilayer area changes are used to make precise measurements of the specific capacitance of DIBs and to control the two dimensional concentration of a membrane protein reconstituted in the bilayer. Chapter 1 provides a general introduction to the role of the lipid membrane en- vironment in the function of biological membranes and their integral proteins. An overview of model lipid bilayer systems is given. Chapter 2 introduces work carried out in this laboratory previously and illustrates the experimental setup of DIBs. Some important bilayer biophysical concepts are covered to provide the theoretical background to experiments in this and in later chapters. Results from the characterisation of DIBs are reported, and an account of the development of methods to manipulate the bilayer by mechanical means is given. Chapter 3 describes experiments that apply bilayer area manipulation in DIBs to achieve precise measurement of specific capacitance in a range of lipid systems. Chapter 4 reports results from experiments investigating the response of bilayer specific capacitance to an applied potential. Chapter 5 covers the background and experimental setup for total internal fluo- rescence microscopy experiments in DIBs and describes the expression, purification and characterisation of the bacterial β-barrel membrane protein pore α-Hemolysin. Chapter 6 describes experiments that apply the mechanical manipulation of bilayer area in DIBs to the corralling and control of the surface density of α-Hemolysin.

Page generated in 0.0603 seconds