• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 745
  • 184
  • 112
  • 71
  • 62
  • 17
  • 14
  • 13
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • Tagged with
  • 1469
  • 251
  • 246
  • 226
  • 205
  • 188
  • 182
  • 159
  • 154
  • 144
  • 132
  • 114
  • 114
  • 111
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Expansion of Conforming to Interface Structured Adaptive Mesh Refinement Algorithm to Higher Order Elements and Crack Propagation

Mohamadsalehi, Mohamad 30 August 2022 (has links)
No description available.
152

Implementing Static Mesh Hole Filling in Unreal Engine 4.27

Wallquist, Felix January 2024 (has links)
This project, completed in collaboration with Piktiv AB, aimed to develop an automated surface hole-filling feature for static meshes in Unreal Engine 4.27, with the goal of making repaired surfaces visually indistinguishable from their surrounding areas. The solution was primarily designed to address holes that arose from, but were not limited to, the use of Reduction Settings within Unreal Engine on static meshes. The functionality encompassed four key stages: boundary detection, where all holes on the mesh were identified; triangulation, which involved patching the hole using vertices from the boundary; refinement, entailing the addition of vertices and triangles to the patched area to mimic the density of the surrounding surface; and fairing, which smoothed the patched surface. Additionally, the project introduced a straightforward method for determining the texture coordinates of newly added vertices and a technique for ensuring that triangle normals correctly faced outward from the mesh. The Static Mesh Hole Filler, as implemented, demonstrates efficiency in filling an arbitrary amount of small, planar holes, which commonly result from polygon reduction using Reduction Settings in Unreal Engine. However, this function falls short in preserving unique texture details and maintaining the curvature of surfaces when dealing with larger holes. This limitation necessitates users to seek alternative methods for effectively repairing the mesh.
153

Analýza komerčního využití Wireless Mesh Network / Commercial use analysis of Wireless Mesh Network

Bystřická, Radka January 2011 (has links)
There is a constant development and continuous progress in the wireless technology field as it is in the all fields of information and communication technologies. One of the latest trends is the wireless mesh network. This type of network brings new features into the wireless field such as multihop, self-configuration, self-organization and self-healing. This enables the usage of wireless networks in new fields and industries or the upgrade of current implementations to meet new market demands. This thesis summarizes theoretical findings from this field from the users' point of view and functionality dimension. This is followed by a summary of possible applications, available technologies and known standards. The second half of the thesis consists of a requirement analysis of a chosen user group (the Fire Rescue Service of the Czech Republic) focusing on application of wireless mesh network for rescue operations. The analysis also includes test criteria and principles for test procedures for this application.
154

Adaptive Mesh Redistribution for Hyperbolic Conservation Laws

Pathak, Harshavardhana Sunil January 2013 (has links) (PDF)
An adaptive mesh redistribution method for efficient and accurate simulation of multi dimensional hyperbolic conservation laws is developed. The algorithm consists of two coupled steps; evolution of the governing PDE followed by a redistribution of the computational nodes. The second step, i.e. mesh redistribution is carried out at each time step iteratively with the primary aim of adapting the grid to the computed solution in order to maximize accuracy while minimizing the computational overheads. The governing hyperbolic conservation laws, originally defined on the physical domain, are transformed on to a simplified computational domain where the position of the nodes remains independent of time. The transformed governing hyperbolic equations are recast in a strong conservative form and are solved directly on the computational domain without the need for interpolation that is typically associated with standard mesh redistribution algorithms. Several standard test cases involving numerical solution of scalar and system of hyperbolic conservation laws in one and two dimensions are presented in order to demonstrate the accuracy and computational efficiency of the proposed technique.
155

Geração de malhas volumétricas a partir de imagens / Volumetric mesh generation from images

Cuadros-Vargas, Alex Jesús 08 February 2007 (has links)
Técnicas para gerar malhas triangulares ou tetraedrais a partir de imagens, ou assumem como entrada uma imagem pré-processada, ou geram uma malha sem distinguir as diferentes estruturas contidas na imagem. O pré-processamento e a ausência de estruturas bem definidas podem apresentar dificuldades na utilização das malhas geradas em algumas aplicações, tais como simulações numéricas. Neste trabalho, apresentamos uma nova técnica que elimina a necessidade do pré-processamento embutindo a segmentação dentro do processo de geração de malha. Além disto, a técnica proposta considera critérios de qualidade nas malhas geradas, mostrando-se apropriada para aplicações de simulação numérica assim como modelagem de imagens com malhas / Techniques devoted to generate triangular or tetrahedral meshes from images either take as starting point a pre-processed image or generate a mesh without distinguishing different structures contained in the image. The pre-process and the absence of well defined structures may impose difficulties in using the resulting mesh in some applications as, for example, numerical simulations. In this work, we present a new technique that aims at eliminating the need for pre-processing by building the segmentation into the mesh generation process. Furthermore, the proposed technique consider quality criteria in the generated meshes, being appropriated for applications in numerical simulation as well as in image modeling
156

Geração e refinamento de malhas segmentadas a partir de imagens com textura / Generating and refining segmented meshes from textured images

Lizier, Mario Augusto de Souza 23 November 2009 (has links)
Com a popularização de equipamentos tradicionais de captura de imagens, como câmeras digitais, e o avanço tecnológico dos dispositivos não invasivos, como tomografia e ressonância, cresce também a necessidade e consequente uso de métodos numéricos para simulação de fenômenos físicos em domínios definidos por imagens. Um dos pré-requisitos para a aplicação de tais métodos numéricos consiste na discretização do domínio em questão, num processo denominado geração de malhas. Embora diversos métodos de geração de malha tenham sido propostos para discretizar domínios definidos por primitivas geométricas, pouco tem sido feito no sentido de gerar uma decomposição diretamente a partir de imagens. Neste trabalho, apresentamos uma abordagem de geração de malhas de qualidade a partir de domínios definidos por imagens com textura. Mais especificamente, a pesquisa descrita nesta tese contribui com a melhoria do algoritmo Imesh, ao sanar três de suas principais limitações: tratamento de imagens com texturas; controle do nível de refinamento da malha e suporte a outros tipos de elementos. Estas contribuições flexibilizam o processo de geração da malha, e ainda ampliam o domínio de aplicações do algoritmo Imesh, à medida que são considerados domínios definidos por imagens com textura e o uso de métodos numéricos para elementos não simpliciais torna-se possível. O algoritmo de melhoria da malha gerada utiliza uma abordagem inovadora de remalhamento baseada em templates e guiada por retalhos de Bézier / With the spreading of traditional image capturing devices, such as digital cameras, and the technological advancement of more specific imaging devices such as CT and MRI, also increased the need and the following use of numerical methods for simulation of physical phenomena in domains defined by images. One of the prerequisites for the application of such numerical methods is the discretization of the corresponding domain, in a process called mesh generation. Although several methods of mesh generation have been proposed to discretize domains defined by geometric primitives, little has been done to generate a decomposition directly from images. We present an approach to generate quality meshes from domains defined by images with texture. More specifically, the research described in this thesis contributes to the improvement of the Imesh algorithm, removing three of its main limitations: treatment textured images, control of the level of the mesh refinement and support for other types of non-simplicial elements. These contributions provide flexibility to the mesh generation process, and extend the range of applications of Imesh by both handling textured images and considering the use of numerical methods for non-simplicial elements. The mesh quality improvement algorithm uses a new approach based on mesh templates and it is guided by Bezier patches
157

Geração de malhas volumétricas a partir de imagens / Volumetric mesh generation from images

Alex Jesús Cuadros-Vargas 08 February 2007 (has links)
Técnicas para gerar malhas triangulares ou tetraedrais a partir de imagens, ou assumem como entrada uma imagem pré-processada, ou geram uma malha sem distinguir as diferentes estruturas contidas na imagem. O pré-processamento e a ausência de estruturas bem definidas podem apresentar dificuldades na utilização das malhas geradas em algumas aplicações, tais como simulações numéricas. Neste trabalho, apresentamos uma nova técnica que elimina a necessidade do pré-processamento embutindo a segmentação dentro do processo de geração de malha. Além disto, a técnica proposta considera critérios de qualidade nas malhas geradas, mostrando-se apropriada para aplicações de simulação numérica assim como modelagem de imagens com malhas / Techniques devoted to generate triangular or tetrahedral meshes from images either take as starting point a pre-processed image or generate a mesh without distinguishing different structures contained in the image. The pre-process and the absence of well defined structures may impose difficulties in using the resulting mesh in some applications as, for example, numerical simulations. In this work, we present a new technique that aims at eliminating the need for pre-processing by building the segmentation into the mesh generation process. Furthermore, the proposed technique consider quality criteria in the generated meshes, being appropriated for applications in numerical simulation as well as in image modeling
158

A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes

Kunert, Gerd 30 March 1999 (has links) (PDF)
Many physical problems lead to boundary value problems for partial differential equations, which can be solved with the finite element method. In order to construct adaptive solution algorithms or to measure the error one aims at reliable a posteriori error estimators. Many such estimators are known, as well as their theoretical foundation. Some boundary value problems yield so-called anisotropic solutions (e.g. with boundary layers). Then anisotropic finite element meshes can be advantageous. However, the common error estimators for isotropic meshes fail when applied to anisotropic meshes, or they were not investigated yet. For rectangular or cuboidal anisotropic meshes a modified error estimator had already been derived. In this paper error estimators for anisotropic tetrahedral or triangular meshes are considered. Such meshes offer a greater geometrical flexibility. For the Poisson equation we introduce a residual error estimator, an estimator based on a local problem, several Zienkiewicz-Zhu estimators, and an L_2 error estimator, respectively. A corresponding mathematical theory is given.For a singularly perturbed reaction-diffusion equation a residual error estimator is derived as well. The numerical examples demonstrate that reliable and efficient error estimation is possible on anisotropic meshes. The analysis basically relies on two important tools, namely anisotropic interpolation error estimates and the so-called bubble functions. Moreover, the correspondence of an anisotropic mesh with an anisotropic solution plays a vital role. AMS(MOS): 65N30, 65N15, 35B25
159

An investigation of a finite volume method incorporating radial basis functions for simulating nonlinear transport

Moroney, Timothy John January 2006 (has links)
The objective of this PhD research programme is to investigate the effectiveness of a finite volume method incorporating radial basis functions for simulating nonlinear transport processes. The finite volume method is the favoured numerical technique for solving the advection-diffusion equations that arise in transport simulation. The method transforms the original problem into a system of nonlinear, algebraic equations through the process of discretisation. The accuracy of this discretisation determines to a large extent the accuracy of the final solution. A new method of discretisation is presented that employs radial basis functions (rbfs) as a means of local interpolation. When combined with Gaussian quadrature integration methods, the resulting finite volume discretisation leads to accurate numerical solutions without the need for very fine meshes, and the additional overheads they entail. The resulting nonlinear, algebraic system is solved efficiently using a Jacobian-free Newton-Krylov method. By employing the new method as an extension of existing shape function-based approaches, the number of nonlinear iterations required to obtain convergence can be reduced. Furthermore, information obtained from these iterations can be used to increase the efficiency of subsequent rbf-based iterations, as well as to construct an effective parallel reconditioner to further reduce the number of nonlinear iterations required. Results are presented that demonstrate the improved accuracy offered by the new method when applied to several test problems. By successively refining the meshes, it is also possible to demonstrate the increased order of the new method, when compared to a traditional shape function basedmethod. Comparing the resources required for both methods reveals that the new approach can be many times more efficient at producing a solution of a given accuracy.
160

Méthode d'assemblage de maillages recouvrants autour de géométries complexes pour des simulations en aérodynamique compressible / Overset grid assembly method for simulations over complex geometries for compressible flows in aerodynamics

Peron, Stephanie 02 October 2014 (has links)
La simulation numérique des écoulements (CFD) est largement utilisée aujourd'hui dans l'industrie aéronautique, de l'avant-projet à la conception des appareils. En parallèle, la puissance des calculateurs s'est accrue, permettant d'effectuer des simulations résolvant les équations de Navier-Stokes moyennées (RANS) dans un délai de restitution acceptable du point de vue industriel. Cependant, les configurations simulées sont de plus en plus complexes géométriquement, rendant la réalisation du maillage très coûteuse en temps humain. Notre objectif est de proposer une méthode permettant de simplifier la génération de maillages autour de géométries complexes, en exploitant les avantages de la méthode Chimère, tout en levant les difficultés principales rencontrées par cette méthode dans le calcul des connectivités. Dans notre approche, le domaine de calcul est découpé en régions proches et en régions éloignées des corps. Des grilles curvilignes de faible extension décrivent les régions autour des corps. Le maillage de fond est défini par un ensemble de grilles cartésiennes superposées aux grilles de corps, qui sont engendrées et adaptées automatiquement selon les caractéristiques de l'écoulement. Afin de traiter des maillages recouvrants autour de géométries complexes sans surcoût humain, les différentes grilles sont regroupées par composant Chimère. Des relations d'assemblage sont alors définies entre composants, en s'inspirant de la Géométrie de Construction des Solides (CSG), où un solide peut être construit par opérations booléennes successives entre solides primitifs. Le calcul des connectivités Chimère est alors réalisé de manière simplifiée. Des simulations RANS sont effectuées autour d'un fuselage d'hélicoptère avec mât de soufflerie et autour d'une aile NACA0015 en incidence, afin de mettre en oeuvre la méthode. / Computational fluid dynamics (CFD) is widely used today in aeronautics, while the computing power has increased, enabling to perform simulations solving Reynolds-averaged Navier-Stokes equations (RANS) within an acceptable time frame from the industrial point of view. However, the configurations are more and more geometrically complex, making the mesh generation step prohibitive. Our aim is here to propose a method enabling a simplification of the mesh generation over complex geometries, taking advantage of the Chimera method and overcoming the major difficulties arising when performing overset grid connectivity. In our approach, the computational domain is partitioned into near-body regions and off-body regions. Near-body regions are meshed by curvilinear grids of short extension describing the obstacles involved in the simulation. Off-body mesh is defined by a set of adaptive Cartesian grids, overlapping near-body grids. In order to consider overset grids over complex geometries with no additional cost, grids are gathered by Chimera component, and assembly relations are defined between them, inspired by Constructive Solid Geometry, where a solid can result from boolean operations between primitive solids. The overset grid connectivity is thus simplified. RANS simulations are performed over a helicopter fuselage with a strut, and over a NACA0015 wing.

Page generated in 0.0412 seconds