• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 21
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

In vitro effects of 2-methoxyestradiol, an endogenous estrogen, on MCF-12A and MCF-7 cell cycle progression

Van Zijl, Magdalena Catherina 24 July 2007 (has links)
2-Methoxyestradiol (2ME) is an endogenous estrogen metabolite with antiproliferative and antiangiogenic properties. 2ME also plays an active role in the induction of apoptosis, especially in cancerous cells. These properties have been confirmed by various in vitro and in vivo studies and render 2ME a potential antitumor agent. The mechanism of action of 2ME, however, is not yet fully elucidated and it is believed that multiple mechanisms are involved that may be dependent on cell type. The aim of this study was to investigate the differential effects of 2ME on cell growth, morphology and spindle formation in the non-tumorigenic MCF-12A breast cell line and the tumorigenic MCF-7 breast cell line. In dose-dependent studies, cell growth was determined spectrophotometrically. Light microscopy was used to investigate the morphological changes induced by 2ME and its effect on spindle formation was investigated by means of indirect immunofluorescence. The estrogen receptor status of the MCF-12A cells was confirmed with immunocytochemistry. In order to investigate the effect of 2ME on the length of the cell cycle, cells were blocked in early S-phase with hydroxyurea, then allowed to continue through the cell cycle and mitotic indices determined at regular time intervals. Checkpoint kinase and Cdc2 kinase assays were used to determine the effect of 2ME on relevant cell cycle kinases. Although 2ME inhibited cell growth in both cell lines, the MCF-7 cells were inhibited from much lower concentrations and growth inhibition was more pronounced than in the MCF-12A cells. Treated MCF-7 cells showed abnormal metaphase cells, membrane blebbing, apoptotic cells and disrupted spindle formation. These observations were either absent, or not as prominent in the MCF-12A cells. Therefore, differential mechanism(s) of growth inhibition are evident between the normal and tumorigenic cells. Although the two cell lines differ in their estrogen receptor status, this could not explain the differential effects, for 2ME has a very low affinity for the estrogen receptor. 2ME had no effect on the length of the cell cycle, but blocked MCF-7 cells in mitosis. There were no significant alterations in the phosphorylation status of Cdc25C after 2ME treatment. However, Cdc2 activity was increased to a greater extend in the MCF-7 cells than in the MCF-12A cells. Therefore, it is suggested that exposure to 2ME disrupts mitotic spindle formation and enhances Cdc2 kinase activity, leading to persistence of the spindle checkpoint and thus prolonged metaphase arrest, which may result in the induction of apoptosis. The tumorigenic MCF-7 cells are especially sensitive to 2ME treatment compared to the normal MCF-12A cells. 2ME shows potential for the treatment of breast cancer. Selecting the concentration of 2ME that has maximum inhibitory effect on tumorigenic, but minimal effect on normal cells is crucial in its possible application as antitumor agent. Furthermore, research concerning the differential action mechanisms of 2ME is essential to create a better understanding regarding the treatment of cancer and may possibly contribute to the development and/or improvement of novel chemotherapeutic agents. / Dissertation (MSc (Physiology))--University of Pretoria, 2008. / Physiology / unrestricted
22

The effect of spindle geometry on the establishment of merotelic kinetochore attachment and chromosome mis-segregation

Silkworth, William Thomas 27 July 2012 (has links)
At any given time there are on the order of one hundred million cells undergoing mitosis in the human body. To accurately segregate chromosomes, the cell forms the bipolar mitotic spindle, a molecular machine that distributes chromosomes equally to the daughter cells. To this end, microtubules of the mitotic spindle must appropriately attach the kinetochores: protein structures that form on each chromatid of each mitotic chromosome. The majority of the time correct kinetochore microtubule attachments are formed. However, mis-attachments can and do form. Mis-attachments that are not corrected before chromosome segregation can give rise to aneuploidy, an incorrect number of chromosomes. Aneuploidy occurring in the germ line can cause both miscarriage and genetic diseases. Furthermore, aneuploidy is a major characteristic of cancer cells, and aneuploid cancer cells frequently mis-segregate chromosomes at high rates, a phenotype termed chromosomal instability (CIN). CIN has been correlated with both advanced tumorigenesis and poor patient prognosis and over the years there have been many hypotheses for what causes CIN. In this study, we identified two distinct mechanisms that are responsible for CIN. Both of these mechanisms cause a transient, abnormal geometric arrangement of the mitotic spindle. Specifically, cancer cells possess supernumerary centrosomes, which lead to the assembly of multipolar spindles during early mitosis when attachments between kinetochores and microtubules are forming. Supernumerary centrosomes facilitate the formation of merotelic attachments, in which a single kinetochore binds microtubules from more than one centrosome. As mitosis progresses the supernumerary centrosomes cluster, giving rise to a bipolar spindle by the time of chromosome segregation. However, the high rates of merotelic attachments formed during the transient multipolar stage result in high rates of chromosome mis-segregation. The second geometric defect characterized is caused by failure of centrosomes to separate before kinetochore-microtubule attachments begin to form. This mechanism, too, leads to high rates of kinetochore mis-attachment formation and high rates of chromosome mis-segregation. Finally, this study shows that the mechanisms characterized here are prevalent in human cancer cells from multiple organ sites, thus revealing that both mechanisms are a common cause of CIN. / Ph. D.
23

Mécanisme et importance développementale de l'orientation du fuseau mitotique des progéniteurs neuraux chez les vertébrés : rôle du complexe Gαi\LGN\NUMA

Peyre, Elise 12 October 2011 (has links)
Pour maintenir l'architecture du tissue, les cellules épithéliales se divisent de manière planaire, perpendiculaire à leur axe principal de polarité. Du fait que le centrosome retrouve sa localisation apicale à l'interphase l'orientation du fuseau mitotique est réinitialisée à chaque cycle cellulaire. Nous utilisons de l'imagerie live en trois dimensions de centrosome marqués en GFP pour investiguer la dynamique de l'orientation du fuseau mitotique des cellules neuroépithéliales de l'embryon de poulet. Le fuseau mitotique présente des mouvements stéréotypiques pendant la métaphase, avec dans un premier temps une phase active de d'orientation planaire suivie par une phase de maintenance planaire jusqu'à l'anaphase. Nous décrivons la localisation des protéines NuMA et LGN formant un anneau au niveau du cortex latéral cellulaire au moment de l'orientation du fuseau. Enfin, nous montrons que le complexe protéique formé par LGN, NuMA et par la sous unité Gai localisé au cortex est nécessaire pour les mouvements du fuseau et pour réguler la dynamique de l'orientation du fuseau. La localisation restreinte de LGN et NuMA en anneau cortical est instructive pour l'alignement planaire du fuseau mitotique et est également requise pour sa maintenance planaire. / To maintain tissue architecture, epithelial cells divide in a planar fashion, perpendicular to their main polarity axis. As the centrosome resumes an apical localization in interphase, planar spindle orientation is reset at each cell cycle. We used three-dimensional live imaging of GFP-labeled centrosomes to investigate the dynamics of spindle orientation in chick neuroepithelial cells. The mitotic spindle displays stereotypic movements during metaphase, with an active phase of planar orientation and a subsequent phase of planar maintenance before anaphase. We describe the localization of the NuMA and LGN proteins in a belt at the lateral cell cortex during spindle orientation. Finally, we show that the complex formed of LGN, NuMA, and of cortically located Gái subunits is necessary for spindle movements and regulates the dynamics of spindle orientation. The restricted localization of LGN and NuMA in the lateral belt is instructive for the planar alignment of the mitotic spindle, and required for its planar maintenance.
24

Caractérisation du rôle d'Ensconsine / MAP7 dans la dynamique des microtubules et des centrosomes / A new role for Ensconsin / MAP7 in microtubule and centrosome dynamics

Gallaud, Emmanuel 23 April 2014 (has links)
La mitose est une étape essentielle du cycle cellulaire à l’issue de laquelle le génome répliqué de la cellule mère est ségrégé de façon équitable entre les deux cellules filles. Pour cela, la cellule assemble une structure hautement dynamique et composée de microtubules, appelée le fuseau mitotique. En plus d’assurer la bonne ségrégation des chromosomes, le fuseau mitotique détermine l’axe de division, un phénomène particulièrement important pour la division asymétrique où des déterminants d’identité cellulaire doivent être distribués de façon inéquitable entre les deux cellules filles. L’assemblage et la dynamique de ce fuseau sont finement régulés par de nombreuses protéines qui sont associées aux microtubules. Au cour de ma thèse, nous avons identifié 855 protéines constituant l’interactome des microtubules de l’embryon de Drosophile par spectrométrie de masse puis criblé par ARNi 96 gènes peu caractérisés pour un rôle en mitose dans le système nerveux central larvaire. Par cette approche, nous avons identifié 18 candidats sur la base de leur interaction aux microtubules et de leur phénotype mitotique, dont Ensconsine/MAP7. Nous avons montré qu’Ensconsine est capable de s’associer aux microtubules du fuseau et favorise leur polymérisation. De plus, les neuroblastes des larves mutantes présentent des fuseaux raccourcis et une durée de mitose prolongée. Ce délai en mitose est dû à une activation prolongée du point de contrôle du fuseau mitotique qui est essentiel pour une ségrégation correcte des chromosomes en l’absence d’Ensconsine. D’autres part, en association avec la Kinésine-1, son partenaire fonctionnel en interphase, nous avons montré qu’Ensconsine est également impliquée dans la séparation des centrosomes au cours de l’interphase. Ceci entraine une distribution aléatoire des centrosomes pères et fils dans cellules filles. Grâce à cette étude, nous avons révélé deux nouvelles fonctions pour Ensconsine : elle favorise la polymérisation des microtubules et participe donc à l’assemblage du fuseau mitotique et est impliquée, avec la Kinésine-1 dans la dynamique des centrosomes. / Mitosis is a key step of the cell cycle that allows the mother cell to segregate its replicated genome equally into the two daughter cells. To do so, the cell assembles a highly dynamic structure composed of microtubules called the mitotic spindle. Additionally to its role in the faithful segregation of chromosomes, the mitotic spindle defines the axis of cell division. This phenomenon is particularly important for the asymmetric cell division in which cell fate determinants have to be unequally distributed between the two daughter cells. Spindle assembly and dynamics are subtly regulated by numerous microtubules-associated proteins. During my PhD, we identified using mass spectrometry, 855 proteins establishing the Drosophila embryo microtubule interactome. An RNAi screen was performed in the larval central nervous system for 96 poorly described genes, in order to identify new mitotic regulators. Based on microtubule interaction and mitotic phenotype, among 18 candidates we focused on Ensconsin/MAP7. We have shown that Ensconsin is associated with spindle microtubules and promotes their polymerization. Neuroblasts from mutant larvae display shorter spindles and a longer mitosis duration. This mitotic delay is a consequence of an extended activation of the spindle assembly checkpoint, which is essential for the proper chromosome segregation in the absence of Ensconsin. This study also showed that, in association with its interphase partner Kinesin-1, Ensconsin is involved in centrosome separation during interphase. As a result, mother and daughter centrosomes are randomly distributed between the daughter cells. In conclusion, we highlighted two news functions of Ensconsin : first, this protein promotes microtubule polymerization and is involved in spindle assembly ; second, Ensconsin and its partner Kinesin-1 regulate centrosome dynamics.
25

Rôles normal et pathologique des phosphorylations de la huntingtine par Cdk5 / Physiological Functions of Huntingtin Phosphorylations at Serines 1181/1201 by Cdk5 in Health and Disease

Ben M'Barek, Karim 26 November 2012 (has links)
La mutation à l’origine de la maladie de Huntington (MH) correspond à une expansion anormale de glutamines sur la protéine huntingtine (HTT). La MH est caractérisée par des symptômes moteurs et cognitifs mais également des troubles psychiatriques tels que l’anxiété et la dépression.Au cours de ma thèse, j’ai montré que la HTT module le statut anxio-dépressif de la souris via ses phosphorylations aux sérines 1181/1201. En effet, l’ablation des phosphorylations sur la HTT endogène améliore significativement le phénotype anxio-dépressif de la souris. Chez la souris, cette modulation dépend d’une augmentation de la maturation et de la survie des nouveaux neurones dans l’hippocampe. En effet, l’irradiation focale de l’hippocampe, dans un contexte où les phosphorylations sont absentes, supprime la neurogenèse et la réduction du statut anxio-dépressif observée en l’absence de phosphorylations. Au niveau moléculaire, la HTT non phosphorylée accroît l’association des moteurs moléculaires et des vésicules de BDNF sur les microtubules, ce qui augmente les dynamiques et la libération du BDNF. Ceci active la voie de signalisation MAPK/CREB dans l’hippocampe, cette voie pouvant ainsi stimuler la neurogenèse.J’ai ensuite étudié le rôle de ces phosphorylations dans un contexte MH et j’ai démontré l’effet anxiolytique/antidépresseur de l’absence de ces phosphorylations.J’ai également montré le rôle de ces phosphorylations de la HTT au cours du développement du cortex embryonnaire.Les résultats obtenus au cours de ma thèse suggèrent que les mécanismes fondamentaux de neurogenèse sont régulés par la HTT et ses phosphorylations. De plus, ils identifient une nouvelle voie de modulation de l’anxiété/dépression faisant intervenir la HTT. / Huntington disease (HD) is a fatal neurodegenerative disorder associated with early psychiatric symptoms including anxiety and depression.During my thesis, I have demonstrated that huntingtin, the protein mutated in HD, modulates anxiety/depression-related behaviors through its phosphorylations at serines 1181 and 1201. Indeed, genetic phospho-ablation at serines 1181 and 1201 in mouse reduces basal levels of anxiety/depression-like behaviors in mouse. Suppression of neurogenesis by focal hippocampal irradiation abolishes this reduction of basal levels of anxiety/depression on some behavioral test demonstrating that neurogenesis is involved in this process. Ablation of HTT phosphorylations may stimulate neurogenesis through BDNF transport, release and signaling.I have also shown that ablation of phosphorylations on HTT is sufficient to ameliorate the anxiety/depression-like behavior of a mouse model of HD, which develops a behavior indicative of depression–like state.I have finally explored the role of HTT phosphorylation at serines 1181 and 1201 during brain development. During early steps of cortical neurogenesis, I have shown that ablation of HTT phosphorylations affects the mitosis of cortical progenitors, the fate of newly generated cells and the migration of new neurons.The results obtained during my thesis support the notion that HTT regulates key molecular mechanisms during neurogenesis both in adult and embryo. It also supports the notion that huntingtin participates to anxiety and depression-like behavior with potential consequences for the etiology of mood disorders and anxiety/depression in HD.
26

Functional Analysis of Mars (CG17064) in Drosophila Development

Zhang, Gang 25 January 2010 (has links)
No description available.
27

B-cyclin/CDK Regulation of Mitotic Spindle Assembly through Phosphorylation of Kinesin-5 Motors in the Budding Yeast, <italic>Saccharomyces cerevisiae</italic>

Chee, Mark Kuan Leng January 2012 (has links)
<p>Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCF<super>Cdc4</super> ubiquitin ligase are required for the separation of spindle poles and assembly of a bipolar spindle. It has been suggested that in the budding yeast,<italic> Saccharomyces cerevisiae</italic>, B-type cyclin/CDK (Clb/Cdc28) complexes promote spindle pole separation by inhibiting the degradation of the kinesins-5 Kip1 and Cin8 by the anaphase-promoting complex (APC<super>Cdh1</super>). I have determined, however, that the Kip1 and Cin8 proteins are actually present at wild-type levels in yeast in the absence of Clb/Cdc28 kinase activity. Here, I show that Kip1 and Cin8 are in vitro targets of Clb2/Cdc28, and that the mutation of conserved CDK phosphorylation sites on Kip1 inhibits spindle pole separation without affecting the protein's <italic>in vivo</italic> localization or abundance. Mass spectrometry analysis confirms that two CDK sites in the tail domain of Kip1 are phosphorylated in vivo. In addition, I have determined that Sic1, a Clb/Cdc28-specific inhibitor, is the SCF<super>Cdc4</super> target that inhibits spindle pole separation in cells lacking functional Cdc4. Based on these findings, I propose that Clb/Cdc28 drives spindle pole separation by direct phosphorylation of kinesin-5 motors. </p><p>In addition to the positive regulation of kinesin-5 function in spindle assembly, I have also found evidence that suggests CDK phosphorylation of kinesin-5 motors at different sites negatively regulates kinesin-5 activity to prevent premature spindle pole separation. I have also begun to characterize a novel putative role for the kinesins-5 in mitochondrial genome inheritance in <italic>S. cerevisiae</italic> that may also be regulated by CDK phosphorylation. </p><p>In the course of my dissertation research, I encountered problems with several established molecular biology tools used by yeast researchers that I have tried to address. I have constructed a set of 42 plasmid shuttle vectors based on the widely used pRS series for use in <italic>S. cerevisiae</italic> that can be propagated in the bacterium Escherichia coli. This set of pRSII plasmids includes new shuttle vectors that can be used with histidine and adenine auxotrophic laboratory yeast strains carrying mutations in the genes <italic>HIS2</italic> and <italic>ADE1</italic>, respectively. My new pRSII plasmids also include updated versions of commonly used pRS plasmids from which common restriction sites that occur within their yeast-selectable biosynthetic marker genes have been removed in order to increase the availability of unique restriction sites within their polylinker regions. Hence, my pRSII plasmids are a complete set of integrating, centromere and 2&#61549; episomal plasmids with the biosynthetic marker genes <italic>ADE2</italic>, <italic>HIS3</italic>, <italic>TRP1</italic>, <italic>LEU2</italic>, <italic>URA3</italic>, <italic>HIS2</italic> and <italic>ADE1</italic> and a standardized selection of at least 16 unique restriction sites in their polylinkers. Additionally, I have expanded the range of drug selection options that can be used for PCR-mediated homologous replacement using pRS plasmid templates by replacing the G418-resistance kanMX4 cassette of pRS400 with MX4 cassettes encoding resistance to phleomycin, hygromycin B, nourseothricin and bialaphos. Finally, in the process of generating the new plasmids, I have determined several errors in existing publicly available sequences for several commonly used yeast plasmids. Using updated plasmid sequences, I constructed pRS plasmid backbones with a unique restriction site for inserting new markers in order to facilitate future expansion of the pRS/pRSII series.</p> / Dissertation
28

Ubiquitin receptor protein UBASH3B : a novel regulator of mitotic progression / Le récepteur à l’ubiquitine UBASH3B, un nouveau régulateur de la mitose

Krupina, Ksenia 23 September 2014 (has links)
La mitose assure la répartition égale du génome. La kinase mitotique Aurora B y joue un rôle majeur en contrôlant la fidélité de la ségrégation des chromosomes de par sa localisation aux centromères et aux microtubules, qui nécessite son ubiquitination par CUL3. Cependant, le mécanisme conduisant la forme ubiquitinée d’Aurora B sur ces structures mitotiques reste à déterminer. Dans ce contexte, j’ai pu identifier la protéine UBASH3B, qui contient un domaine de liaison à l’ubiquitine (UBD) comme un régulateur essentiel de la ségrégation chromosomique, agissant comme un récepteur de l’ubiquitine pour Aurora B. UBASH3B interagit directement avec Aurora B et cette interaction est dépendante de la modification d’Aurora B par l’ubiquitine ainsi que de CUL3. UBASH3B ne régule pas le niveau d’expression d’Aurora B. En revanche, UBASH3B se localise aux fuseaux mitotiques et est à la fois nécessaire et suffisant pour transférer Aurora B aux microtubules. De plus, la redistribution d’Aurora B des centromères vers les microtubules contrôle le déroulement et la fidélité de la ségrégation des chromosomes et donc le contenu correct du matériel génétique des cellules. Ainsi, mes résultats expliquent comment la modification par l’ubiquitine régule la localisation et la fonction d’Aurora B, reliant une voie de signalisation impliquant un récepteur à l’ubiquitine à la mitose. / Mitosis ensures equal segregation of the genome. The major mitotic kinase Aurora B controls fidelity of chromosome segregation by its localization to centromeres and microtubules, which requires CUL3-mediated ubiquitylation. However, it remains unknown how ubiquitylated Aurora B is targeted to mitotic structures. Here, I identify ubiquitin-binding domain (UBD) protein UBASH3B that critically regulates chromosome segregation, acting as ubiquitin receptor for Aurora B. UBASH3B directly binds Aurora B, and this interaction is dependent on CUL3 and on ubiquitin recognition. UBASH3B does not regulate protein levels of Aurora B. Instead, UBASH3B localizes to the mitotic spindle and is both required and sufficient to transfer Aurora B to microtubules. Moreover, redistribution of Aurora B from centromeres to microtubules controls timing and fidelity of chromosome segregation and thereby euploidy of cells. Thus, my findings explain how ubiquitin attachment regulates localization and function of Aurora B, linking receptor-mediated ubiquitin signaling to mitosis.
29

La protéine ATIP3 et ses partenaires d’interaction : de nouvelles cibles thérapeutiques contre le cancer du sein / Microtubule-Associated Protein ATIP3 and Interacting Partners : New Therapeutic Targets Against Breast Cancer

Nehlig, Anne 23 November 2018 (has links)
Le cancer du sein touche une femme sur neuf dans le monde et constitue un problème majeur de santé publique. L’identification de nouveaux biomarqueurs pour un traitement personnalisé pour les tumeurs du sein de plus mauvais pronostic, dites « triple-négatives », est extrêmement urgent. ATIP3, le produit majeur du gène candidat suppresseur de tumeurs MTUS1, a été identifié par l’équipe comme étant un biomarqueur des tumeurs du sein les plus agressives. De plus, ATIP3 inhibe la prolifération et la migration in vitro, ainsi que la progression tumorale et la formation de métastases in vivo et constitue une cible thérapeutique. ATIP3 est une protéine associée aux microtubules (MT) en interphase et au fuseau mitotique durant la mitose. Mon projet de thèse a pour objectif principal d’identifier les partenaires d’interaction d’ATIP3 impliqués dans ses mécanismes d’action antitumoraux. Dans une première partie, j’ai montré qu’ATIP3 interagit avec EB1, une protéine majeure de la dynamique du MT. L’interaction ATIP3-EB1 diminue l’accumulation d’EB1 à l’extrémité croissante du MT. Un nouveau mécanisme a été proposé dans lequel l’interaction ATIP3-EB1 réduit indirectement la vitesse d’échange d’EB1 à son site de liaison au bout plus du MT, ayant pour conséquence une diminution de la dynamique du MT. Dans une deuxième partie, j’ai montré qu’une déplétion d’ATIP3 induit une réduction de la taille du fuseau mitotique. Une analyse protéomique a permis d’identifier la kinésine Kif2A comme partenaire d’interaction d’ATIP3. ATIP3 forme un complexe avec Kif2A et Dda3 qui est dépendant d’une phosphorylation par Aurora kinase A. ATIP3 maintient la taille du fuseau en diminuant le recrutement de Kif2A et Dda3 au pôle de façon dépendante d’AurKA. ATIP3 régule donc négativement ses partenaires d’interaction. Enfin, dans une troisième partie, la relevance clinique du couple ATIP3-EB1 a été évaluée et j’ai montré que l’expression combinée des deux biomarqueurs ATIP3 et EB1 était associée à l’agressivité de la tumeur et à une survie diminuée. Ainsi, l’ensemble de mes travaux a permis de mettre en évidence de nouvelles cibles thérapeutiques afin de mettre en place des traitements personnalisés / Breast cancer is a leading cause of death by malignancy in women worldwide. The identification of new molecular markers for personalized treatment of poor prognosis breast tumors, such as those of the triple negative subtype, is urgently needed. Our team is leader in the study of ATIP3 protein, encoded by candidate tumor suppressor gene MTUS1. ATIP3 is down-regulated in 85% of triple negative breast tumors, and low levels of ATIP3 are associated with poor survival of the patients. We have shown that ATIP3 reduces proliferation and migration in vitro, and tumor growth and metastasis formation in vivo. ATIP3 localizes along the microtubule (MT) in interphase and on the mitotic spindle and spindle poles during mitosis. My PhD project aimed at identifying ATIP3 partners involved in its anti-tumoral effects. In the first part, I will present data showing that ATIP3 interacts with EB1, a major regulator of MT dynamics. ATIP3-EB1 interaction prevents EB1 accumulation at MT growing ends. I proposed a novel mechanism by which ATIP3-EB1 indirectly reduces EB1 turnover at its binding site at MT plus end, which consequently reduces MT dynamics. In the second part of my thesis, I showed that ATIP3 silencing induces reduced spindle length. In parallel, I identified the MT-depolymerizing kinesin Kif2A as an ATIP3 partner by proteomic analysis. ATIP3 forms a complex with Kif2A and Dda3 in an AurKA-dependent manner. I showed that ATIP3 maintains mitotic spindle size by inhibiting Kif2A and Dda3 recruitment at the spindle pole. My study also revealed a recriprocal regulation between ATIP3 and AurKA. Thus, ATIP3 negatively regulates its binding partners. Finally, in a third part, clinical relevance of ATIP3-EB1 in breast cancer has been evaluated and I showed that combinatorial expression of ATIP3 and EB1 is associated with tumor agressiveness and reduced patient survival. Altogether, this work highlighted new therapeutic targets to propose personalized treatments.
30

Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis

Matchett, K.B., McFarlane, S., Hamilton, S.E., Eltuhamy, Y.S.A., Davidson, M.A., Murray, J.T., Faheem, A.M., El-Tanani, Mohamed 24 January 2014 (has links)
No / Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.

Page generated in 0.0464 seconds