• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 21
  • 13
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Asymmetric cell division intersects with cell geometry : a method to extrapolate and quantify geometrical parameters of sensory organ precursors

Papaluca, Arturo 11 1900 (has links)
La division cellulaire asymétrique (DCA) consiste en une division pendant laquelle des déterminants cellulaires sont distribués préférentiellement dans une des deux cellules filles. Par l’action de ces déterminants, la DCA générera donc deux cellules filles différentes. Ainsi, la DCA est importante pour générer la diversité cellulaire et pour maintenir l’homéostasie de certaines cellules souches. Pour induire une répartition asymétrique des déterminants cellulaires, le positionnement du fuseau mitotique doit être très bien contrôlé. Fréquemment ceci génère deux cellules filles de tailles différentes, car le fuseau mitotique n’est pas centré pendant la mitose, ce qui induit un positionnement asymétrique du sillon de clivage. Bien qu’un complexe impliquant des GTPases hétérotrimériques et des protéines liant les microtubules au cortex ait été impliqué directement dans le positionnement du fuseau mitotique, le mécanisme exact induisant le positionnement asymétrique du fuseau durant la DCA n'est pas encore compris. Des études récentes suggèrent qu’une régulation asymétrique du cytosquelette d’actine pourrait être responsable de ce positionnement asymétrique du faisceau mitotique. Donc, nous émettons l'hypothèse que des contractions asymétriques d’actine pendant la division cellulaire pourraient déplacer le fuseau mitotique et le sillon de clivage pour créer une asymétrie cellulaire. Nos résultats préliminaires ont démontré que le blebbing cortical, qui est une indication de tension corticale et de contraction, se produit préférentiellement dans la moitié antérieure de cellule précurseur d’organes sensoriels (SOP) pendant le stage de télophase. Nos données soutiennent l'idée que les petites GTPases de la famille Rho pourraient être impliqués dans la régulation du fuseau mitotique et ainsi contrôler la DCA des SOP. Les paramètres expérimentaux développés pour cette thèse, pour étudier la régulation de l’orientation et le positionnement du fuseau mitotique, ouvrirons de nouvelles avenues pour contrôler ce processus, ce qui pourrait être utile pour freiner la progression de cellules cancéreuses. Les résultats préliminaires de ce projet proposeront une manière dont les petites GTPases de la famille Rho peuvent être impliqués dans le contrôle de la division cellulaire asymétrique in vivo dans les SOP. Les modèles théoriques qui sont expliqués dans cette étude pourront servir à améliorer les méthodes quantitatives de biologie cellulaire de la DCA. / Asymmetric cell division (ACD) consists in a cellular division during which specific cell fate determinants are distributed preferentially in one daughter cell, which then differentiate from its sibling. Hence, ACD is important to generate cell diversity and is used to regulate stem cells homeostasis. For proper asymmetric distribution of cell fate determinants, the positioning of the mitotic spindle has to be tightly controlled. Frequently, this induces a cell size asymmetry, since the spindle is then not centered during mitosis, leading to an asymmetric positioning of the cleavage furrow. Although small small GTPases have been shown to act directly on the spindle, the exact mechanism controlling spindle positioning during ACD is not understood. Recent studies suggest that an independent, yet uncharacterized pathway is involved in spindle positioning, which is likely to involve an asymmetric regulation of the actin cytoskeleton. Indeed, actin enables spindle anchoring to the cortex. Hence we hypothesize that asymmetric actin contractions during cytokinesis might displace the mitotic spindle and the cleavage furrow, leading to cell size asymmetry. Interestingly, from our preliminary results we observed that cortical blebbing, which is a read-out of cortical tension/contraction, preferentially occurs on the anterior side of the dividing sensory organ precursor (SOP) cells at telophase. Our preliminary data support the idea that Rho small GTPases might be implicated in regulation of the mitotic spindle hence controlling asymmetric cell division of SOP cells. The experimental settings developed for this thesis, for studying regulation of the mitotic spindle orientation and positioning will serve as proof of concept of how geneticist and biochemist experts could design ways to control such process by different means in cancerous cells. The preliminary results from this project open novel insights on how the Rho small GTPases might be implicated in controlling asymmetric cell division hence their dynamics in vivo of such process during SOP development. Furthermore, the assays and the theoretical model developed in this study can be used as background that could serve to design improved quantitative experimental methods for cell biology synchronizing sub-networks of ACD mechanism.
42

Coordination entre les microtubules et le complexe Smc5-Smc6 dans le maintien de l'intégrité génomique

Laflamme, Guillaume 02 1900 (has links)
No description available.
43

Untersuchungen zur Funktion des Inhibitor der Apoptose Proteins Survivin in der chromosomalen Stabilität und „DNA Damage Response“ von Tumorzellen

Wiedemuth, Ralf 05 March 2014 (has links) (PDF)
Das nur 16,5 kDa große Survivin ist ein bifunktionales Protein, welches eine bedeutende Rolle in zwei wichtigen zellulären Prozessen spielt, der Apoptose und der Mitose. Aufgrund seiner BIR Domäne wird es zu den Inhibitor der Apoptose Proteine (IAP) gezählt. Diese Gruppe an Proteinen interferiert negativ mit der Aktivierung der Caspasen und wirkt somit einer Induktion der Apoptose entgegen. Neben seiner anti-apoptotischen Funktion besitzt das Survivin zudem eine essentielle Rolle bei der Segregation der Chromosomen und während der Zytokinese. In der Mitose bildet Survivin mit Borealin, INCENP und der mitotische Aurora B Kinase den Chromosomalen Passenger Complex (CPC). Das Survivin besitzt zudem eine grosse medizinische Relevanz und gilt als Tumor-assoziertes Antigen, da es zu den Top vier Transkripten zählt, die in einer Vielzahl unterschiedlicher Tumorentitäten überexprimiert werden, aber nicht in Normalgewebe. Diese Überexpression geht einher mit einer erhöhten Resistenz der Tumore gegenüber Chemo- und Strahlentherapie und macht Survivin zu einem idealen molekularen Ziel einer Krebstherapie mittels RNA Interferenz oder spezifischer pharmakologischer Inhibitoren. In einer Vielzahl an Studien, in denen das Survivin-Protein mittels RNAi, dominant negativer Proteine oder „knock out“ des Survivin Genes (BIRC5) aus geschalten wurde, konnte eine Aktivierung des Tumorsuppressorproteins p53, einem wichtigen Mediator der Zellzyklusregulation, beobachtet werden. Bis heute ist es weitgehend unklar, wie eine Aktivierung von p53 nach einem Survivin Verlust erfolgen kann. Zudem stellte sich die Frage, ob eine therapeutische Intervention, welche die Ausschaltung des Survivin-Proteins zum Ziel hat, neben Tumorzellen auch normales Gewebe schädigen kann. Da Tumorzellen sich von normalen Zellen insbesondere dadurch unterscheiden, dass sie Defekte in p53-Signalwegen bzw. eine inaktivierende p53-Mutation oder Gendeletion besitzen, wurde die Auswirkung einer Survivin-Depletion auf p53-positive Tumorzellen und auf isogene Tumorzellen mit ausgeschalteten p53 untersucht. Zu diesem Zweck wurde p53 mittels RNAi in U87-MG und MCF-7 Zellen ausgeschalten und stabile p53-defiziente Zellen generiert. Insgesamt standen für die Untersuchungen mit HCT116, MCF-7 und U87-MG drei Zelllinien unterschiedlichen Ursprungs sowie ihre isogenetischen, aber p53-defizienten Derivate zur Verfügung. Survivin wurde in diesen Zellen durch einen retroviralen Vektor, der für eine shRNA (small hairpin RNA) gegen Survivin codiert, ausgeschalten. Der Verlust an Survivin führte dabei in Wildtyp- als auch in den p53-defizienten Zellen zu Polyploidie, einer gestörten Zytokinese und multipolaren Spindeln. Zusätzlich konnte eine Induktion an p53/p21waf/cip sowie eine erhöhte, p53- und Caspase 3-unabhängige Apoptose festgestelt werden. Es konnte gezeigt werden, dass die Expression an p21waf/cip in Wildtyp-Zellen sowie seines potentiellen Targets Cyclin D1 mit der Zunahme an Polyploidie nach Survivin RNAi korreliert. Allerdings führt die Expression des Cdk Inhbibitors p21waf/cip nur zu einem transienten Arrest der Zellen, da polyploide, Survivin-depletierte Zellen BrdU inkorporierten und dadurch proliferierten. Zudem wird zum ersten Mal eine ATM/ATR abhängige „DNA Damage Response“ (DDR) in Survivin-depletierten p53-defzienten und Wildtyp Zellen beschrieben, die zu einer Phosphorylierung und Stabilisierung von p53 führt. Sky-Analysen bestätigten numerische als auch schwere chromosomale Aberrationen wie Translokationen und dizentrische Chromosomen in Survivin-depletierten polyploiden Zellen. Die Inhibierung der Aurora B Kinase, einem weiteren Bestandteil des CPC, mittels eines chemischen Inhibitors zeigt analog das Auftreten von DNA Schäden, eine p53/p21waf/cip Aktivierung sowie eine Zunahme an Polyploidie, wie sie für Survivin beschrieben wurde. Diese Erkenntnisse zeigen deutlich auf, dass die DNA Schäden und der p53/p21waf/cip-abhängige G1 Arrest nach dem „knock down“ von Survivin aufgrund einer gestörten Mitose hervorgerufen wurde, während eine IAP-Funktion des Survivins unter den gewählten experimentellen Bedingungen nicht festzustellen war.
44

Novel roles for B-Raf in mitosis and cancer

Borysova, Meghan E. K. January 2009 (has links)
Dissertation (Ph.D.)--University of South Florida, 2009. / Title from PDF of title page. Document formatted into pages; contains 155 pages. Includes vita. Includes bibliographical references.
45

Study of the genotoxicity mechanisms of all-trans retinoic acid and its analogue EA-4

Alakhras, Raghda Said H. 07 October 2011 (has links)
Vitamin A and its metabolites retinal and retinoic acid are important molecules for the regulation of normal cellular growth, differentiation and other important functions. Retinoids are known to exert mutagenic as well as antimutagenic activity, although conflicting reports are known. All-trans retinoic acid (ATRA) is used in the treatment of many diseases such as acne, psoriasis and ichthyosis. It is also used in differentiated therapy of acute promyelocytic leukemia; however, it is frequently observed that relapses occur when ATRA is prescribed as maintenance therapy. Therefore, understanding the mechanism of action of ATRA in cells would be helpful in the development of high potent and low toxic chemotherapeutic agents. EA-4 is a newly synthesized steroidal analogue of ATRA and is considered as a promising agent for the inhibition of human leukemic cell growth. The study of genotoxicity is an important parameter for the design and development of new chemotherapeutic agents. Genotoxic effects of anticancer drugs in non-tumour cells are of special significance due to their possibility of inducing secondary tumours in cancer patients. Therefore, it is important to determine the genotoxic potential of a drug that will be used in chemotherapy, particularly in native human cells. Taking into consideration the above referred, it would be of interest to evaluate the genotoxic potential of EA-4 in comparison to ATRA, as to their ability to provoke micronucleus (MN) generation, due to both chromosome breakage and chromosome delay. Micronuclei originate from chromosome fragments or whole chromosomes, which lag behind at anaphase during nuclear division. According to our knowledge, there is no information on the ability of all-trans retinoic acid (ATRA) to induce micronucleus formation. To investigate the ability of ATRA and its steroidal analogue EA-4 to enhance micronucleation on human lymphocytes cultured in vitro, the Cytokinesis Block MicroNucleus (CBMN) assay was conducted. By this assay, the cytotoxic effect of the two retinoids was also estimated. To clarify the mechanism by which micronuclei are generated due to ATRA and EA-4 treatment, CBMN was combined with Fluorescence In Situ Hybridization (FISH) using an α-satellite pancentromeric probe to detect centromere inclusion and thus intact chromosome(s) in micronuclei or acentric chromosome fragments. ATRA and EA-4 were shown to be cytotoxic by decreasing CBPI (Cytokinesis Block Proliferation Index) to statistically significant levels in relation to untreated cells. A statistically significant increase in micronucleus frequency was also observed for both investigated compounds. ATRA generated micronuclei mainly via chromosome breakage while a mild effect on chromosome delay was also apparent. On the other hand, EA-4 generated micronuclei exclusively via chromosome breakage. To verify ATRA and EA-4 genotoxicity, micronucleation was investigated in a second biological system coming from a different organism, C2C12 mouse cells. Micronucleus analysis was achieved by α-tubulin/CREST immunostaining for the visualization of microtubules and the detection of kinetochore inside micronuclei and hence the inclusion of whole chromosome(s) or acentric chromosome fragments. Additionally the effect of ATRA and EA-4 on cell proliferation was investigated by the estimation of Mitotic Index (M.I.). We found that ATRA and EA-4 exerted cytotoxic activity in C2C12 mouse cells by reducing the cell proliferation rate at significant levels, as evaluated by the decrease of M.I. A statistically significant elevation in the frequency of interphase cells with micronuclei was shown. CREST analysis confirmed the clastogenic activity of the studied retinoids that was indicated in human lymphocytes. Micronucleation due to ATRA was mediated mainly by chromosome breakage and in a lesser extent by chromosome delay. EA-4 was shown to induce chromosome breakage as well as chromosome delay, as opposed to human lymphocytes at which only clastogenic effect was shown. These observations suggest that, ATRA and EA-4 are able to provoke chromosome fragmentation, but additionally and in a lesser extent to disturb chromosome segregation at anaphase due to chromosome lagging. Cell cycle analysis showed that ATRA and EA-4 accumulated cells at ana-telophase. The analysis of ana-telophases revealed micronucleation, nucleoplasmic bridges and multinucleation, phenomena that may explain the dual genetic activity of ATRA and EA-4. Multinucleated and multimicronucleated interphase cells were also apparent, the second ones generated due to both chromosome delay and breakage. To further investigate the mechanism of genotoxic activity of ATRA and EA-4 we proceeded our research on two axes based on their aneugenicity and clastogenicity. Thus we studied the effect of ATRA and EA-4: i) on the integrity of mitotic spindle, as a target of aneugens by using double immunofluorescence staining of β- and γ-tubulin in C2C12 mouse cell line, which is a convenient system to apply this experimental procedure, and ii) to investigate the ability of the studied retinoids to induce double-strand breaks on DNA by using neutral Single Cell Gel Electrophoresis (SCGE assay-Comet assay) in two different cell lines, C2C12 mouse cells and HL-60 human leukemic cells. Analysis of mitotic spindle has shown that the studied retinoids affect chromosome orientation during metaphase by inducing bipolar metaphases with non-congressed genetic material due to abnormal microtubule network. In addition defects on centrosome duplication and/or separation were observed due to the presence of monopolar metaphases. Ana-telophases as well as interphases with supernumerary centrosomes were also apparent. Additionally, interphase cells with abnormal microtubule network were observed. The above findings may explain aneugenic as well as clastogenic activity of the studied retinoids. Comet assay revealed that ATRA and its steroidal analogue EA-4 provoke DNA migration due to double strand DNA fragmentation in both C2C12 mouse cells and HL-60 human leukemic cells. EA-4 was shown to be the stronger inducer of DNA fragmentation. These results confirm the findings from FISH and CREST analysis indicating that the studied retinoids show high clastogenic activity. . Taking into account the above, we may say that our findings clarify the cytotoxic and genotoxic activity of retinoic acid and the mechanism of its action by indicating its ability to induce chromosome breakage via double-strand DNA breaks and secondary its ability to provoke chromosome delay due to defects in microtubule network and mitotic spindle integrity. / Η βιταμίνη Α και οι μεταβολίτες της, ρετινόλη και ρετινοϊκό οξύ είναι ισχυροί παράγοντες για τη ρύθμιση σημαντικών λειτουργιών, όπως της κυτταρικής ανάπτυξης, διαφοροποίησης και άλλων. Τα ρετινοειδή είναι γνωστά για την μεταλλαξιγόνο αλλά και αντιμεταλλαξιγόνο δράση τους, αν και έχουν αναφερθεί αντικρουόμενα ευρήματα. Το all-trans ρετινοϊκό οξύ (ATRA) χρησιμοποιείται στη θεραπεία πολλών ασθενειών, όπως η ακμή, ψωρίαση, ιχθύωση, αλλά και στη θεραπεία κακοηθειών όπως η μυελογενής λευχαιμία. Συχνά σε περιπτώσεις όπου το ATRA αποτελεί τη βασική θεραπεία παρατηρούνται υποτροπιάσεις Έτσι, η κατανόηση του μηχανισμού δράσης του ATRA στα κύτταρα θα αποτελέσει χρήσιμο εργαλείο για την ανάπτυξη νέων, ισχυρών και μη-τοξικών θεραπευτικών παραγόντων προερχόμενων από αυτό. Το EA-4 είναι ένα πρόσφατα συντεθέν στεροειδικό ανάλογο του ATRA, που θεωρείται υποσχόμενος παράγοντας για την αναστολή της ανάπτυξης ανθρώπινων λευχαιμικών κυττάρων. Η μελέτη της γονιδιοτοξικότητας αποτελεί σημαντική παράμετρο για το σχεδιασμό και την ανάπτυξη νέων θεραπευτικών παραγόντων. Οι γονιδιοτοξικές επιπτώσεις αντικαρκινικών φαρμάκων σε μη-καρκινικά κύτταρα είναι ιδιαίτερης σημασίας, και αποτελούν πιθανή αιτία εμφάνισης δευτερογενών όγκων σε ασθενείς. Έτσι, είναι σημαντικό να μελετηθεί η γονιδιοτοξική δράση ενός φαρμάκου που θα χρησιμοποιηθεί στη χημειοθεραπεία. Λαμβάνοντας υπόψη όλα τα παραπάνω, θεωρήθηκε ενδιαφέρον να εκτιμηθεί η γονιδιοτοξικότητα του EA-4 σε σύγκριση με το ATRA ως προς την ικανότητά τους να προκαλούν την εμφάνιση μικροπυρήνων (MN) είτε μέσω της χρωμοσωματικής θραύσης είτε μέσω της χρωμοσωματικής καθυστέρησης. Οι μικροπυρήνες προέρχονται από χρωμοσωματικά θραύσματα ή ολόκληρα χρωμοσώματα, τα οποία καθυστερούν κατά την ανάφαση της μείωσης ή της μίτωσης. Σύμφωνα με όσα μέχρι σήμερα γνωρίζουμε, δεν φαίνεται να υπάρχουν στοιχεία που αφορούν την ικανότητα του all-trans ρετινοϊκού οξέος (ATRA) να επάγει το σχηματισμό μικροπυρήνων. Για τη διερεύνηση της ικανότητας του ATRA και του στεροειδικού αναλόγου του EA-4 να επάγει την εμφάνιση μικροπυρήνων, πραγματοποιήθηκε η μέθοδος αναστολής της κυτταροκίνησης (CBMN assay) σε ανθρώπινα λεμφοκύτταρα in vitro. Με την ίδια μέθοδο εκτιμήθηκε και η κυτταροτοξικότητα των δύο ρετινοειδών. Για την διευκρίνιση του μηχανισμού δημιουργίας των μικροπυρήνων από τη δράση των ATRA και EA-4, η μέθοδος CBMN συνδυάστηκε με την in situ υβριδιποίηση με φθοροχρώματα (FISH) και χρήση α-δορυφορικού (α-satellite) πανκεντρομερικού ανιχνευτή για την επισήμανση του κεντρομέρους και την ανίχνευσή του σε μικροπυρήνες. Η παρουσία σήματος υβριδοποίησης στους μικροπυρήνες υποδηλώνει την ύπαρξη άθικτου χρωμοσώματος στο εσωτερικό τους. Το αντίθετο υποδεικνύει την παρουσία άκεντρου χρωμοσωματικού θραύσματος. Τα αποτελέσματα έδειξαν ότι και οι δύο χημικές ενώσεις προκαλούν στατιστικά σημαντική αύξηση της συχνότητας των μικροπυρήνων Το ATRA οδηγεί στην δημιουργία μικροπυρήνων κυρίως μέσω χρωμοσωματικής θραύσης, και σε ηπιότερο βαθμό μέσω χρωμοσωματικής καθυστέρησης. Αντίθετα, το EA-4 επάγει το σχηματισμό μικροπυρήνων αποκλειστικά μέσω χρωμοσωματικής θραύσης. Επίσης το ATRA και το EA-4 παρουσάζουν ισχυρή κυτταροτοξικότητα, όπως φάνηκε από τη στατιστικά σημαντική μείωση του κυτταρικού δείκτη πολλαπλασιασμού (CBPI), σε σύγκριση με τις καλλιέργειες του μάρτυρα. Προκειμένου να επιβεβαιωθεί η γονιδιοτοξικότητα του ATRA και του EA-4, διερευνήθηκε η ικανότητά τους να προκαλούν αυξημένες συχνότητες μικροπυρήνων σε ένα δεύτερο βιολογικό σύστημα, την κυτταρική σειρά ποντικού C2C12. Η ανάλυση των MN πραγματοποιήθηκε με τη μέθοδο διπλού ανοσοφθορισμού α-τουμπουλίνης/CREST, για την ανίχνευση σήματος κινητοχώρου στο εσωτερικό του μικροπυρήνα κι έτσι την παρουσία ολόκληρου χρωμοσώματος. Επίσης,η κυτταροτοξικότητα τους διερευνήθηκε με την εκτίμηση του μιτωτικού δείκτη. Με τη ίδια μέθοδο αναλύθηκε η πρόοδος του κυτταρικού κύκλου. Παρατηρήθηκε ότι το ATRA και το EA-4 παρουσιάζουν κυτταροτοξική δράση στα κύτταρα C2C12 μειώνοντας το ρυθμό κυτταρικού πολλαπλασιασμού σε στατιστικά σημαντικά επίπεδα. Επιπλέον αποκαλύφθηκε στατιστικά σημαντική αύξηση της συχνότητας κυττάρων με μικροπυρήνες. Η επισήμανση του κινητοχώρου επιβεβαίωσε τη θραυσματογόνο δράση των υπό μελέτη ρετινοειδών που παρατηρήθηκε στα ανθρώπινα λεμφοκύτταρα. Η δημιουργία μικροπυρήνων μέσω του ATRA ήταν αποτέλεσμα κυρίως χρωμοσωματικής θραύσης και σε μικρότερη έκταση χρωμοσωματικής καθυστέρησης, σε συμφωνία με τα ευρήματα από τα πειράματα στις καλλιέργειες ανθρώπινων λεμφοκυττάρων. Αντίθετα, παρατηρήθηκε ότι το EA-4, πλην της ισχυρής θραυσματογόνου δράσης, προκαλεί και χρωμοσωματική καθυστέρηση. Οι παρατηρήσεις αυτές υποδεικνύουν ότι το ATRA και το EA-4 είναι ισχυροί θραυσματογόνοι παράγοντες, αλλά σε μικρότερο βαθμό είναι ικανοί να διαταράξουν και τον χρωμοσωματικό αποχωρισμό κατά την πυρηνική διαίρεση. Η μελέτη του κυτταρικού κύκλου έδειξε ότι τόσο το ATRA και όσο και το EA-4 προκαλούν καθυστέρηση συσσωρεύοντας τα κύτταρα στα στάδια ανάφασης και τελόφασης της πυρηνικής διαίρεσης. Κύτταρα που συσσωρεύονται στα παραπάνω στάδια χαρακτηρίζονται από την εμφάνιση πυρηνοπλασματικών γεφυρών, την παρουσία περισσότερων του ενός πυρήνων, αλλά και την παρουσία μικροπυρήνων, φαινόμενα τα οποία είναι σύμφωνα με τη διττή γενετική δράση των ATRA και EA-4. Επίσης, παρατηρήθηκαν πολυπύρηνα μεσοφασικά κύτταρα και μεσοφασικά κύτταρα με πολλαπλούς μικροπυρήνες, με τον δεύτερο τύπο κυττάρων να προέρχεται τόσο από χρωμοσωματική θραύση όσο και από χρωμοσωματική καθυστέρηση. Έτσι, φαίνεται ότι τα δύο υπό μελέτη ρετινοειδή μπορούν να χαρακτηρισθούν μόρια με θραυσματογόνες αλλά και ανευπλοειδογόνες ιδιότητες. Για τη λεπτομερέστερη ανάλυση του μηχανισμού δράσης του ATRA και του EA-4 σχεδιάσθηκαν πειράματα σε δύο βασικούς άξονες που αφορούσαν την περαιτέρω μελέτη τόσο της ανευπλοειδογόνου όσο και της θραυσματογόνου δράσης τους. Έτσι, μελετήθηκε η επίδραση του ATRA και του EA-4 αντίστοιχα ως προς: α) την ακεραιότητα της μιτωτικής συσκευής, η οποία αποτελεί κυτταρικό στόχο ανευπλοειδογόνων ενώσεων. Η μελέτη πραγματοποιήθηκε στην κυτταρική σειρά C2C12, μέσω της μεθόδου διπλού ανοσοφθορισμού για τη β- και γ-τουμπουλίνη, δομικά στοιχεία των μικροσωληνίσκων και του κεντροσώματος, και β) την δημιουργία δίκλωνων ρηγμάτων στο DNA μέσω της μεθόδου ηλεκτροφόρησης μοναδιαίων κυττάρων (SCGE assay-Comet assay) σε δύο διαφορετικές κυτταρικές σειρές, στα κύτταρα ποντικού C2C12 και στα λευχαιμικά κύτταρα ανθρώπου HL-60. Τα αποτελέσματα μας έδειξαν ότι τα υπό εξέταση ρετινοειδή επηρεάζουν τον χρωμοσωματικό προσανατολισμό κατά τη μετάφαση με την εμφάνιση διπολικών μεταφάσεων με τα χρωμοσώματα μη-διατεταγμένα στο ισημερινό πεδίο, λόγω ανωμαλιών του δικτύου των μικροσωληνίσκων. Επίσης, φάνηκε ότι προκαλούν ανωμαλία στον πολλαπλασιασμό και πιθανόι στον αποχωρισμό των κεντροσωμάτων, παρατήρηση που δικαιολογείται από την παρουσία μονοπολικών μεταφάσεων, καθώς και ανάτελοφάσεων αλλά και μεσοφασικών κύττάρων με υπεράριθμο κεντροσωματικό αριθμό. Επιβεβαιώθηκε επίσης η επίδρασή τους στην πορεία του κυτταρικού κύκλου με συσσώρευση των κυττάρων στα στάδια ανάφασης-τελόφασης. Επιπρόσθετα, φάνηκε ότι το ΕΑ-4, στη μεγαλύτερη συγκέντρωση, διακόπτει τον κυτταρικό κύκλο στο στάδιο της μετάφασης. Παράλληλα, παρατηρήθηκε διαταραχή στη δομή του δικτύου των μικροσωληνίσκων. Όλα τα παραπάνω ευρήματα ερμηνεύουν τόσο την ανευπλοειδογόνο όσο και τη θραυσματογόνο δράση των δύο ρετινοειδών. Με τη μέθοδο ηλεκτροφόρησης μοναδιαίων κυττάρων δείχθηκε ότι το ATRA και το στεροειδικό του ανάλογο EA-4 προκάλεσαν τη δημιουργία «κομητών», δηλαδή πυρήνων με ανώμαλη μορφολογία μέσω του σχηματισμού δίκλωνων θραυσμάτων DNA. Το φαινόμενο αυτό παρατηρήθηκε τόσο στα κύτταρα ποντικού C2C12 όσο και στα λευχαιμικά κύτταρα ανθρώπου HL-60, με το EA-4 να παρουσιάζει ισχυρότερη επαγωγή θραύσης του DNA. Τα αποτελέσματα αυτά επιβεβαιώνουν τα ευρήματα των μεθόδων FISH και CREST, υποδεικνύοντας ότι τα υπό εξέταση ρετινοειδή παρουσιάζουν ισχυρή θραυσματογόνο δράση. Λαμβάνοντας υπόψη όλα τα παραπάνω, μπορούμε να ισχυριστούμε ότι τα ευρήματά μας διευκρινίζουν την κυτταροτοξική και γονιδιοτοξική δράση του ρετινοϊκού οξέος. Υποδεικνύουν ιδιότητες ισχυρώς θραυσματογόνων παραγόντων μέσω δημιουργίας δίκλωνων ρηγμάτων στο DNA των κυττάρων. Δευτερογενώς μπορούν να χαρακτηρισθούν ως ήπιες ανευπλοειδογόνες ενώσεις που προκαλούν ανώμαλο χρωμοσωματικό αποχωρισμό μέσω ανωμαλιών τόσο του δικτύου των μικροσωληνίσκων όσο και της ακεραιότητα της μιτωτικής συσκευής.
46

Untersuchungen zur Funktion des Inhibitor der Apoptose Proteins Survivin in der chromosomalen Stabilität und „DNA Damage Response“ von Tumorzellen

Wiedemuth, Ralf 08 October 2012 (has links)
Das nur 16,5 kDa große Survivin ist ein bifunktionales Protein, welches eine bedeutende Rolle in zwei wichtigen zellulären Prozessen spielt, der Apoptose und der Mitose. Aufgrund seiner BIR Domäne wird es zu den Inhibitor der Apoptose Proteine (IAP) gezählt. Diese Gruppe an Proteinen interferiert negativ mit der Aktivierung der Caspasen und wirkt somit einer Induktion der Apoptose entgegen. Neben seiner anti-apoptotischen Funktion besitzt das Survivin zudem eine essentielle Rolle bei der Segregation der Chromosomen und während der Zytokinese. In der Mitose bildet Survivin mit Borealin, INCENP und der mitotische Aurora B Kinase den Chromosomalen Passenger Complex (CPC). Das Survivin besitzt zudem eine grosse medizinische Relevanz und gilt als Tumor-assoziertes Antigen, da es zu den Top vier Transkripten zählt, die in einer Vielzahl unterschiedlicher Tumorentitäten überexprimiert werden, aber nicht in Normalgewebe. Diese Überexpression geht einher mit einer erhöhten Resistenz der Tumore gegenüber Chemo- und Strahlentherapie und macht Survivin zu einem idealen molekularen Ziel einer Krebstherapie mittels RNA Interferenz oder spezifischer pharmakologischer Inhibitoren. In einer Vielzahl an Studien, in denen das Survivin-Protein mittels RNAi, dominant negativer Proteine oder „knock out“ des Survivin Genes (BIRC5) aus geschalten wurde, konnte eine Aktivierung des Tumorsuppressorproteins p53, einem wichtigen Mediator der Zellzyklusregulation, beobachtet werden. Bis heute ist es weitgehend unklar, wie eine Aktivierung von p53 nach einem Survivin Verlust erfolgen kann. Zudem stellte sich die Frage, ob eine therapeutische Intervention, welche die Ausschaltung des Survivin-Proteins zum Ziel hat, neben Tumorzellen auch normales Gewebe schädigen kann. Da Tumorzellen sich von normalen Zellen insbesondere dadurch unterscheiden, dass sie Defekte in p53-Signalwegen bzw. eine inaktivierende p53-Mutation oder Gendeletion besitzen, wurde die Auswirkung einer Survivin-Depletion auf p53-positive Tumorzellen und auf isogene Tumorzellen mit ausgeschalteten p53 untersucht. Zu diesem Zweck wurde p53 mittels RNAi in U87-MG und MCF-7 Zellen ausgeschalten und stabile p53-defiziente Zellen generiert. Insgesamt standen für die Untersuchungen mit HCT116, MCF-7 und U87-MG drei Zelllinien unterschiedlichen Ursprungs sowie ihre isogenetischen, aber p53-defizienten Derivate zur Verfügung. Survivin wurde in diesen Zellen durch einen retroviralen Vektor, der für eine shRNA (small hairpin RNA) gegen Survivin codiert, ausgeschalten. Der Verlust an Survivin führte dabei in Wildtyp- als auch in den p53-defizienten Zellen zu Polyploidie, einer gestörten Zytokinese und multipolaren Spindeln. Zusätzlich konnte eine Induktion an p53/p21waf/cip sowie eine erhöhte, p53- und Caspase 3-unabhängige Apoptose festgestelt werden. Es konnte gezeigt werden, dass die Expression an p21waf/cip in Wildtyp-Zellen sowie seines potentiellen Targets Cyclin D1 mit der Zunahme an Polyploidie nach Survivin RNAi korreliert. Allerdings führt die Expression des Cdk Inhbibitors p21waf/cip nur zu einem transienten Arrest der Zellen, da polyploide, Survivin-depletierte Zellen BrdU inkorporierten und dadurch proliferierten. Zudem wird zum ersten Mal eine ATM/ATR abhängige „DNA Damage Response“ (DDR) in Survivin-depletierten p53-defzienten und Wildtyp Zellen beschrieben, die zu einer Phosphorylierung und Stabilisierung von p53 führt. Sky-Analysen bestätigten numerische als auch schwere chromosomale Aberrationen wie Translokationen und dizentrische Chromosomen in Survivin-depletierten polyploiden Zellen. Die Inhibierung der Aurora B Kinase, einem weiteren Bestandteil des CPC, mittels eines chemischen Inhibitors zeigt analog das Auftreten von DNA Schäden, eine p53/p21waf/cip Aktivierung sowie eine Zunahme an Polyploidie, wie sie für Survivin beschrieben wurde. Diese Erkenntnisse zeigen deutlich auf, dass die DNA Schäden und der p53/p21waf/cip-abhängige G1 Arrest nach dem „knock down“ von Survivin aufgrund einer gestörten Mitose hervorgerufen wurde, während eine IAP-Funktion des Survivins unter den gewählten experimentellen Bedingungen nicht festzustellen war.
47

Dynamics of Active Filament Systems / The Role of Filament Polymerization and Depolymerization / Dynamik aktiver Filament-Systeme

Zumdieck, Alexander 14 January 2006 (has links) (PDF)
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie "filament treadmilling", also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln. / Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.
48

Dynamics of Active Filament Systems: The Role of Filament Polymerization and Depolymerization

Zumdieck, Alexander 16 December 2005 (has links)
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie "filament treadmilling", also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln. / Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.
49

The Fanconi anemia signaling network regulates the mitotic spindle assembly checkpoint

Enzor, Rikki S. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fanconi anemia (FA) is a heterogenous genetic syndrome characterized by progressive bone marrow failure, aneuploidy, and cancer predisposition. It is incompletely understood why FA-deficient cells develop gross aneuploidy leading to cancer. Since the mitotic spindle assembly checkpoint (SAC) prevents aneuploidy by ensuring proper chromosome segregation during mitosis, we hypothesized that the FA signaling network regulates the mitotic SAC. A genome-wide RNAi screen and studies in primary cells were performed to systematically evaluate SAC activity in FA-deficient cells. In these experiments, taxol was used to activate the mitotic SAC. Following taxol challenge, negative control siRNA-transfected cells appropriately arrested at the SAC. However, knockdown of fourteen FA gene products resulted in a weakened SAC, evidenced by increased formation of multinucleated, aneuploid cells. The screen was independently validated utilizing primary fibroblasts from patients with characterized mutations in twelve different FA genes. When treated with taxol, fibroblasts from healthy controls arrested at the mitotic SAC, while all FA patient fibroblasts tested exhibited weakened SAC activity, evidenced by increased multinucleated cells. Rescue of the SAC was achieved in FANCA patient fibroblasts by genetic correction. Importantly, SAC activity of FANCA was confirmed in primary CD34+ hematopoietic cells. Furthermore, analysis of untreated primary fibroblasts from FA patients revealed micronuclei and multinuclei, reflecting abnormal chromosome segregation. Next, microscopy-based studies revealed that many FA proteins localize to the mitotic spindle and centrosomes, and that disruption of the FA pathway results in supernumerary centrosomes, establishing a role for the FA signaling network in centrosome maintenance. A mass spectrometry-based screen quantifying the proteome and phospho-proteome was performed to identify candidates which may functionally interact with FANCA in the regulation of mitosis. Finally, video microscopy-based experiments were performed to further characterize the mitotic defects in FANCA-deficient cells, confirming weakened SAC activity in FANCA-deficient cells and revealing accelerated mitosis and abnormal spindle orientation in the absence of FANCA. These findings conclusively demonstrate that the FA signaling network regulates the mitotic SAC, providing a mechanistic explanation for the development of aneuploidy and cancer in FA patients. Thus, our study establishes a novel role for the FA signaling network as a guardian of genomic integrity.

Page generated in 0.0722 seconds