Spelling suggestions: "subject:"moelle"" "subject:"noelle""
91 |
Autogreffe de cellules stromales de moelle osseuse de chien transduites pour le gène de l'érythropoïetine canineHernandez Rodriguez, Juan Luis January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
92 |
L'expérience d'un frère ou de soeurs donneurs de moelle osseuseVachon, Marie-France January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
93 |
Stimulation électrique de la moelle épinière lombaire pour déclencher la marche chez le chat spinalBarthélemy, Dorothy January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
94 |
Le récepteur métabotropique du glutamate 4 : une cible thérapeutique potentielle pour les douleurs chroniques? / The metabotropic glutamate receptor type 4 : a potential therapeutic target for chronic pain?Vilar, Bruno 27 June 2012 (has links)
Les douleurs chroniques et notamment les douleurs neuropathiques sont particulièrement difficiles à traiter par les solutions thérapeutiques actuellement disponibles. Par conséquent, il existe un besoin crucial de découvrir et d'exploiter de nouveaux concepts d'antalgiques afin de traiter ce type de douleurs. Parmi les différentes pistes possibles, le système glutamatergique semble particulièrement intéressant puisque le glutamate est le principal neurotransmetteur propageant l'information douloureuse. Notre hypothèse est que l'activation du récepteur mGlu4 spinal inhiberait la neurotransmission glutamatergique et réduirait donc l'excès de douleur observé lors de douleurs chroniques. Grâce notamment au développement du premier agoniste orthostérique sélectif de mGlu4, nous avons mis en évidence que le récepteur mGlu4 n'altère pas la perception de la douleur aiguë mais qu'il influe, au contraire, sur l'aspect pathologique de la douleur en inhibant l'allodynie et l'hyperalgie mécanique ou thermique présentes lors de douleurs chroniques. Nous montrons que la modulation de l'hypersensibilité par mGlu4 semble provenir de sa capacité à inhiber la transmission glutamatergique via un couplage négatif avec les canaux calciques de type N au niveau de la couche II de la moelle épinière et plus particulièrement au niveau des fibres exprimant le transporteur vésiculaire VGLUT3. L'ensemble de nos résultats permettent de valider le récepteur mGlu4 spinal comme une cible thérapeutique potentielle pour le traitement des douleurs chroniques. En effet, les agonistes de mGlu4 pourraient être des antalgiques puissants et sélectifs des douleurs pathologiques. / Chronic pain and in particular neuropathic pain are particularly difficult to treat by therapeutic options currently available. Therefore, it is a crucial to develop new concepts of analgesics to treat this type of pain. Among the various possibilities, targeting the glutamatergic system seems to be particularly interesting since glutamate is the main neurotransmitter propagating the pain information. Our hypothesis is that the activation of spinal mGlu4 receptor would inhibit the spinal glutamatergic neurotransmission and would thus reduce the excess of pain observed in chronic pain.Thanks to the development of the first orthosteric agonist selective for mGlu4 and the use of transgenic animals, we demonstrated that mGlu4 receptor does not alter the perception of acute pain but that it does affect the pathological aspect of pain by inhibiting the allodynia and the hyperalgesia (mechanical and thermal) usually observed in chronic pain. We show that the mGlu4 modulation of the hypersensitivity seems to result from the ability of the receptor to inhibit the glutamatergic transmission through a negative coupling with N-type calcium channels in the lamina II of the spinal cord and especially at the level of fibers expressing the vesicular transporter VGLUT3. Taken together, our results validate spinal mGlu4 as a potential therapeutic target for the treatment of chronic pain. Indeed, mGlu4 agonists could be potent and selective painkillers of pathological pain.
|
95 |
Remaniements fonctionnels des réseaux locomoteurs spinaux au cours du développement de l’amphibien Xenopus laevis en métamorphoseRauscent, Aude 17 December 2008 (has links)
La plasticité du système nerveux central face aux contraintes environnementales ou morphologiques est un processus fondamental mis en place afin de permettre à l’animal de maintenir des comportements adaptés. Parce que le comportement locomoteur est essentiel à la survie de l'animal, les mécanismes neuronaux permettant sa genèse doivent s’adapter aux modifications morphologiques de l’organisme pendant son développement. Pour aborder cette question, nous avons développé un nouveau modèle expérimental pour lequel les modifications morphologiques au cours du développement sont extrêmes et impliquent des reconfigurations à long terme du système nerveux. L'amphibien Xenopus laevis lors de sa métamorphose est, en effet, un modèle pertinent pour étudier (par des approches comportementales, neuroanatomiques, électro-physiologiques et pharmacologiques), les mécanismes impliqués dans la réorganisation des réseaux neuronaux locomoteurs de la moelle épinière face à des modifications extrêmes du schéma corporel. En effet, pendant sa métamorphose, l'animal passe d'un mode de locomotion ondulatoire mettant en jeu sa musculature axiale, à un mode de locomotion appendiculaire grâce aux membres néo-formés. Il existe de plus des stades intermédiaires où les deux modes de locomotion coexistent et expriment des relations fonctionnelles variables. Nos expériences d’électrophysiologie extracellulaire nous ont permis de dégager la dynamique temporelle de l’émergence du réseau de neurones commandant la locomotion appendiculaire adulte et de ses relations fonctionnelles avec le réseau locomoteur commandant la nage larvaire lorsque ces deux réseaux coexistent. D’après les résultats présentés, il apparaît un changement de l’équilibre fonctionnel et des interactions entre les commandes locomotrices ondulatoire et appendiculaire, faisant des stades intermédiaires de la métamorphose les témoins privilégiés du passage de relais progressif entre les deux systèmes locomoteurs. Nos travaux ont également démontré que l’activité de chaque réseau ainsi que leurs relations fonctionnelles sont sujettes à modulation glutamatergique et aminergique destinées à adapter la locomotion aux besoins de l'animal. Nous montrons que certains modulateurs (tels que le glutamate, la sérotonine et la noradrénaline) exercent des effets opposés sur les réseaux locomoteurs larvaires et adultes, alors qu'à l'inverse, la dopamine conserve les mêmes propriétés modulatrices sur ces réseaux malgré les profonds bouleversements subis pendant le développement. Outre leur rôle modulateur, nos résultats suggèrent aussi un rôle des afférences aminergiques dans la maturation des réseaux locomoteurs et ouvrent de nombreuses interrogations quant aux mécanismes impliqués dans la plasticité des afférences neuromodulatrices elles-mêmes au cours de la métamorphose. L’apparition et la disparition de neurones sérotoninergiques intraspinaux concomitantes avec la croissance des membres postérieurs, et précédant la régression de l'appendice caudal laissent envisager un rôle de la sérotonine dans la maturation du réseau locomoteur appendiculaire ou dans la chronologie de la régression du réseau axial. / Plasticity of the central nervous system is fundamental to an animal's capacity to adapt to continually changing biomechanical and environmental demands. Although the neuronal mechanisms underlying such essential behaviours as locomotion must adapt to an organism's morphological modifications during growth and development, the associated changes that occur in central nervous function remain poorly understood. To address this issue, we have developed a new experimental model - the amphibian Xenopus laevis during its metamorphosis - in which the extreme biomechanical modifications occurring during this critical period necessitate a correspondingly extensive and long-term reorganisation of locomotor neural circuitry within the animal's spinal cord. During metamorphosis, the locomotory strategy of Xenopus shifts from undulatory swimming involving axial tail-based movements, to appendicular propulsion that uses the newly formed limbs. At intermediate metamorphic stages, moreover, the two locomotor strategies coexist within the same animal as the secondary limb-based motor circuitry is progressively replaces the primary axial network as the limbs are added and the tail regresses. By making extracellular recordings of spontaneous "fictive" locomotor patterns generated by isolated brainstem/spinal cord preparations, we have charted the temporal dynamics of the emergence of the appendicular neuronal network and determined its functional relationship with larval axial locomotor circuitry through the metamorphic period. Our results have shown that the limb circuitry is initially present but not functional, functional but subordinate to the embryonic axial network, functionally independent from the axial network, and ultimately alone after axial circuitry disappears with tail resorption. Furthermore, the use of pharmacological approaches established that during the metamorphic transition, the coexisting spinal locomotory networks and their functional interactions are subject to glutamatergic and aminergic modulation in order to adapt locomotory performance to the immediate behavioural needs of the animal. Interestingly, the neuromodulators glutamate, serotonin and noradrenaline exert directly opposing influences on the larval and adult locomotor networks, while dopamine preserves a similar modulatory action on the two circuits in spite of their profound remodelling during metamorphic development. Finally, in addition to a short-term modulatory role, our immunocytochemical evidence suggested that descending aminergic systems may contribute to the long-term maturation of spinal locomotor circuitry during metamorphosis in parallel with their own developmental reconfiguration. Specifically, the appearance and disappearance of a population of intraspinal serotonergic neurons concomitant with hindlimb growth and preceding tail regression suggested a role of serotonin in the maturation of the appendicular locomotor network and/or in the chronology of axial network regression.
|
96 |
Intérêts et limites de l'analyse de la moelle osseuse en toxicologie médicolégale : contribution à l'interprétation quantitative des concentrations médullaires / Interests and limits of bone marrow analysis in forensic toxicology : contribution to quantitative interpretation of bone marrow concentrationsCartiser, Nathalie 20 September 2011 (has links)
L'objectif de cette thèse était de faire le point sur la place de l'analyse de la moelle osseuse (MO) en tant que matrice alternative au sang en toxicologie médicolégale. Une méthode analytique a été développée et validée pour la quantification du citalopram, du diazepam et ses métabolites (nordazepam, temazepam, oxazepam) dans la MO et 10 autres matrices d'intérêt médicolégal. Cette procédure a été appliquée avec succès dans des cas réels pour l'analyse de matrices dégradées et a permis l'établissement d'une cinétique tissulaire chez l'animal au cours d'une étude pharmacocinétique. Cette cinétique animale a été intégrée dans une modélisation PBPK afin de prédire chez l'homme la distribution tissulaire du citalopram, du diazepam et son métabolite principal, le nordazepam, après administration orale thérapeutique. Ces simulations donnent des clefs intéressantes pour l'interprétation quantitative des concentrations tissulaires en toxicologie médicolégale. Une étude a été conduite pour déterminer l'influence du site de prélèvement sur la détermination des concentrations médullaires de caféine et sur la corrélation de ces concentrations avec les dosages sanguins. Elle montre que le site de prélèvement de MO est un paramètre important à prendre en considération dans l'interprétation quantitative des analyses de MO. L'ensemble de ce travail confirme l'intérêt de la MO en toxicologie médicolégale. Des études expérimentales ont permis d'approfondir les connaissances de cette matrice autour des problématiques du prélèvement, de l'analyse et de la distribution ante mortem afin de contribuer à l'interprétation qualitative et quantitative des analyses réalisées sur la MO / The aim of this work was to evaluate the interest of bone marrow (BM) analysis in forensic toxicology, as an alternative matrix to blood. An analytical method was developed and validated for the quantification of citalopram, diazepam, and its main metabolites (nordazepam, temazepam, oxazepam) in BM and 10 others matrices of forensic interest. This procedure was successfully applied to real cases for putrified sample analyses and to establish a tissue kinetic in rabbit samples for a pharmacokinetic study. These animals kinetics were implemented in PBPK modeling to predict in human tissue distribution of citalopram, diazepam, and its metabolite, nordazepam, after oral therapeutic administration. These predictions gave some clues to interpret quantitatively tissue concentrations in forensic toxicology. A study was also performed to examine whether BM sample location may influence post mortem BM quantification and correlation between BM and blood concentrations. Caffeine was used as test compound. Sample location was found to be an important parameter to consider in quantitative interpretation of BM analyses. This work confirmed the interest of BM in forensic toxicology. Experimental studies improved our knowledge on this matrix about the problematic of sample location, analytical procedure and ante mortem distribution to contribute to qualitative and quantitative interpretation of BM analyses
|
97 |
Coordination locomotion-respiration : influences des réseaux locomoteurs cervico-lombaires sur l'activité des neurones respiratoires spinaux et bulbaires / Locomotion respiration coordination : cervical and lumbar locomotor network influences on spinal and medullary respiratory neuron activityLe Gal, Jean-Patrick 18 December 2013 (has links)
Le système nerveux central possède des réseaux de neurones capables de générer des commandes motrices rythmiques en l'absence d'informations sensorielles. Ces réseaux neuronaux sont communément appelés générateurs centraux de patron (CPG, central pattern generator) et sont impliqués dans plusieurs fonctions et comportements vitaux tels que la locomotion et la respiration. Dans certaines circonstances, ces réseaux neuronaux se doivent d'interagir afin de produire un comportement moteur adapté aux contraintes environnementales ainsi qu'aux exigences de l'organisme. C'est notamment le cas lors d'un effort physique où une augmentation du rythme respiratoire est rapidement observée pour subvenir aux besoins en oxygène de l'organisme. Dans ce contexte de neurosciences intégratives, mon travail doctoral a porté sur l'étude des mécanismes neurogènes responsables de l'interaction entre les CPG respiratoires du tronc cérébral et les CPG locomoteurs de la moelle épinière. Cette étude a été réalisée sur des préparations de tronc cérébral-moelle épinière isolée in vitro de rat nouveau-né (P0 à P2) au sein desquelles les centres respiratoires et locomoteurs sont conservés intacts. Par des approches électrophysiologique, pharmacologique, lésionnelle et neuroanatomique, les mécanismes de coordination entre ces sous-groupes neuronaux ont été étudiés. Dans ce contexte, un des principaux résultats de ce travail doctoral est la mise en évidence de l'existence d'une influence ascendante excitatrice issues des CPG locomoteurs spinaux sur les centres respiratoires, et plus particulièrement sur le groupe respiratoire parafacial, structure située dans le bulbe rachidien et impliquée dans la genèse de la commande respiratoire. Outre son implication dans la modulation du rythme respiratoire, cette influence ascendante module également l'activité des populations neuronales expiratoires des régions spinales thoraciques et lombaires. Ces données constituent la première mise en évidence de l'existence de neurones bi-fonctionnels au sein de la moelle-épinière chez le rat nouveau-né. / The central nervous system contains neural networks that can generate rhythmic motor drive in absence of sensory feedback. These neural networks are commonly called central pattern generators (CPG) and are involved in many vital functions and behaviors, such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce motor behaviors adapted to environmental constraints and the basic needs of organism. This is the case during physical exercise when the respiratory frequency increases in order to satisfy the oxygen needs. In a context of integrative neurosciences, my doctoral work aimed at exploring the neurogenic mechanisms involved in the coordination between the medullary respiratory networks and the spinal locomotor CPG. To address this question, we used an isolated in vitro brain stem-spinal cord preparations from neonatal rats (0-2 days) in which the respiratory and the locomotor networks are kept intact. Using electrophysiological, pharmacological, lesional and neuroanatomical approaches, mechanisms involved in the coordination between locomotor and respiratory rhythms have been studied. The major finding of this doctoral work is the identification of an ascending excitatory influence from spinal locomotor CPG to the respiratory networks, acting particularly on the parafacial respiratory group, which is known to be engaged in the genesis of expiratory activity. In addition to the respiratory frequency modulation, this ascending influence also modulates the activity of spinal expiratory neurons located in lumbar and thoracic segments. These data provide the first evidence for the existence of bi-functional neurons in newborn rat spinal cord.
|
98 |
Caractérisation fonctionnelle des molécules d'adhésion jonctionnelle (JAM) dans l'environnement ganglionnaire et médullaireFrontera, Vincent 06 December 2011 (has links)
L’adhésion, la migration cellulaire et l’environnement stromal sont intimement liés pour garantir l’homéostasie du système immuno-hématopoïétique. Néanmoins, nos connaissances des mécanismes responsables du maintien de ce processus fonctionnel restent fragmentaires. Notre étude a permis de mieux caractériser le stroma ganglionnaire et médullaire dans lesquels nous avons démontré de nouveaux rôles immuno-régulateurs des molécules d’adhésion jonctionnelle JAM-B et JAM-C. Dans la zone T des ganglions lymphatiques, les cellules réticulaires fibroblastiques (FRC) sécrètent des composés de la matrice extracellulaire et des chimiokines homéostatiques, nécessaires à la migration intranodale des lymphocytes T naïfs. La génération de nouveaux anticorps monoclonaux a permis d’identifier une diversité phénotypique et fonctionnelle au sein de la population FRC. L’un d’entre eux reconnaît la Thrombomoduline permettant d’identifier une population de FRC exprimant les protéines JAM-C et PDGFRα. Cette population cellulaire, dénommée FRCDP (Double Positive) sécrète des chimiokines homéostatiques, ce qui la distingue de la population FRCDN (Double Negative). Les souris sauvages traitées avec l’anticorps anti-JAM-C présentent une diminution significative du taux intranodal des chimiokines CXCL12, CCL19, CCL21 affectant la recirculation des cellules T naïves. De façon similaire, les cellules stromales des niches hématopoïétiques fournissent un environnement fonctionnel, nécessaire à l’homéostasie du système hématopoïétique. Les molécules d’adhésion sont connues pour contrôler ces mécanismes. JAM-C est exprimée à la surface des cellules souches hématopoïétiques (CSH) mais son rôle dans l’hématopoïèse reste inconnu. Notre étude montre que la molécule JAM-B est exprimée par l’environnement médullaire et interagit spécifiquement avec JAM-C sur les CSH. Les souris déficientes pour le gène jam-b présentent une diminution du nombre de CSH quiescentes et une réponse accrue aux agents mobilisants, démontrant ainsi que le couple JAM-B/JAM-C est nécessaire au maintien et à la rétention des CSH dans la moelle osseuse. / Homeostasis of the immune and hematopoietic system is dependent of cell adhesion, cell migration and stromal environment. Nevertheless, the molecular mechanisms involved in the crosstalk between hematopoietic and stromal cells have remained elusive. Our studies allowed to better characterize lymph node (LN) and bone marrow (BM) stromal compartments through the demonstration that expression of junctional adhesion molecules (JAM) in these compartments is necessary for the maintenance of immune and hematopoietic homeostasis. In the T cell zone (LN), extracellular matrix and homeostatic chemokines are secreted by fibroblastic reticular cells (FRC) which control naive T cell migration. We have identified new FRC subsets using a monoclonal antibody based approach to identify new cell surface markers of stromal cells. We have found that the FRC population expressing JAM-C, Thrombomodulin and PDGFRα (FRCDP, for Double Positive) secretes homeostatic chemokines such as CCL21, CCL19 and CXCL12. In contrast, FRCDN (Double Negative) that lack JAM-C and Thrombomodulin expression do not. Functionally, we have shown that JAM-C controls the secretion of CCL21, CCL19 and CXCL12 by FRCDP and that anti-JAM-C treated mice exhibit a decrease of intranodal chemokine contents. These results suggest that JAM-C may regulate homeostasis through the control of homeostatic chemokine secretion. We therefore asked the question whether similar function for JAM-C or its ligand JAM-B may be identified in the bone marrow. In the BM, Hematopoietic Stem Cells (HSC) are maintained quiescent and undifferentiated in specific stromal structures called HSC niches. HSC/niche interactions via adhesion molecules and chemokines are known to be active player of HSC homeostasis. Recently, JAM-C expression by HSC has been reported, but its role in hematopoiesis has remained elusive. We have demonstrated that HSC interact with JAM-B expressed by BM stromal cells in a JAM-C dependent manner. Moreover, we have observed a decreased pool of quiescent HSC in jam-b deficient mice. Finally, we have found that jam-b deficient mice exhibit an increase in intramedullary CXCL12 content and an exacerbated response to mobilizing agents. Collectively, these data demonstrate that JAM-B and JAM-C play a dual function in lymph node and bone marrow microenvironments through the regulation of leuko-stromal adhesion and chemokine secretion.
|
99 |
Réseaux corticaux chez le primate adulte et en développement / Primate cortical networks in the adult and during developmentRibeiro Gomes, Ana Rita 18 December 2018 (has links)
Le traçage rétrograde des voies corticales chez le singe a permis d’étudier deux sujets liés. En premier lieu, des injections dans 40 aires d'un atlas cortical de 91 aires ont permis de constituer une base de données cohérente sur la connectivité corticale à l’échelle de l’hémisphère. Les structures sous-corticales favorisant la communication corticale via la formation de boucles cortico-sous-cortico-corticales ont été examinées. Nous montrons que la force des projections du claustrum (considéré comme ayant une affiliation étroite avec le cortex) vers chaque aire explorée est exceptionnelle. De plus, un chevauchement des neurones marqués dans le claustrum a été observé suite à des paires d'injections dans des aires largement éloignées, y compris dépourvues de connexions cortico-corticales directes. A l’aide d’outils de la théorie des graphes, nous avons examiné la centralité des 40 aires et du claustrum dans le réseau cortical. En particulier, le claustrum est le meilleur exemple d’une aire pouvant prétendre au statut de « hub ». Ces résultats soulignent l'importance d'étudier les principes organisationnels du cortex via l'analyse de la topologie de son réseau. En second lieu, nous avons étudié le développement de la voie corticospinale par laquelle le cortex influence la planification, l'exécution et le contrôle de la motricité fine. Nous montrons que la topologie des projections corticospinales chez l’adulte émerge suite à un processus développemental de raffinement des projections ipsi- et controlatérale étendues. Ces résultats suggèrent que le développement de la connectivité corticale pourrait être régulé de manière dynamique et spécifique aux primates / The retrograde tracing experiments in macaque cortex in this thesis had two related objectives. Firstly, injections in 40 cortical areas (from a 91-area atlas) allowed the construction of a hemisphere-wide consistent database of cortical connectivity. We examined which subcortical structures promote cortical communication via the formation of cortico-subcortical-cortical loops. The claustrum, which we argue has a tight affiliation with the cortex, showed uniquely strong outputs to every cortical area. Widely separated injection pairs led to overlapping labelled neurons in the claustrum including those pairs lacking direct cortico-cortical connections. Using graph theoretic tools, we examined how central the 40 areas and claustrum are in the cortical network, specifically with respect to hub status. This showed that the claustrum is, beyond doubt, the prime hub of the cortex. These findings emphasise the importance of studying the organizational principles of the cortex via the analysis of its network topology. Secondly, we investigated the development of the corticospinal pathway, a route over which the cortex directly influences the planning, execution and control of fine voluntary movements. We show that the adult pattern of corticospinal projections emerges via a developmental process from a widespread ipsi- and contralateral distribution. These findings suggest that the developmental refinement of cortical connectivity might be dynamically regulated and primate specific
|
100 |
Relation fonctionnelle entre CXCR4 et CXCR7 dans le contrôle de la migration chimiotactique vers CXCL12Lamothe, Simon 11 1900 (has links)
No description available.
|
Page generated in 0.0423 seconds