• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 1
  • Tagged with
  • 26
  • 26
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mätosäkerhet i höjd vid stationsetablering med RUFRIS / Precision in height levelling of a total station with the RUFRIS method

Melcher, Erik January 2020 (has links)
Traditionellt är avvägning den metod som används vid höjdsättning av nyetablerade stompunkter. Men det är en teknik som kan vara både kostsam och tidskrävande, i synnerhet då avståndet till närmsta anslutningsnät är ansenligt. Den här studien undersöker en alternativ metod till avvägning, RUFRIS-metoden. RUFRIS (RealtidsUppdaterad FRI Station) bygger på att totalstationen erhåller sin position genom avstånds- och vinkelmätning kombinerat med GNSS-teknik i realtid. Det är möjligt då mätstången är försedd med både prisma och GNSS-rover, vilket gör att totalstationen beräknar sina positionskoordinater direkt i fält. Mätosäkerheten i plan är låg och metoden används regelbundet, men vid höjdmätning används fortfarande avvägningsteknik. Syftet med uppsatsen är att undersöka RUFRIS-metodens mätosäkerhet i höjd, samt dess pålitlighet som alternativt tillvägagångsätt vid höjdbestämning av nyetablerade stompunkter.  I studien samlades data in från mätningar på tre olika områden i Karlstads kommun med nära anslutning till en känd stompunkt med koordinater i korrekt referenssystem, SWEREF 99 13 30 samt RH2000. Totalt genomfördes 60 totalstationsetableringar med RUFRIS-metoden, 20 på respektive studieområde. 10 med 6 bakåtobjekt och 10 med 15 bakåtobjekt med efterföljande inmätning av respektive stompunktshöjd som jämförelsereferens. Utifrån insamlade mätdata sammanställdes och beräknades medelhöjd, mätosäkerhet och spridning inom mätserierna för varje studieområde.  Studien visar att höjdbestämning med RUFRIS-metoden kan uppnå standard-osäkerhet på 2,5 mm vid enskild mätning då 15 bakåtobjekt nyttjas. Som högst blev standardosäkerheten för enskild mätning 5,4 mm, utfört med etablering med 6 bakåtobjekt. Vid jämförelsen med Karlstads kommuns stompunkter blev samtliga höjder lägre än motsvarande avvägd referenshöjd. Resultatet tyder på ett systematiskt fel där GNSS/RTK-mätta höjder redovisade lägre nivå än de avvägda stom-punkternas höjdkoordinater. Att detta tolkas som systematiskt fel baseras på den samlade spridningen inom varje mätserie. Som mest blev den 16,2 mm, vid etablering med 6 bakåtobjekt, vilket tyder på stabila etableringar med goda mätresultat. Minst spridning inom en mätserie blev 7,1 mm då 15 bakåtobjekt användes för etablering.  Utifrån resultatet kan slutsats dras att höjdbestämning med RUFRIS-metoden kan vara ett alternativ till traditionell avvägning då krav på mätosäkerhet ställs till 10 mm. Vid goda förhållanden för GNSS/RTK-mätning och med 15 inmätta bakåtobjekt kan mätosäkerhet på 5 mm i höjd anses rimligt att uppnå med RUFRIS-metoden. Då krav på lägre mätosäkerhet ställs bedöms avvägning som mer tillförlitligt, men då bör avståndet till närmaste höjdfix vara en faktor att ta med i beaktning. / The traditional method of determining vertical coordinates in surveying is by levelling. The height from a definite coordinate point gets transferred to a new point. But what if there is no point nearby? Levelling over long distances is costly and time consuming. This study is investigating another way of setting new height points, the RUFRIS-method. The RUFRIS-method is a Swedish innovation and stands for “Realtime Updated Free Station” (RealtidsUppdaterad FRI Station in Swedish language). Establishments of the total station with the RUFRIS-method is done in real time and the total station gets its coordinates by a combination of traditional measurements by distance and angle combined with GNSS-technique. This is possible due to a multiple pole with both a reflector and a GNSS-rover set on top. The purpose of this study is to investigate the precision of height levelling with the RUFRIS-method and if the method could be used as a substitute to traditional levelling.  In this study three separate areas in Karlstad were selected and set up for RUFRIS-establishments. On each area there was a point with known coordinates in the correct reference system, SWEREF 99 13 30 and RH2000. A total of 60 RUFRIS-establishments were set up, 20 on each area. 10 with 6 backsight points and 10 with 15 backsight points, including subsequent measurement of the control points as a comparison reference. Based on the collected measurement data mean height, uncertainty and spread within the measurement series were analysed and calculated.  The result in this study shows that the lowest uncertainty achieved during single measurements was 2.5 mm in one of the RUFRIS-establishment series with 15 backsight points. Highest uncertainty was 5.4 mm during RUFRIS-establishment with 6 backsight points. Comparing with the known vertical coordinates the result indicated a systematic error due to the fact that every measured height ended up lower than the references height. The conclusion that a systematic error occurred were made on the basis of the narrow spread within all the measured series, 7.1-16.2 mm. The result indicates that all the establishments with the RUFRIS-method were solid and trustfully made.  The conclusion of this study is that the RUFRIS-method is a useful and solid way to determine new height points in cases were the uncertainty-limit is set to 10 mm. Under good GNSS/RTK conditions and establishment made with 15 backsight points its likely to expect uncertainty of 5 mm in height level with the RUFRIS-method. When requirement for lower uncertainty is demand levelling is considered as more reliable, but the distance to the closest known coordinate-point should be a factor to be considered.
12

Jämförelse mellan två generationer av GNSS-mottagare tillverkade av Trimble : Mätnoggrannhet i plan och höjd vid användande av nätverks-RTK / Comparison of two generations Trimble GNSS receivers

Gunnarsson, Anton, Ström, Martin January 2020 (has links)
The use of GNSS has made huge progress over the last few decades and in many cases replaced the use of total stations. A current problem for the GNSS-technique is dense vegetation, which prevents the receivers from making reliable calculations for the satellite signals. In this study a new receiver from Trimble that is said to be able to measure in these particular environments is compared to its predecessor. By assignment from ÅF Karlstad we have therefore conducted a comparison of the new receiver (R12) and its predecessor (R10), to see if R12 to a greater extent than R10 can replace the use of a total station.   The comparison was carried out by repeatedly measuring six different points, totally or partly obstructed by vegetation. To achieve uniform points these where measured with a Realtime Updated Free Station (RUFRIS) and the altitude was balanced from nearby fixed points.   The results where then analyzed by calculating average distance from the known points as well as the maximum dispersion within each respective moment of measurement. The results show that Trimble R12 can conduct reliable measurements in environments where the R10 is not useable. At one of the points the R12 achieved fixed solution where the R10 failed to do so, which is clearly reflected in the results. The results further show a more even and gathered result compared to the R10.   The conclusion of the project is that the R12 constantly performs a better result than the R10 and also enables measurements in environments previously not measurable with GNSS.
13

Utvärdering av mätosäkerhet för positionsbestämning med Trimble R12i och dess inbyggda lutningskompensator

Rage, Zakaria, Zerezgi, Natnael January 2022 (has links)
Geodetiska mätinstrument utvecklas konstant. Denna utveckling möjliggör attmätning med Global Navigation Satellite System (GNSS)-instrument nu kangenomföras utan att behöva horisontera stången som instrumentet ärmonterad på, detta eftersom själva mottagaren har en inbyggdlutningskompensator som konstant beräknar positionen för stångspetsen. Enav mottagarna som har en sådan inbyggd lutningskompensator är TrimbleR12i som lanserades 2020. Förutom att instrumentet kan mäta utan att varahorisonterat har mottagaren också andra funktioner som bidrar till förbättradpositionsbestämning, som en ny signalbearbetningsfunktion som gör att denpresterar bättre i svåra mätmiljöer, till exempel vid höga byggnader, underträd och så vidare. I den här undersökningen ligger fokus på hurlägesosäkerheten varierar mellan lutningsgraderna 0º, 10º, 20º, 30º, 40º och50º samt på hur tekniken presterar i svårare mätmiljöer med begränsad sikt.För att testa om tekniken klarar inmätning av dolda punkter i en svår miljö,genomfördes inmätning av fyra hushörn för en ca 17 m hög byggnad, somsenare jämfördes med inmätning av två hushörn för en lägre byggnad, cirka 10m hög. Något som också undersöktes var hur lägesosäkerheten påverkas avolika observationstider. De erhållna GNSS-resultaten jämfördes senare medreferenskoordinater. Dessa mättes in med totalstation från en station sometablerats med en GNSS-baserad stationsetablerings metod, nämligenrealtidsuppdaterad fri stationsetablering (RUFRIS) med 15 bakåtobjekt.Resultatet av mätningarna i olika lutningsgrad bekräftar det som var förväntat,nämligen att standardosäkerheten i både plan och höjd ökar i samband medökad lutningsgrad. De högsta standardosäkerheterna erhålls vid 40º och 50ºlutning. Resultatet bekräftar också att instrumentet klarar att prestera braäven i svår mätmiljö. Standardosäkerheten i plan på punkt C som ligger i ensvår mätmiljö hamnade mellan 1,8 cm till 7,6 cm vid 0º till 30º lutning och5 till 10 cm vid lutningarna 40º och 50º. De vertikala standardosäkerheterna ärmycket låga. I punkt A som befinner sig i en vanlig mätmiljö liggerstandardosäkerheten i höjd mellan 4 till 9 mm vid 0º till 30º lutning och 0,7cm till 1,7 cm vid lutningarna 40º och 50º. I den svåra mätmiljön ligger devertikala standardosäkerheterna mellan 2,1 cm till 6,9 cm vid 0º till 30ºlutning och 3,6 till 8,9 cm vid 40º och 50º lutning. De vertikala osäkerheternaökar också i samband med ökad lutningsgrad även om ökningen inte är likastor som för de horisontella osäkerheterna. Slutsatsen av undersökningen äratt instrumenten fungerar bra i svår mätmiljö med begränsad sikt medstandardosäkerhet på 1,8 till 7,6 cm i plan vid 0º till 30º lutning och 5,1 till 10cm vid 40º och 50º lutning. Det går också att genomföra mätningen med upptill 50º lutning, åtminstone i vanlig mätmiljö med standardosäkerhet mellan1,7 cm och 5,6 cm. I svår mätmiljö hamnar osäkerheterna på dm-nivå vidlutning ≥40º. / Geodetic measuring instruments are constantly developing. This developmenthas now made it possible to measure with Global Navigation Satellite System(GNSS) instruments without leveling the survey rod the instrument ismounted on. This is because the receiver itself has a built-in tilt compensatorthat constantly calculates the tip position of the survey rod. One of thereceivers with such a built-in tilt compensator is Trimble R12i, which waslaunched in 2020. In addition to the instrument being able to measure withoutbeing leveled, the receiver also has other functions that contribute toimproved position determination, such as a new signal processing functionthat performs better in challenging measurement environments, for exampleclose to tall buildings, under trees and so on. This study focuses on how theposition uncertainty varies between the tilt angles 0º, 10º, 20º, 30º, 40º and50º and how the receiver performs in challenging environments with limitedvisibility of the satellites due to different objects such as tall buildings andtrees. To test whether the technology can measure hidden points in achallenging environment, four house corners were measured for a tallerbuilding. This was later compared with two house corners measured beside alower building. It was also investigated how the position uncertainty isaffected by different observation times. The result obtained with the GNSSreceiver was later compared with reference coordinates that were measuredwith a total station that was established with real-time updated free stationestablishment (RUFRIS) relative to 15 network-RTK positions.The result of the measurements in different tilt angles confirms what wasexpected, namely that the standard uncertainty in both horizontal and verticalincreases with the tilt angle. The highest standard uncertainty was obtainedwith 40º and 50º tilt angles. The result also confirms that the instrumentperforms well even in a challenging measuring environment. The horizontalstandard uncertainty at point C (challenging measuring environment) isbetween 1.8 to 7.6 cm for 0º to 30º tilt angles and 5 to 10 cm at tilt angles 40ºand 50º. The vertical standard uncertainty for point A (normal measuringenvironment) is between 4 to 9 mm at tilt angles of 0º to 30º and 0.7 to 1.7cm at tilt angles of 40º and 50º. In difficult measurement environments, thevertical standard uncertainties are between 2.1 to 6.9 cm at 0º to 30º tilt and3.6 to 8.9 cm at 40º and 50º tilt angle. The conclusion of the study is that theinstrument works well in challenging measurement environments withstandard uncertainties between 1.8 to 7.6 cm in the horizontal at 0º to 30º tiltangles and 5.1 to 10 cm at 40º and 50º tilt angles. It is also possible to carryout measurements with a tilt angle up to 50º, at least in a normal environmentwith standard uncertainties between 1.7 cm and 5.6 cm. In challengingmeasurement environments, the uncertainties can be at dm-level at tilt angles≥ 40º.
14

Höjdbestämning genomnätutjämning av höjdskillnaderbestämda med samtidignätverks-RTK

Edvinsson, Alma, Rosenqvist, Moa January 2023 (has links)
I dagsläget finns det flera metoder som kan användas vid höjdbestämning. Vilkenmetod som är lämplig beror på vilket resultat som söks. Två vanliga metoder ärtrigonometrisk höjdmätning och avvägning. Avvägning kan ge resultat med mycketlåg mätosäkerhet, men är en omständlig process med en arbetsam metod. En annanmetod är nätverks-RTK (NRTK), som inte har lika låg osäkerhet men i vissaförhållanden kan ses som ett fördelaktigt alternativ eftersom den är enkel ochpraktisk. I detta examensarbete har höjder bestämts med nätutjämning av höjdskillnadermätta med samtidig Nätverks-RTK (SNRTK) relativt kända höjder över geoiden iRH 2000. Två nät skapades i olika storlekar, ett litet höjdnät skapades utifrån dethöjdnät som skapades av Ali och Wennberg (2021) runt Högskolan i Gävle, medpunktavstånd på mindre än 500m och ett större nät utifrån Gävle kommuns höjdnät,med punktavstånd på ca 1000 m, båda med finavvägda höjder i RH 2000. Nätenmättes in med samtidig relativ nätverks-RTK mätning av baslinjer i två faser medolika observationstider, först 1 minuts mätning och därefter 5 minuters mätning.Först användes dubbel finavvägning för att förflytta höjdfixar till lämplig plats för attöka antalet tillgängliga satelliter och minimera inverkan av flervägsfel. De samtidiganätverks-RTK-mätningarna utfördes med en Trimble R12i GNSS-mottagare somanvändes för att mäta in först baslinjens startpunkt och direkt därefter slutpunkten,vilket upprepades för alla baslinjer i båda näten. Databearbetningen utfördes först i Excel för att sammanställa och beräkna all data.SBG Geo användes sedan för att utjämna näten och skatta viktenhetensstandardosäkerhet och för att bestämma nypunkternas höjder. En aprioristandardosäkerhet på 10 mm användes för att viktsätta näten. Nätutjämningendelades upp i två steg, fri och fast utjämning. Höjderna från vanlig NRTK och de nyahöjderna från SNRTK jämfördes slutligen med finavvägda höjdfixar i RH 2000. Resultatet av arbetet visar att standardosäkerheten för både SNRTK och NTRKligger på centimeternivå, dock visade jämförelsen att NTRK får något bättrestandardosäkerhet på strax under centimeter för båda näten och tidsintervallerna.Standardosäkerheten som uppnåddes med NRTK blev dock bättre än den förväntadestandardosäkerheten som anges i HMK, som ligger runt 15-20 mm. Utifrån dettaexamensarbete kan slutsatsen dras att SNRTK kan användas för att bestämma höjderi RH 2000 med en standardosäkerhet runt 1 cm i förhållande till näraliggandehöjdfixar.
15

Jämförelse av höjdmätning med olika GNSS-mottagare i SWEPOS nätverks-RTK-tjänst

Fredriksson, Annika, Olsson, Madeleine January 2014 (has links)
Det finns i nuläget många olika fabrikat av utrustning för mätning med GNSS på den svenska marknaden och dessa instrument har olika egenskaper. För att kunna göra en positionsbestämning i höjd med GNSS och få låg mätosäkerhet används SWEPOS, Lantmäteriets stödsystem för satellitpositionering, och deras nätverks-RTK-tjänst. Syftet med detta examensarbete var att undersöka om SWEPOS nätverks-RTK-tjänst ger likvärdiga höjdvärden vid mätning med olika GNSS-mottagare och olika avstånd till närmaste fysiska referensstation, såväl som mätosäkerheten i mätningarna. Undersökningen har gjorts hos Lantmäteriet som arbetar kontinuerligt med att minska mätosäkerheten i höjd genom pågående förtätningar av det befintliga SWEPOS-nätet. Det är viktigt att kontrollera att roverutrustningarna på användarsidan arbetar på ett korrekt sätt så att en så låg mätosäkerhet som möjligt kan uppnås i det slutliga mätresultatet.   Fältarbetet med nätverks-RTK pågick under tre veckor i Gävle på Lantmäteriets antennkalibreringsfält. Fyra olika roverutrustningar användes för att utföra jämförelsen. Varje mätserie pågick i två timmar där en epok var en sekund. Närmaste fysiska referensstation varierades mellan två stationer på olika avstånd, 40 m respektive 30 km, för att kunna se hur mätosäkerheten påverkades. De data som erhölls sammanställdes och analyserades i Microsoft Excel.   Studien visar att en av GNSS-utrustningarna kontinuerligt gav sämre mät-osäkerhet än de övriga som höll en jämn nivå. Den visar även en markant skillnad i mätosäkerhet om baslinjen till den närmaste fysiska referensstationen ökar. För två–tre av utrustningarna sjunker höjdvärdet med cirka ett par centimeter, samtidigt som avvikelsen från känd höjd blir större, då den närmaste fysiska referensstationen byts från den närmast belägna till den som ligger belägen längre bort. Dessa utrustningar gav dock individuellt ett likvärdigt resultat så länge samma referensstation var den närmaste. / There are currently many different brands of equipment for measurements with GNSS on the Swedish market and these instruments have different properties. To be able to obtain a position in height with low measurement uncertainty Lantmäteriet’s, the Swedish mapping, cadastral and land registration authority, support system for satellite positioning called SWEPOS and their network RTK service is used. The aim of this thesis was to investigate whether SWEPOS network RTK service provides similarly height values when measuring with various GNSS receivers and different distances to the nearest physical reference station, as well as the measurement uncertainty in the measurements. It is important to verify that the equipment on the user side is working correctly so that such a low measurement uncertainty as possible can be achieved in the final result.   The field work with network RTK took place over three weeks in Gävle on Lantmäteriet’s antenna calibration field. Four different equipment were used to perform the comparison. Each series of measurements lasted for two hours where an epoch was one second. Nearest physical reference station was varied between two stations at different distances, 40 m and 30 km, to be able to see how the measurement uncertainty was affected. The data obtained was compiled and analysed in Microsoft Excel.   The study shows that one equipment continuously gave weaker measurement uncertainty than the others who kept a steady level. It also shows a significant difference in measurement uncertainty if the baseline between the receiver and nearest physical reference station is longer. For 2–3 of the equipment, the height value decreases with about a couple of centimetres and the deviance is getting larger when the nearest physical reference station is switched from the closest one to the one further away. These equipment gave however individually a similarly result as long as the same reference station was the nearest.
16

Analys av lägesavvikelser i delar av Gävle kommuns plana stomnät med nätverks-RTK

Roos, Kristoffer, Östh, David January 2015 (has links)
Traditionella stomnät med fasta markerade punkter (s.k. passiva nät) som realiserar ett referenssystem har länge varit dominerande inom den geodetiska infrastrukturen. Numera finns satellitbaserade referenssystem (s.k. aktiva nät) som har medfört att de traditionella stomnätens roll inom samhällsmätningen har minskat kraftigt. Den minskade användningen har lett till att underhållet av näten i många kommuner har prioriterats bort. Fasta markerade stomnät utsätts kontinuerligt för påfrestningar från t.ex. väder, snöröjning och markarbeten, något som gör att kontroll och underhåll måste göras regelbundet. I Gävle kommun har inget underhåll eller nyetablering av stompunkter skett på många år. Syftet med denna studie är att ge klarhet i hur stor lägesavvikelsen är i delar av Gävle kommuns plana stomnät och utifrån resultatet komma fram till ett förslag för framtida förvaltning och utveckling. Fem områden med olika bra kvalité på stomnäten valdes till undersökningen: Sätra, Valbo, Hille, Södra Bomhus och Furuvik/Ytter-Harnäs. I varje område valdes ca 20 punkter ut vilka sedan inventerades. Om punkterna uppfyllde kravet på goda GNSS-förhållanden och tillgänglighet kontrollmättes de med nätverks-RTK uppställd på stativ med mätning i en minut och återbesök efter minst 20 minuter. Resultatet av kontrollmätningen visade att 95 % av punkterna hade en radiell lägesavvikelse inom 64 mm. Störst avvikelser hade punkter ingående i 53000-serien i Södra Bomhus (RMS 54 mm) och lägst avvikelser hade punkterna ingående i 30000-serien i Sätra (RMS 13 mm). Vi anser med stöd av tidigare studier att en radiell avvikelse på ±40 mm kan accepteras på en punkt när den kontrollmäts med nätverks-RTK. Gävle kommun har idag ingen stomnätsstrategi men denna studie ger ett förslag som innebär att inget framtida underhåll bör göras med undantag av punkter i 30000-serien som bör bevaras för att i framtiden ingå i ett glest huvudnät. I Södra Bomhus bör inte 53000-punkterna användas på grund av dess höga lägesavvikelser. I övrigt rekommenderas att traditionella punktskisser inte bör underhållas och uppdateras och man bör eftersträva att hålla stomnätskartan aktuell.
17

Studie av L2C-signalens möjlighet till ökad tillgänglighet vid GPS-baserad produktionsmätning

Törnlund, Patric, Ångman, André January 2016 (has links)
Eftersom intresset och användandet av satellitbaserad positionering ökat under de senaste åren så är det av stort intresse att utveckla och förbättra de globala navigationssystemen, samt användandet av dessa. På uppdrag av Lantmäteriet i Gävle så har i denna studie en utvärdering av L2C-signalen, som är GPS andra civila signal, genomförts för att undersöka dess möjligheter till ökad tillgänglighet samt minskade mätosäkerheter, vid mätning med nätverks-RTK. Detta inkluderar även en undersökning av hur signalen kan användas i olika fabrikat av GNSS-utrustning. Fabrikaten som testats är Leica, Topcon samt Trimble, vilka kan anses täcka större delen av den svenska marknaden för RTK-utrustning.   Datainsamlingen genomfördes i Mårtsbo där sju kända punkter som ingår i ett av Lantmäteriets testnät mättes in i flera omgångar för att få flera oberoende mätningar, både med och utan L2C-signalen. Samtliga punkter ligger belägna i skogsmiljö, men är av varierande svårighetsgrad. I efterbearbetningen beräknades och jämfördes dels standardosäkerheter och avvikelser mellan de två signalinställningarna, men även medeltid med erhållen fixlösning samt initialiseringstider. Testerna av implementeringen av signalen för de tre olika fabrikaten skedde på SWEPOS-driften på Lantmäteriet i Gävle, där signalförstärkare finns monterad på taket.   Resultaten från fältmätningarna ger en antydan till förbättring av både tiden till fixlösning samt mätosäkerheter vid inkluderandet av L2C-signalen, framförallt vid de punkter som klassats som svårast. Resultatet uppfyller dock inte riktigt de på förhand höga förhoppningarna, som utlovats av GPS samt diverse litteratur, då signalen enligt dessa borde ha gett en förbättring även på de lättare punkterna. Signalen visade sig gå att använda i alla tre fabrikat som testats, dock på något olika sätt. / Since applications of satellite based positioning techniques are constantly increasing, it is important to study the development of GNSS which is improving as well. National Land Survey of Sweden (NLSS) supported this study in order to evaluate the second civil signal from GPS (L2C). The idea is to investigate how using L2C increases the accessibility and accuracy in network-RTK. This also includes an evaluation of how the signal works in different brands of positioning equipment. The equipment that has been selected for this test includes models from the three most established brands in Sweden: Leica, Topcon and Trimble. The data collection was carried out in the area of Mårtsbo where seven well known points were measured, both with and without the L2C signal, for several times. All the measured points are located in forest environments, but with different levels of visibility. In the data post processing many parameters were considered for comparing the results such as: uncertainties, differences from known coordinates, time of fixed solution and initialization time. The tests of how the signal works in the three selected receiver models were carried out at the office of NLSS where a permanent reference antenna is mounted. The result of the field study indicates some improvement regarding the measurement uncertainties and time to fixed solution when including the L2C-signal, especially on those points classified as the most problematic. However, the result does not really fulfill the predicted expectations as hoped, where much bigger advantages for the L2C signal should have been shown. The signal could be used in all the three tested GNSS-equipment, despite of slightly different methods and features.
18

Galileos påverkan vid Nätverks-RTK satellitpositionering i svåra miljöer

Johansson, Stefan, Tysk, Petter January 2017 (has links)
Galileo är ett europeiskt system med global täckning som idag utgörs av ca tio operativa satelliter. Systemet utökas successivt och beräknas vara fullt operativt runt år 2020. Fyra nya satelliter är planerade att aktiveras under 2017 och ytterligare fyra satelliter kommer att skjutas upp under 2017.  Syftet med studien har varit att testa tillgängligheten och osäkerheten i Galileo mot SWEPOS i en multi-GNSS-konstellation. Där målet har varit att visa vilka fördelar Galileo kan bidra med vid satellitpositionering i Network Real Time Kinematic (Nätverks-RTK) under tuffare mätförhållanden.   Nätverks-RTK mätningar har genomförts för att studera förbättringar Galileosignaler kan bidra till i olika utmanande miljöer. Mätningar har utförts i två typer av miljöer, skogsmiljö där träd stör och blockerar satellitsignaler och även i urban miljö där höga byggnader och fordon kan störa signaler och orsaka fel. Mätningarna har utförts över punkter med kända koordinater i Gävle stad och Mårtsbo. Flera mätningar har gjorts över varje punkt, en mätning varje sekund i 60 sek, vilket möjliggör 60 observationer. Denna procedur har gjorts flera gånger med elevationsvinklarna 15, 25 och 35°. SWEPOS, det permanenta GNSS-nätverket i Sverige har använts vid genomförandet av nätverks-RTK-mätningarna. SWEPOS är ännu inte kompatibelt med Galileo, därför har tillfälliga SWEPOS-referensstationer som stöder Galileo använts. Mottagaren och den handhållna enheten som används under mätningarna har varit från tillverkaren Trimble. GNSS-planering har använts för att se till att det alltid funnits Galileo-satelliter tillgängliga under mätningarna. Studien visade att för att kunna se fördelarna med Galileo under nätverksRTK måste elevationsvinkeln sättas högre än 15°. Detta begränsar antalet satelliter som tillhör Globalnaya Navigatsionnaya Sputnikovaya Sistema (Glonass) och Global Positioning System (GPS), vilket kan visa fördelarna med Galileo. På vissa punkter som använts för mätningarna var det inte möjligt att få fixlösning utan Galileosignaler.  Slutsatsen av studien är att Galileo med få satelliter kan bidra till en högre satellittillgänglighet, en högre chans till att uppnå fixlösning och minimera tiden för att uppnå fixlösning vid användning av en hög elevationsvinkel eller i tuffa miljöer.
19

Utvärdering av olika metoder för stationsetablering med n-RTK

Svensson, Vilhelm, Tobler, Fredrik January 2018 (has links)
Fri stationsetablering med nätverks-RTK är en metod för att etablera en totalstation över en okänd punkt utan att ha tillgång till några kända punkter. Detta möjliggör för noggranna mätningar där stompunkter saknas. Det finns olika sätt att genomföra fri stationsetablering med n-RTK, och i denna studie utvärderades fyra olika sådana, där skillnaden mellan dem handlar om hur bakåtobjekten bestäms. De metoder som studerades var RUFRIS med 15 respektive 3 bakåtobjekt, Dubbelmätning och 180-sekundersmetoden. Vid RUFRIS mättes varje bakåtobjekt in med en observationstid på 5 s. Vid Dubbelmätning användes tre bakåtobjekt som var medeltal från två inmätningar vardera i 5 s med en tidsseparation på 30 min. Bakåtobjekten vid 180-sekundersmetoden var tre till antalet som mättes in med en observationstid på 180 s. Metoderna beskrivs bl.a. kortfattat i HMK – GNSS-baserad detaljmätning 2017 och ytterligare ett syfte med studien var att utvärdera beskrivningen utav dem däri. Med varje metod genomfördes tio etablering och efter varje sådan mättes en detaljpunkt in för att även undersöka hur noggranna inmätta detaljpunkter blev med de olika metoderna. Metoderna utvärderades genom att jämföra osäkerheter, RMS och användarvänlighet för etablerings- respektive detaljpunkter. Osäkerheterna var dels baserade på spridningen av tio etableringar/inmätningar per metod över en och samma punkt och dels sådana som presenterades i instrumentet vid varje etablering. För beräkning av RMS användes referenspunkter som mätts in genom statisk GNSS-mätning som efterberäknats i SWEPOS Beräkningstjänst. Förutom jämförelser mellan metoderna kontrollerades även om metoderna gav tillräckligt låga osäkerheter för att klara de rekommenderade toleranser för fri stationsetablering som anges i HMK – Terrester detaljmätning 2017. Beräknade osäkerheter i plan, alla metoder inräknat, varierade från 3 till 6 mm sett till både etablerings- och detaljpunkten vilket innebär att samtliga metoder klarar de högre toleranserna i HMK. Den metod som fick både lägst osäkerhet och RMS var RUFRIS med 15 bakåtobjekt, vilken dessutom var ensam om att vara tillräckligt noggrann för att klara de lägre toleranserna. Motsvarande osäkerheter i höjd varierade mellan 3 och 8 mm. Vad gäller toleranserna, visade sig endast RUFRIS med 15 bakåtobjekt vara lämplig, vid lägre krav. Vid högre krav fordras noggrannare metoder. Referenspunkterna hade för höga osäkerheter i förhållande till osäkerheterna hos de studerade metoderna, för att kunna utvärdera metoderna baserat på RMS, i den omfattning det var tänkt. / Free station set up with network-RTK (n-RTK) is a method of establishing a total station over an unknown point without having access to any known points. This allows for accurate surveying even though control points are missing. There are different ways to perform free station set up with n-RTK, and in this study, four different methods were evaluated. The difference between the methods is how the target points are determined. The methods evaluated were RUFRIS (real time updated free station) with 15 and 3 target points, double measurement and the 180seconds method. With RUFRIS, each target point was measured with a 5 s observation time. In double measurement, three target points were used, where each target point was the average of two measurements. Each of these measurements used a 5 s observation time, and a 30 minute separation between the measurements. The number of target points in the 180-seconds method were also three, measured with an observation time of 180 s. The methods are briefly mentioned in HMK – GNSS-baserad detaljmätning 2017 and another purpose of the study was to evaluate the description of them in that document. With each method, ten establishments were performed and after each of them a detail point was surveyed to also analyze how accurate the different methods were in surveying. The methods were evaluated by comparing uncertainties, RMS and user-friendliness for establishments and detail points, between the respective methods. The uncertainties were on one hand based on the deviation of the ten establishments/detail points per method, each one made over the same point, and on the other hand based on the uncertainties presented by the instrument after each establishment. For calculation of RMS, reference points were used, which were measured by static GNSS, and then postprocessed in SWEPOS Beräkningstjänst. In addition to comparisons between the methods, they were also tested to see if they reached sufficiently low uncertainties to meet the recommended tolerances for free stationing, stated in HMK – Terrester detaljmätning 2017. Calculated planar uncertainties, all methods included, ranged from 3 to 6 mm for both the total station and the detail point, which means that all methods can handle the higher tolerances in HMK. The method with the lowest uncertainty and RMS was RUFRIS with 15 target points, which was also low enough to be able to cope with the lower tolerances. The uncertainties of the heights varied from 3 to 8 mm, in which RUFRIS with 15 target points was the only method precise enough to pass the higher tolerances. Another method with lower uncertainty is required when the higher tolerances for heights is specified. The chosen method for determining the reference points turned out to be too uncertain relative to the evaluated methods. Therefore RMS were not as appropriate for comparisons as planned.
20

Utvärdering av Centerpoint RTX för GNSS-baserad detaljmätning : En jämförelse med SWEPOS nätverks-RTK

Fjellborg, Henrik January 2022 (has links)
SWEPOS nätverks-RTK (Real Time Kinematic) är en nationell korrektionstjänst för GNSS som är flitigt använd i Sverige. En begränsning är dock att den kräver internetuppkoppling och att referensnätet endast täcker Sverige. Trimble har en global korrektionstjänst som heter Centerpoint RTX (Real Time eXtended) som inte har dessa begränsningar. Länge hade Centerpoint RTX en förhållandevis lång konvergenstid för att vara ett attraktivt alternativ vid detaljmätning, men i takt med att fler satellitsystem implementerats och referensnätets omfattning utökats har konvergenstiden förkortats. Syftet med det här arbetet är att utvärdera Centerpoint RTX för detaljmätning med avseende på lägesosäkerhet och tidsåtgång. Detta görs som en jämförelse med SWEPOS nätverks-RTK. Tre mätmiljöer valdes ut och i dessa miljöer utfördes två tester för att bestämma lägesosäkerhet och tidsåtgång. Lägesosäkerheten undersöktes genom att montera två mottagare tätt intill varandra på en speciell distansarm (eng. Lever arm). Mottagarna loggade först råa observationer i 2 timmar vilka användes för att efterberäkna referenskoordinater. Sedan kopplades mottagarna upp på respektive korrektionstjänst utan att förflyttas från sina positioner och loggade därefter 1 position i sekunden i 4 timmar. För att mäta tidsåtgången användes en mottagare som växelvis kopplades upp mot SWEPOS nätverks-RTK och Centerpoint RTX och tiden det tog att uppnå god kvalitet på mätningarna mättes. Resultaten visar att Centerpoint RTX uppnår en kvadratisk medelavvikelse (RMS) på ca 1–1,5 cm i plan i lätta och normala mätmiljöer och drygt 2 cm i plan i den svåra mätmiljön. I höjd är RMS ca 1,5 cm i den lätta mätmiljön och 3,5 cm och 4,5 cm i den normala respektive svåra mätmiljön. Centerpoint RTX påverkas mer av mätmiljön än SWEPOS nätverks-RTK och uppvisar tendenser till systematiska avvikelser i nordkoordinaten och i höjdled. Tidsåtgången är runt 30 s i lättare mätmiljöer, i den svåra mätmiljön ärtidsåtgången 83 s för Centerpoint RTX medan SWEPOS nätverks-RTK klarar 30 s i alla miljöer. Medeltalsbildning förbättrar mätningarna med Centerpoint RTX i den svåra miljön, men i de andra miljöerna är effekten liten. Centerpoint RTX kan användas för detaljmätning i god mätmiljö där kraven på lägesosäkerhet (1 sigma) är runt 2 cm i plan och 5 cm i höjd, Vid högre krav bör den systematiska avvikelsen kontrolleras mot kända punkter och eventuellt se om den kan modelleras. I svåra miljöer bör medeltalsbildning över längre tider användas för att klara ett RMS på 2 cm i plan. / SWEPOS network-RTK (Real Time Kinematic) is a national service for GNSS corrections in Sweden. It is limited by the requirement to have an internet connection and the coverage area Sweden. Trimble has a global correction service in Centerpoint RTX (Real Time eXtended) which is not limited in that way. Until a few years ago, Centerpoint RTX had too long convergence times for being attractive in land surveying, but recently these convergence times have been significantly shortened, which makes Centerpoint RTX an attractive alternative to SWEPOS network-RTK. The aim of this bachelor thesis is to assess Centerpoint RTX for land surveying applications regarding measurement uncertainty and time required. This assessment is done in a comparison with SWEPOS network-RTK. Two tests were made in three environments, one to measure uncertainty and one to measure time. The uncertainty was measured using two receivers mounted with a short distance between them on a lever arm. The receivers first logged raw observations for 2 hours which were post-processed later to compute reference coordinates. Without moving the receivers, they were connected to their correction service and started to measure positions with 1 Hz frequency for 4 hours. To measure time one receiver was used that was alternately connected to SWEPOS network-RTK and to Centerpoint RTX and the time needed to obtain high quality observations was clocked. It is found that Centerpoint RTX reaches a Root Mean Square Error (RMS) of 1–1,5 cm horizontally in the easy and normal environments and a little higherthan 2 cm in the bad environment. Vertically, the RMS is around 1,5 cm in the easy environment and 3,5 cm and 4,5 cm in the normal and bad environments respectively. Centerpoint RTX seems to be affected more by the environment and shows tendencies to systematic errors in the north component and height. The required time was around 30 s in the easier environments, but in the bad one the time was 83 s for Centerpoint RTX whilst SWEPOS network-RTK required around 30 s in all environments. Occupation time can strengthen the positions of Centerpoint RTX, especially in bad environments but this effect is small in other environments. Centerpoint RTX can be used for applications requiring standard uncertainties about 2 cm horizontal and 5 cm vertical. If there are higher requirements, a recommendation would be to check the service for systematic errors on known points and eventually model these. In bad environments longer occupation time should be used to achieve 2 cm horizontal RMS.

Page generated in 0.0488 seconds