• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 23
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Pre-B Cell Colony-enhancing Factor (PBEF) Promotes Neutrophil Inflammatory Function through Enzymatic and Non-enzymatic Mechanisms

Malam, Zeenatsultana 19 January 2012 (has links)
Pre-B Cell Colony-Enhancing Factor (PBEF) is a cytokine-like molecule that functions as a nicotinamide phosphoribosyl transferase (Nampt) in a salvage pathway of NAD biosynthesis. PBEF has well-characterized activity as an extracellular inflammatory mediator and has been proposed to signal through the insulin receptor (IR). As neutrophils are key effectors of the innate immune response to infection and injury, we hypothesized that PBEF promotes pro-inflammatory function in neutrophils and that these pro-inflammatory effects may occur through interactions with the neutrophil IR or through PBEF’s enzymatic Nampt activity. Our studies focused on two important facets of neutrophil inflammatory function: their ability to generate reactive oxygen species (ROS) and undergo constitutive apoptosis. We found that, although PBEF does not activate oxidative burst on its own, it primes for ROS generation through the NADPH oxidase. PBEF promotes membrane translocation of cytosolic NADPH oxidase subunits p40phox and p47phox, but not p67phox, induces p40phox phosphorylation and activates Rac. Priming, translocation and phosphorylation are dependent on activation of p38 and ERK mitogen activated protein kinases. PBEF priming of neutrophils occurs independent of its Nampt capacity or of interactions with IR. We next investigated the effects of PBEF on neutrophil constitutive apoptosis. Our lab previously established that extracellular PBEF delays neutrophil apoptosis. Accordingly, we next investigated the mechanism through which this delay was occurring. PBEF-induced delayed apoptosis was enhanced in the presence of Nampt substrates, and NAD alone could delay apoptosis to an extent comparable to PBEF. Delayed apoptosis was blocked by a Nampt inhibitor and was lacking when a mutated PBEF deficient in Nampt activity was utilized. The cell-surface NAD glycohydrolase, CD38, can convert NAD to cyclic ADP-ribose (cADPR). Blocking CD38 activity with a blocking antibody partially reversed the delay of apoptosis induced by PBEF in conjunction with its substrates, and delayed apoptosis could be achieved by addition of the CD38 product cADPR. Finally, we found that delayed apoptosis induced by PBEF did not involve IR. These results indicate that PBEF can prime for enhanced oxidative burst and delay apoptosis in neutrophils, and that these phenomena occur through distinct mechanisms.
12

Melatonin mediated transcriptional mechanisms in the ovine pars tuberalis

West, Alexander January 2013 (has links)
In seasonal mammals the duration of nocturnal melatonin secretion accurately reflects the environmental photoperiod. The endocrine rhythm is decoded by a specialised portion of the pituitary gland (the pars tuberalis, PT) which then relays this information to the pars distalis and hypothalamus, precipitating huge annual changes in physiology and behaviour. However how the PT decodes the melatonin signal is currently unknown. Melatonin influences gene transcription in the ovine PT at its onset and offset, and the phase relationship of these two groups is believed to form the underlying mechanism by which the PT integrates seasonal time. The transcripts induced at melatonin offset are understood to be under the control of a seasonally gated cAMP mechanism. Conversely processes involved in melatonin-mediated gene induction are currently not understood.The work in this thesis ultimately aims to reveal how the seasonal melatonin signal is decoded by the PT. To this end melatonin-mediated gene induction has been characterised through RNAseq, the highly displaced cohorts submitted to bioinformatic promoter analysis and the paradigm tested though in vitro modelling techniques.In this study a 1.5 h infusion with melatonin acutely regulated 219 transcripts in the ovine PT (115 induced, 104 repressed, >1.5 fold change), confirming previous association of several genes (including Cry1, MT1, Gadd45g, Nampt and Npas4) to rapid melatonin control. Gross promoter analysis of these groups indicated that the induced gene cohort was significantly enriched for GC content and CpG islands suggesting the involvement of epigenetic mechanisms of transcriptional control. Further bioinformatic analysis specifically implicated the importance of transcription factors ZFP161 and PAX5 in melatonin-mediated gene induction in the PT. Several immortalised cell lines were screened for the presence of a functional melatonin receptor. Two strains (MCF7 oMT1 and NES2Y) exhibited significant attenuation of forskolin-mediated cAMP accumulation when co-treated with melatonin, a hallmark of melatonin Gαi-coupled protein receptor signalling. These lines were subsequently evaluated as models of melatonin-mediated gene induction of the sheep PT through ovine promoter reporter assays of Cry1, Nampt, NeuroD1 and Npas4. However, treatment with melatonin failed to evoke a reporter response suggesting that the cell line models were inadequately equipped to reflect PT biology. Subsequently a protocol was established to culture ovine PT explants culture which faithfully recapitulated melatonin mediated transcriptional dynamics in vitro, providing a possible tool for the future investigation of the PT. Lastly, previous work has shown the transcriptional profile of Npas4 to peak highly and transiently, pre-empting the expression of other melatonin-induced genes. Using a COS7 cell line model, heterologously-expressed NPAS4 was shown to form functional heterodimeric partnerships with ARNT and ARNTL and transactivate both Cry1 and Nampt promoter reporters through novel binding sites. Collectively these data indicated NPAS4 to act as an immediate activator of melatonin regulated circuits
13

FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

Schuster, Susanne, Penke, Melanie, Gorski, Theresa, Gebhardt, Rolf, Weiss, Thomas S., Kiess, Wieland, Garten, Antje 02 March 2020 (has links)
Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hep- atocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKa activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 signifi- cantly activated AMPKa and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a po- tential treatment option for HCC.
14

Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet

Penke, Melanie, Larsen, Per S., Schuster, Susanne, Dall, Morten, Jensen, Benjamin A.H., Gorski, Theresa, Meusel, Andrej, Richter, Sandy, Vienberg, Sara G., Treebak, Jonas T., Kiess, Wieland, Garten, Antje 02 March 2020 (has links)
Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for NAD salvage and the abundance of Nampt has been shown to be altered in non-alcoholic fatty liver disease. It is, however, unknown how hepatic Nampt is regulated in response to accumulation of lipids in the liver of mice fed a high-fat diet (HFD). HFD mice gained more weight, stored more hepatic lipids and had an impaired glucose tolerance compared with control mice. NAD levels as well as Nampt mRNA expression, protein abundance and activity were significantly increased in HFD mice. Enhanced NAD levels were associated with deacetylation of p53 and Nfκb indicating increased activation of Sirt1. Despite impaired glucose tolerance and increased hepatic lipid levels in HFD mice, NAD metabolism was significantly enhanced. Thus, improved NAD metabolism may be a compensatory mechanism to protect against negative impact of hepatic lipid accumulation.
15

Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Is Reversed by SIRT1

Garten, Antje, Grohmann, Theresa, Klockova, Katarina, Lavery, Gareth G., Kiess, Wieland, Penke, Melanie 06 February 2024 (has links)
Sorafenib is a multi-kinase inhibitor and one of the few systemic treatment options for patients with advanced hepatocellular carcinomas (HCCs). Resistance to sorafenib develops frequently and could be mediated by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin (SIRT)1. We aimed to test whether sorafenib efficacy is influenced by cellular NAD levels and NAD-dependent SIRT1 function. We analyzed sorafenib effects on apoptosis induction, NAD salvage, mitochondrial function, and related signaling pathways in HCC cell lines (HepG2, Hep3B, und HUH7) overexpressing SIRT1 or supplemented with the NAD metabolite nicotinamide mononucleotide (NMN) compared to controls. Treatment of HCC cell lines with sorafenib dose-dependently induced apoptosis and a significant decrease in cellular NAD concentrations. The SIRT1 protein was downregulated in HUH7 cells but not in Hep3B cells. After sorafenib treatment, mitochondrial respiration in permeabilized cells was lower, citrate synthase activity was attenuated, and cellular adenosine triphosphate (ATP) levels were decreased. Concomitant to increased phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), sorafenib treatment led to decreased activity of the mechanistic target of rapamycin (mTOR), indicative of energy deprivation. Transient overexpression of SIRT1, as well as NAD repletion by NMN, decreased sorafenib-induced apoptosis. We can, therefore, conclude that sorafenib influences the NAD/SIRT1/AMPK axis. Overexpression of SIRT1 could be an underlying mechanism of resistance to sorafenib treatment in HCC
16

Caractérisation moléculaire de la résistance aux inhibiteurs de PARP dans le cancer épithélial de l’ovaire par le biais de modèles cellulaires diversifiés

Sauriol, Skye 04 1900 (has links)
Co-mentorship / Le cancer de l’ovaire est le cancer gynécologique le plus létal, et cinquième cause de mort attribuable au cancer chez les femmes nord-américaines. La létalité de cette maladie est due notamment à sa détection tardive, à sa forte hétérogénéité, et à sa résistance au traitement. L’amélioration du sort des patientes atteintes du cancer de l’ovaire passera donc par une meilleure caractérisation de la maladie, ce qui inclut la découverte de biomarqueurs et le développement de voies de traitement efficaces. Pour ce faire, des modèles d’étude représentatifs et bien caractérisés sont nécessaires, et la nature hétérogène du cancer de l’ovaire souligne le besoin d’un grand nombre de modèles diversifiés sous plusieurs aspects. Les modèles cellulaires sont une option peu dispendieuse et facile à entretenir, avec lesquels il est possible d’effectuer des expériences à haut débit. La fiabilité des modèles cellulaires se base sur l’abondance et la diversité, où un grand nombre de lignées cellulaires issues de contextes cliniques et moléculaires variés sont requises pour dresser un portrait représentatif de la maladie. Dans le cadre de cette thèse, dix nouveaux modèles de cancer épithélial de l’ovaire, incluant des lignées de deux sous-types rares, sont décrits et caractérisés rigoureusement. Ces modèles sont diversifiés en phénotypes et en génotypes, et sont démontrés comme représentatifs de la maladie de laquelle ils sont issus. Ces nouvelles lignées, s’ajoutant à plusieurs autres dérivées dans notre laboratoire, pourront servir à étudier le cancer de l’ovaire sous plusieurs aspects. Notamment, un nombre de ces lignées ont servi à l’étude de la résistance au traitement aux inhibiteurs de la polymérase de poly(ADP-ribose) (PARP), une voie thérapeutique émergente des dix dernières années. Malgré des études prometteuses, plusieurs patientes ne répondent pas au traitement initial, ou cessent de répondre après une durée de traitement, menant à une rechute. Ces deux phénomènes, dits résistance intrinsèque et résistance acquise respectivement, nuisent grandement à la survie des patientes. À l’aide de lignées cellulaires initialement sensibles, nous avons développés des modèles de résistance acquise aux inhibiteurs de PARP par exposition prolongée. Ces lignées dérivées, en combinaison avec des lignées intrinsèquement résistantes, ont mené à la découverte d’un traitement combiné synergique entre les inhibiteurs de PARP et une autre classe de molécule, les inhibiteurs de la nicotinamide phosphoribosyltransférase (NAMPT). Cette enzyme étant responsable de la synthèse du substrat de PARP, la combinaison de ces deux thérapies éradique de façon efficace les modèles résistants, autant à résistance acquise qu’intrinsèque, et ralentit la croissance tumorale en modèle murin. Les inhibiteurs de PARP étant déjà approuvés, et les inhibiteurs de NAMPT étant déjà en essais cliniques, la combinaison de ces voies thérapeutiques serait facilement envisageable en clinique, et l’universalité de son efficacité pourrait drastiquement améliorer le sort de patientes atteintes du cancer de l’ovaire, n’ayant aucun autre recours efficace. / Ovarian cancer is the most lethal gynecological cancer, and fifth leading cause of cancer-related deaths in North American women. The lethality of this disease is notably due to its late detection, its strong heterogeneity, and its resistance to treatment. Improving the fate of ovarian cancer patients will require a better characterization of the disease, which includes discovering biomarkers and effective treatment options. To this effect, representative and well characterized study models are required, and the heterogeneous nature of ovarian cancer underlines the need for a vast number of models with diverse characteristics. Cellular models are an inexpensive and easy to maintain option, with which high throughput experiments are possible. The reliability of cellular models depends on their abundance and diversity, where a large number of cell lines from various clinical and molecular contexts are required to accurately represent the disease. In the context of this thesis, ten new models of epithelial ovarian cancer, including cell lines of two rare subtypes, are described and rigorously characterized. These models are diverse in phenotype and genotype, and are shown to accurately represent the disease from which they are derived. These new cell lines, in addition to many others described in our laboratory, will serve to better study ovarian cancer and its many facets. Notably, a number of these cell lines were used to study resistance to poly(ADP-ribose) polymerase (PARP) inhibitor treatment, an emerging therapy of the past ten years. Despite encouraging studies, a number of patients do not respond initially, or cease to respond after a length of treatment, leading to relapse. These two phenomena, dubbed intrinsic and acquired resistance respectively, greatly hinder patient survival. Using initially sensitive cell lines, we developed models of acquired PARP inhibitor resistance by prolonged exposure. These derived cell lines, along with intrinsically resistant cell lines, served to discover a synergistic combination treatment between PARP inhibitors and another class of drugs, nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. NAMPT as an enzyme is mainly responsible for synthesizing PARP’s substrate, and the combination of these two therapies effectively inhibits models of both intrinsic and acquired resistance, and slows tumor growth in mice. PARP inhibitors are already routinely used in the clinic, and NAMPT inhibitors are currently undergoing clinical trials, making this combination of therapeutic options easily conceivable for clinical use in the future, and the universality of its efficacy could drastically improve the fate of ovarian cancer patients who are out of options.
17

Métabolisme du NAD et contrôle de la réponse inflammatoire

Van Gool, Frédéric 20 May 2008 (has links)
Dans le cadre des recherches menées au sein du laboratoire de Physiologie Animale le gène codant pour la nicotinamide phosphorybosyltransférase (NAmPT) à été identifié et cloné. Au cours de ce travail, nous avons étudié le rôle de cette enzyme du métabolisme du Nicotinamide Adénine Dinucléotide ainsi que celui des enzymes dépendantes du NAD (PARP et sirtuines) dans le contrôle de la réponse inflammatoire. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
18

Preclinical evaluation of NAMPT inhibitor KPT-9274 in Acute Myeloid Leukemia

Mitchell, Shaneice Renee 19 June 2019 (has links)
No description available.
19

Tumor necrosis factor-induced necroptosis is regulated by nicotinamide adenine dinucleotide in a sirtuin-dependent manner

Preyat, Nicolas 28 June 2013 (has links)
Nicotinamide adenine dinucleotide (NAD+) represents a long-known key molecule in cellular metabolism. It was initially identified for its ability to convey electrons and protons between redox partners in multiple bioenergetic and biosynthetic reactions. In addition, NAD+ also serves as a substrate for NAD+-consuming enzymes such as sirtuins and poly ADP-ribose polymerases (PARPs). These latter enzymes catalyze dynamic post-translational modifications that control virtually every signaling pathway orchestrating cell fate. The aim of this work was to analyze the role of NAD+ in the context of programmed cell death mechanisms.<p>Our findings indicate that NAD+ is protective against DNA damage-induced cell death and FAS-induced apoptosis, while, unexpectedly, it promotes TNF-induced necroptosis, a regulated form of necrosis. Indeed raising NAD+ cellular levels sensitized culture cells to necroptosis, while NAD+ depletion protected cells from this form of cell death. Furthermore, specific silencing of NAD+-dependent sirtuins was also found to be protective against TNF-induced necroptosis. Consistently, a pharmacological pan-sirtuin inhibitor called cambinol protected cells from necroptosis. Then, as necroptosis represents a back-up mechanism that may have evolved in response to viral pathogens expressing anti-apoptotic proteins, we demonstrated in an in vitro model mimicking viral infection that pharmacological sirtuin inhibition protected cells from poly I:C-induced necroptotic cell death. In vivo, we demonstrated that cambinol partially protected kidney from necrosis after ischemia/reperfusion. We have also shown that enhancing liver NAD+ concentration via isonicotinamide increases the susceptibility of mice to systemic inflammatory response syndrome (SIRS). Moreover, our preliminary data show that isonicotinamide substantially improves the ability of cyclophosphamide to trigger the rejection of the murine mastocytoma P815 tumor cell line.<p>Collectively, our observations point to a role for NAD+ in the control of necroptosis in a sirtuin-dependent manner. These observations may bear relevance to the better understanding of the pathophysiological consequences of excessive production of the pro-inflammatory cytokine TNF and the control of viral infections and tumor progression/immunotherapy. & / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
20

Inhibition of NAMPT sensitizes MOLT4 leukemia cells for etoposide treatment through the SIRT2-p53 pathway

Grohmann, Theresa, Penke, Melanie, Petzold-Quinque, Stefanie, Schuster, Susanne, Richter, Sandy, Kiess, Wieland, Garten, Antje 02 March 2020 (has links)
NAMPT (Nicotinamide phosphoribosyltransferase) catalyses the rate-limiting step in the NAD biosynthesis from nicotinamide and thereby regulates the activity of NAD-dependent enzymes. Cancer cells are highly dependent on NAD for energy and DNA repair processes and are assumed to be more susceptible to an inhibition of NAD synthesis than non-transformed cells. We aimed to investigate whether or not inhibition of NAMPT with its specific inhibitor FK866 can sensitize leukemia cells for chemotherapeutic agents. NAMPT protein abundance, enzymatic activity and NAD concentrations were significantly higher in Jurkat and Molt-4 leukemia cell lines compared to normal peripheral blood mononuclear cells. Combination of etoposide and FK866 caused increased cell death in leukemia cell lines compared to etoposide alone. Etoposide decreased protein abundance of NAD-dependent deacetylases SIRTUIN1. After combining etoposide and FK866 treatment SIRTUIN2 was further decreased and accumulation and acetylation of the downstream target p53 was further enhanced in MOLT4 cells. Concomitantly, protein abundance of p21 and cleaved BAX was increased. Targeting NAMPT could be a novel therapeutic strategy to enhance the efficacy of chemotherapeutic agents such as etoposide against leukemia.

Page generated in 0.0357 seconds