• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Plasmonic properties of subwavelength structures and their applications in optical devices

Wang, Wei, 1983 July 24- 09 February 2011 (has links)
A metallic hole array of a rectangular converging-diverging channel (RCDC) shape exhibits extraordinary transmission for wavelengths larger than the periodicity of the holes. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of two-dimensional metallic hole arrays (2D-MHA) with RCDC. For a straight channel MHA, when the aperture size is reduced, the transmission peaks have a blue-shift. The same result is observed for a smaller gap throat for the RCDC structure. For the rectangular holes with a high length-width ratio, a similar blue-shift in the transmission peaks as well as a narrower full width at half maximum (FWHM) are observed. The asymmetry from the rectangular shape gives this structure high selectivity for light with different polarizations. Furthermore, the RCDC shape gives extra degrees of geometrical variables to 2D-MHA for tuning the location of the transmission peak and the FWHM. Tunable extraordinary transmission via changing temperature of a porous metallic layer on top of a thin layer of dielectric strontium titanate (STO) is then studied. The metallic layer has a through-hole array and each hole has a circular converging-diverging channel (CDC) shape, which induces the excitation of surface plasmon polaritons (SPPs) and then results in a controllable extraordinary optical transmission in the terahertz (THz) frequency range. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of the structure. Location and magnitude of the transmission peaks can be adjusted by the hole size, converging angle, and thicknesses of metal and STO layers. Remarkably, the suggested structure presents a strong transmission dependency on temperature, which offers a new approach to actively and externally tune the transmission. Currently, the performances of thin film solar cells are limited by poor light absorption and carrier collection. In this research, large, broadband, and polarization-insensitive light absorption enhancement is realized via integrating with unique metallic nanogratings. Through simulation, three possible mechanisms are identified to be responsible for such an enormous enhancement. A test for totaling the absorption over the solar spectrum shows an up to ~30% broadband absorption enhancement when comparing to bare thin film cells. Overall performance of a thin film solar cell is determined by the efficiency of conversing photons to electrons that include light absorption, carrier generation and carrier collection processes. Photon management via hybrid designing has been emerging as a powerful means to further boost the conversion efficiency. Here a new nanograting solar cell design, which can be universal and a new solar cell platform technology, is proposed with goals to achieve large enhancement on broadband light absorption and carrier generation, most importantly, under the much reduced usage of active and non-earth-abundant materials. A test for the short circuit current density in CuIn[subscript x]Ga([subscript 1-x])Se₂ (CIGS) thin film solar cells shows an up to ~250% enhancement when comparing to the corresponding bare thin film cells. Besides that, by placing metal strips on top of the nanograting, which act as the top electrode, this design is able to reduce the use of non-earth-abundant materials such as indium that is normally used in both active and transparent conducting materials. / text
22

Metallische Nanoantennen: Frequenzverdopplung und photochemische Reaktionen auf kleinen Skalen

Reichenbach, Philipp 11 April 2012 (has links) (PDF)
Diese Arbeit beinhaltet experimentelle und theoretische Untersuchungen der optischen Frequenzverdopplung (second-harmonic generation, kurz SHG) an metallischen Nanopartikeln. Frequenzverdopplung bedeutet, daß ein bei der Frequenz omega angeregtes Nanopartikel Strahlung der Frequenz 2*omega emittiert. Dieser Effekt tritt nicht nur in Materialien mit nichtzentrosymmetrischer Kristallstruktur, sondern auch an der Oberfläche von Metallen auf. Deshalb läßt er sich gut mit plasmonischen Feldüberhöhungen an metallischen Nanoantennen verbinden. Die Frequenzverdopplung wird an verschiedenen Nanostrukturen wie dreieckförmigen, stäbchenförmigen und vor allem kegelförmigen Nanopartikeln experimentell untersucht, welche aufgrund ihrer scharfen Spitzen starke SHG-Signale emittieren. Besonders die Kegel sind interessant: Bei Anregung mit einem fokussierten, radial polarisierten Strahl dominiert je nach Kegelgröße und Umgebungsmedium ein SHG-Signal entweder von der Spitze oder von der Bodenkante des Kegels. Diese an den Kegeln gemessenen Resultate werden durch theoretische Untersuchungen untermauert. In diesen Rechnungen werden die plasmonischen Feldüberhöhungen und die sich daraus ergebende Frequenzverdopplung für einen Kegel mit verschiedenen Parametern modelliert. An einem einzelnen Kegel gewonnene Resultate werden auch mit den Fällen eines kugelförmigen und eines stäbchenförmigen Partikels verglichen. Ein weiterer Gegenstand der theoretischen Untersuchungen ist die Superposition der zweiten Harmonischen von mehreren emittierenden Nanopartikeln zu einem Feldmaximum. Dabei wird eine kreisförmige Anordnung von 8 Nanostäbchen bzw. Nanokegeln von einer radial polarisierten Mode angeregt. Die Superposition der emittierten zweiten Harmonischen ergibt ein Feldmaximum innerhalb der Anordnung der Emitter. Durch eine Verkippung des anregenden Strahls kann dieser Fokus im Raum bewegt werden. Letztere Untersuchung ist insbesondere interessant im Hinblick auf lokalisierte photochemische Reaktionen, die durch das frequenzverdoppelte Licht von Nanopartikeln ausgelöst werden sollen. Mit chemischen Substanzen, die bei omega transparent, bei 2*omega aber photoreaktiv sind, wäre im Nahfeld dieser Nanoantennen eine starke Lokalisierung der Reaktion auf Bereiche kleiner als 100~nm möglich. Anhand von Photolacken und Polymermatrizen mit diesen Eigenschaften wird experimentell untersucht, ob frequenzverdoppeltes Licht überhaupt solche Reaktionen auslösen kann oder ob die photochemische Reaktionen überwiegend durch direkte Zwei-Photonen-Absorption des anregenden Lichts ausgelöst werden. Die Ergebnisse zeigen allerdings, daß die Zwei-Photonen-Absorption dominant ist. Durch die Zwei-Photonen-Absorption im Nahfeld von Partikeln ist aber dennoch eine vergleichbare Lokalisierung der Reaktion möglich. / This work includes experimental and theoretical investigations of second-harmonic generation (SHG) at metallic nanoparticles. SHG means that a nanoparticle that is excited at the frequency omega emits radiation at the frequency 2*omega. SHG does not only occur in materials with noncentrosymmetric structure, but also on metal surfaces. Hence, SHG can be combined well with plasmonic field enhancement at metallic nanoantennae. SHG is investigated experimentally at different nanostructures such as triangle-like, rod-like and especially cone-like nanoparticles. With their sharp tips these structures show a much stronger SHG signal than spherical nanoparticles. Especially the cones are interesting: Excited with a focused radially polarized beam, for different cone sizes and in different surrounding media either the signal from the tip or the signal from the bottom edge dominates. The measurement results from the cones are underpinned by theoretical investigations. In these calculations the plasmonic field enhancements and the resulting SHG are modeled for a cone with different parameters. The single-cone results are also compared with the cases of a spherical or rod-shaped particle. A further subject of the theoretical investigations is the superposition of the SHG radiation from a number of emitting nanoparticles to a field maximum. For that, a circular arrangement of 8 nanorods or nanocones is excited by a radially polarized beam. The superposition of the second-harmonic radiation fields yields a field maximum in the space between the emitters. A tilt of the exciting beam can move this focus in space. The latter item is of special interest concerning localised photochemical reactions induced by the second-harmonic light from nanoparticles. In the near field of these nanoantennae, a strong localisation of the reaction on regions smaller than 100 nm would be possible by using chemical substances being transparent at omega, but photoreactive at 2*omega. With photoresists and polymer matrices, experiments are carried out to investigate whether SHG light can trigger such reactions at all, or if these photochemical reactions are triggered predominantly by direct two-photon absorption of the exciting light. The results show that the two-photon absorption is the dominant process. Yet, through two-photon absorption in the near field of particles, the localisation of the reaction is still similar.
23

Développement et application d’une pince optique à fibres nano-structurées / Development and application of nanostructured fibers optical tweezer

Decombe, Jean-Baptiste 20 October 2015 (has links)
Les pinces optiques permettent de piéger et de manipuler des objets sans contact physique avec de la lumière et ce avec une extrême précision. Son caractère non-invasif et non-destructif en fait un outil idéal pour des applications dans des domaines tels que la biophysique et la médecine. La pince optique conventionnelle utilise un faisceau lumineux fortement focalisé par un objectif de microscope.La fibre optique est un composant très intéressant dans ce domaine puisqu'elle permet de guider la lumière et de piéger optiquement des objets sans l'utilisation de composants optiques encombrants et en limitant des étapes d'alignement. Elle donne ainsi une grande flexibilité et compacité aux pinces optiques.Dans ce contexte, l'objectif de cette thèse a été de développer une pince optique à deux fibres nano-structurées dans le but de piéger des particules de taille micro et nanométrique.Notre pince est constituée de deux fibres optiques gravées chimiquement en forme de pointe et positionnées en vis-à-vis à des distances typiques de 20 nm à 20 µm. Cette configuration à deux faisceaux contra-propagatifs permet d'annuler la pression de radiation de la lumière. Elle a l'avantage d'obtenir un piégeage efficace pour des intensités lumineuses relativement faibles. En outre, les faisceaux ne doivent pas nécessairement être fortement focalisés. Notre dispositif présente une grande souplesse grâce au contrôle in-situ de la position des fibres, l'injection de la lumière dans les fibres et la manipulation de particules individuelles sans aucun substrat.Au cours de ces travaux, nous avons démontré expérimentalement le piégeage stable et reproductible d'une ou plusieurs particules en suspension. Divers types de particules diélectriques ont été piégées, allant de la particule en polystyrène d'un micromètre à des particules luminescentes de YAG:Ce mesurant 60 nm de diamètre. Ces dernières ont été élaborées et optimisées spécifiquement pour le piégeage optique lors de ces travaux.Nous avons également mesuré les forces optiques appliquées aux particules piégées en analysant leur mouvement Brownien résiduel. Nous avons démontré que le potentiel de piégeage était harmonique, nous permettant de définir la constante de raideur optique.Enfin nous avons démontré qu'en modifiant la forme du faisceau optique d'émission, il était possible d'améliorer certaines caractéristiques de la pince. D'une part, les faisceaux quasi-Bessel qui sont très peu divergents nous ont permis de réaliser un piégeage stable et efficace à grande distance.D'autre part, l'utilisation de pointes métallisées permet de confiner le champ et d'améliorer les forces optiques tout en diminuant l'intensité lumineuse. Nous avons mis en évidence le couplage en champ proche entre deux pointes métallisées qui ont été spécialement élaborées pour la pince. Ces derniers résultats ouvrent des perspectives encourageantes pour le développement d'une pince plasmonique fonctionnant en champ proche qui est particulièrement bien adaptée pour le piégeage de nanoparticules. / Optical tweezers allow to trap and manipulate objects without any mechanical contact with light and with an extreme accuracy. This non-invasive and non-destructive technique is of large interest in many scientific domains such as biophysics and medicine. Conventional optical tweezers use a laser beam which is strongly focalised by a microscope objective.The use of optical fibers attracts increasing attention as highly flexible and compact tools for particle trapping. Fiber-based optical tweezers do not require bulky optics and require only little alignments.In this context, the objective of this thesis was to develop a dual fiber nano-tip optical tweezers in order to trap particles with micro and nano-meter sizes. Our tweezers consist of two chemically etched optical fiber tips placed in front of each other with typical gaps from 20~nm to 20~µm. This dual contra-propagative beams configuration allow to cancel light radiation pressure. Efficient trapping can thus be obtained at relative low light intensities. Moreover, strong focusing is not required. Our device present an high flexibility due to in situ optimization and control of the fibre positions and individual particle manipulation without any substrate.During our work, we experimentally demonstrated stable and reproducible trapping of one or several particles in suspension. Various dielectric particles were trapped, from one micrometer polystyrene beads to luminescent YAG:Ce particles with diameters down to 60~nm. During this thesis, the latter were specifically elaborated and optimized for the optical trapping. We also measured optical forces applied to trapped particles by analysing their residual Brownian motion. We showed the trapping potential is of harmonic shape, allowing to define its optical stiffness.vspace{10pt}Finally, by modifying the emitted optical beam shape, we were able to improve specific tweezers characteristics. On one hand, nondiffracting quasi-Bessel beams allow us to get a stable trapping at large fiber-to-fiber distances.On the other hand, the use of metallised fiber tips allows to improve the beam confinement and enhance optical forces while reducing light intensity. We proved the near-field coupling between two metallised tips which were especially elaborated in this work. Those last results open promising perspectives for the development of plasmonic tweezers working in the near-field, which are especially well adapted for nano-particles trapping.
24

Light and single-molecule coupling in plasmonic nanogaps

Chikkaraddy, Rohit January 2018 (has links)
Plasmonic cavities confine optical fields at metal-dielectric interfaces via collective charge oscillations of free electrons within metals termed surface plasmon polaritons (SPPs). SPPs are confined in nanometre gaps formed between two metallic surfaces which creates an optical resonance. This optical resonance of the system is controlled by the geometry and the material of the nanogap. The focus of this work is to understand and utilize these confined optical modes to probe and manipulate the dynamics of single-molecules at room temperature. In this thesis, nanogap cavities are constructed by placing nanoparticles on top of a metal-film separated by molecular spacers. Such nanogaps act as cavities with confined optical fields in the gap. Precise position and orientation of single-molecules in the gap is obtained by supramolecular guest-host assembly and DNA origami breadboards. The interaction of light and single-molecules is studied in two different regimes of interaction strength. In the perturbative regime molecular light emission from electronic and vibrational states is strongly enhanced and therefore is used for the detection of single-molecules. In this regime the energy states remain unaltered, however profound effects emerge when the gap size is reduced to < 1 nm. New hybridized energy states which are half-light and half-matter are then formed. Dispersion of these energies is studied by tuning the cavity resonance across the molecular resonance, revealing the anti-crossing signature of a strongly coupled system. This dressing of molecules with light results in the modification of photochemistry and photophysics of single-molecules, opening up the exploration of complex natural processes such as photosynthesis and the possibility to manipulate chemical bonds.
25

Micro and Nano Raman Investigation of Two-Dimensional Semiconductors towards Device Application

Rahaman, Mahfujur 02 July 2020 (has links)
Recent advances in nanoscale characterization and device fabrications have opened up opportunities for layered semiconductors in nanoelectronics and optoelectronics. Due to strong confinement in monolayer thickness, physical properties of this materials are greatly influenced by parameters such as strain, defects, and doping at the nanoscale. Therefore, understanding the effect of this parameters on layered semiconductors is the prerequisite for any device application. In this doctoral thesis, impact of such parameters on the optical properties of layered semiconductors are studied in nanoscale. MoS2, the most famous transition metal dechalcogenide (TMDC) (n-type semiconductor), and p-type GaSe, a member of metal monochalcogenide (MMC) are investigated in this work. Finally, in outlook, a device made of p-type few layer GaSe and n-type 1L-MoS2 is discussed.
26

Photochemical Tuning of Surface Plasmon Resonances in Metal Nanoparticles

Härtling, Thomas 28 April 2009 (has links)
Illuminated metal nanoparticles (MNPs) feature collective electron oscillations (so-called localized surface plasmons or LSPs) which facilitate concentrating light-matter interactions to length scales below the diffraction limit. Part I of this book describes two applications of this confinement effect. Firstly, the use of single particles as optically active probes for scanning near-field optical microscopy is demonstrated. Secondly, fluorescence enhancement in the vicinity of a single MNP is described theoretically. This description focuses on how the particle diameter and the surrounding medium influence the enhancement. It turned out that in these two examples the optical signal levels can be improved by manipulating the spectral LSP resonance position of the particles. This finding triggered the search for a method allowing optical particle tuning. Part II of this thesis describes an approach which allows such a spectral LSP manipulation on the single-particle level. The method makes use of the optically induced reduction of metal salt complexes in solution, which leads to the deposition of thin layers of elemental metal onto single, intentionally addressed particles. The deposition process is monitored by optical LSP analysis, and thus the tuning of the optical particle properties is controlled in situ. With this technique, a manipulation of both the size and the shape of single nanoparticles was achieved. Initial experiences were gained by manipulating spherical and ellipsoidal gold particles, for which a red- and a blueshift of the LSP resonance was observed, respectively. The insights obtained from these experiments were then applied to tune the interparticle separation in nanoparticle pairs, i.e., to tune the resonance wavelength of these plasmonic nanoresonators. Subsequently, single resonators were used to reshape the fluorescence emission spectrum of organic molecules. Besides size and shape, also material parameters such as the surface roughness and the surface material composition influence the optical properties of MNPs. Both aspects are addressed using the example of rough platinum spheres and demonstrating the fabrication of bimetallic core-shell particles. As the material compositon of particles not only influences their optical, but for example also their catalytic or magnetic properties, photochemical metal deposition with in-situ optical LSP read-out builds a bridge to other fields of nanoscience. The presented method is a versatile tool for the fabrication and manipulation of nanostructures, and it is not limited to the field of plasmonics. / Metallische Nanopartikel (MNP) weisen unter Beleuchtung kollektive Schwingungen des Elektronengases auf (sogenannte lokalisierte Oberflächenplasmonen oder LOP). Die dadurch entstehende elektromagnetische Feldverteilung um die Partikel erlaubt die Konzentration von Licht-Materie-Wechselwirkungen auf einen Größenbereich unterhalb des Beugungslimits. In Teil I des vorliegenden Buches werden zwei Anwendungen dieses Konzentrationseffekts beschrieben. Zum einen wird die Verwendung eines einzelnen Partikels als Rastersonde für die optische Nahfeldmikroskopie gezeigt. Zum anderen wird die Fluoreszenzverstärkung in der unmittelbaren Umgebung eines Partikels untersucht. In letzterem Fall liegt der Fokus auf dem Einfluss der Partikelgröße und des Umgebungsmediums auf den Verstärkungsfaktor. Beide Untersuchungen zeigten, dass die Stärke der auftretenden optischen Signale von einer gezielten Steuerung der LOPResonanz profitieren kann. Diese Erkenntnis führte zur Entwicklung einer Methode, welche eine solche spektrale LOP-Steuerung erlaubt. Mit der in Teil II beschriebenen photochemischen Abscheidung von Metall auf einzelne Partikel wurde ein geeigneter Ansatz gefunden. Dabei wird die optisch induzierte Reduktion von Metallsalzkomplexen in einer Lösung ausgenutzt, um dünne Metallschichten auf gezielt ausgewählte Partikel aufzubringen. Der Abscheidungsprozess wird optisch über die Änderung der LOP-Resonanz des belichteten Partikels überwacht. Somit können dessen optische Eigenschaften gezielt in situ eingestellt werden. Mit der beschriebenen Technik können die Größe und die Form einzelner metallischer Partikel beeinflusst werden, was sich in einer Rot- bzw. Blauverschiebung der LOPResonanz äußert. Dieses Prinzip konnte zuerst an sphärischen und ellipsoidalen Goldpartikeln gezeigt werden. Die gewonnen Erkenntnisse wurden dann auf die gezielte Einstellung des Teilchenabstandes in Partikelpaaren übertragen, d. h., die Resonanzwellenlänge solcher plasmonischer Nanoresonatoren wurde gezielt manipuliert. Die Resonatoren konnten in einem zweiten Schritt zur Steuerung des Fluoreszenzspektrums organischer Moleküle eingesetzt werden. Neben Größe und Form spielen auch Materialparameter wie die Oberflächenrauigkeit und das Oberflächenmaterial eine wichtige Rolle für die optischen Eigenschaften der Partikel. Diese Parameter wurden am Beispiel von rauen Platinpartikeln sowie an bimetallischen Kern-Schale-Partikeln untersucht. Da das Oberflächenmaterial nicht nur die optischen, sondern z. B. auch katalytischen und magnetischen Eigenschaften der Partikel beeinflusst, verbindet die vorgestellte Methode die Plasmonik mit vielen anderen Bereichen der Nanotechnologie. Sie stellt eine vielseitige Technik zur Herstellung und Manipulation von Nanostrukturen dar, ohne dabei auf die Nanooptik limitiert zu sein.
27

Electromagnetic Manipulation of Individual Nano- and Microparticles

Kuhlicke, Alexander 17 November 2017 (has links)
Gegenstand der vorliegenden Dissertation ist die Untersuchung von einzelnen nano- und mikrometergroßen Partikeln, zum Verständnis und zur Entwicklung von neuartigen nanooptischen Elementen, wie Lichtquellen und Sensoren, sowie Strukturen zum Aufsammeln und Leiten von Licht. Neben der Charakterisierung stehen dabei verschiedene Methoden zur elektromagnetischen Manipulation im Vordergrund, die auf eine Kontrolle der Position oder der Geometrie der Partikel ausgerichtet sind. Die gezielten Manipulationen werden verwendet, um vorausgewählte Partikel zu isolieren, modifizieren und transferieren. Dadurch können Partikel zu komplexeren photonischen Systemen kombiniert werden, welche die Funktionalität der einzelnen Bestandteile übertreffen. Der Hauptteil der Arbeit behandelt Experimente mit freischwebenden Partikeln in linearen Paul-Fallen. Durch die räumliche Isolation im elektrodynamischen Quadrupolfeld können Partikel mit reduzierter Wechselwirkung untersucht werden. Neben der spektroskopischen Charakterisierung von optisch aktiven Partikeln (farbstoffdotierte Polystyrol-Nanokügelchen, Cluster aus Nanodiamanten mit Stickstoff-Fehlstellen-Zentren, Cluster aus kolloidalen Quantenpunkten) sowie optischen Resonatoren (plasmonische Silber-Nanodrähte, sphärische Siliziumdioxid-Mikroresonatoren) werden neu entwickelte Methoden zur Manipulation vorgestellt, mit denen sich individuelle Partikel freischwebend kombinieren und elektromagnetisch koppeln sowie aus der Falle auf optischen Fasern zur weiteren Untersuchung bzw. zur Funktionalisierung photonischer Strukturen ablegen lassen. In einem weiteren Teil der Arbeit wird eine Methode zur Manipulation der Geometrie von plasmonischen Nanopartikeln vorgestellt. Dabei werden einzelne Goldkugeln auf einem Deckglas mit einem fokussierten Laserstrahl zum Schmelzen gebracht und verformt. Durch die kontrollierte und reversible Veränderung der Symmetrie lassen sich die lokalisierten Oberflächenplasmonen des Partikels gezielt beeinflußen. / The topic of the present thesis is the investigation of single nano- and microsized particles for the understanding and design of novel nanooptical elements as light sources and sensors, as well as light collecting and guiding structures. In addition to particle characterization, the focus is on different methods for electromagnetic particle manipulation aimed at controlling the particle’s position or geometry. The specific manipulations are used for isolation, modification and transfer of preselected particles, enabling combination of particles into more complex photonic systems, which exceed the functionalities of the individual constituents. The main part of this work deals with experiments on levitated particles in linear Paul traps. Due to the spatial isolation in the electrodynamic quadrupole field, particles can be investigated with reduced environmental interaction. In addition to spectroscopic characterization of optically active particles (dye-doped polystyrene nanobeads, clusters of nanodiamonds with nitrogen vacancy defect centers, clusters of colloidal quantum dots) and particles with optical resonances (plasmonic silver nanowires, spherical silica microresonators) new manipulation methods are presented that enable assembly and electromagnetic coupling of individual, levitated particles as well as deposition of particles from the trap on optical fibers for further characterization or functionalization of photonic structures. In a further part of this work a method to manipulate the geometry of plasmonic nanoparticles is presented. Single gold nanospheres on a coverslip are melted and shaped with a focused laser beam. The localized surface plasmons can be influenced specifically by controlled and reversible changes of the particle symmetry.
28

Plasmonic devices for surface optics and refractive index sensing

Stein, Benedikt 03 July 2012 (has links) (PDF)
In this thesis devices for controlling the flow of surface plasmon polaritons are described. Dielectric and metallic nanostructures were designed for this purpose, and characterized by leakage radiation microscopy in real and in reciprocal spaces. Manipulation of surface plasmons by dielectric lenses and gradient index elements is presented, and negative refraction, steering and self-collimation of surface plasmons in one- and two-dimensional plasmonic crystals is demonstrated. The achieved degree of control was applied for routing of nanoparticles by optical forces, as well as for two methods of enhancing the figures of merit of plasmonic refractive index sensors, based on the one hand on Fano resonances natural to leakage radiation microscopy, and on the other hand on anisotropie plasmonic bandstructures.
29

Developments in Femtosecond Nanoelectronics / Ultrafast Emission and Control of Electrons in Optical Near-Fields

Herink, Georg 16 December 2014 (has links)
No description available.
30

Strongly localised plasmons in metallic nanostructures

Vernon, Kristy C. January 2008 (has links)
Strongly localised plasmons in metallic nano-structures offer exciting characteristics for guiding and focusing light on the nano-scale, opening the way for the development of new types of sensors, circuitry and improved resolution of optical microscopy. The work presented in this thesis focuses on two major areas of plasmonics research - nano-focusing structures and nano-sized waveguides. Nano-focusing structures focus light to an area smaller than the wavelength and will find applications in sensing, efficiently coupling light to nano-scale devices, as well as improving the resolution of near field microscopy. In the past the majority of nano-focusing structures have been nano-scale cones or tips, which are capable of focusing light to a spot of nano-scale area whilst enhancing the light field. The alternatives are triangular nano-focusing structures which have received far less attention, and only one type of triangular nano-focusing structure is known – a sharp V-groove in a metal substrate. This structure focuses light to a strip of nano-scale width, which may lead to new applications in microscopy and sensing. The difficulty with implementing the V-groove is that the structure is not robust and is quite difficult to fabricate. This thesis aims to develop new triangular nano-focusing devices which will overcome these difficulties, whilst still producing an intense light source on the nano-scale. The two proposed structures presented in this thesis are a metallic wedge submerged in uniform dielectric and a tapered metal film lying on a dielectric substrate, the latter being the easier to fabricate and the more structurally sound and robust. The investigation is performed using the approximation of continuous electrodynamics, the geometrical optics approximation and the zero-plane method. The second aim of this thesis is to investigate plasmonic waveguides and couplers for the development of nano-optical circuitry, more compact photonic devices and sensors. The research will attempt to fill the gaps in the current knowledge of the V-groove waveguide, which consists of a sharp triangular groove in a metal substrate, and the gap plasmon waveguide, which consists of a rectangular slot in a thin metal film. The majority of this work will be performed using the author’s in house finite-difference time-domain algorithm and FEMLAB as well as the effective medium method and geometric optics approximation. The V-groove may be used as either a nano-focusing or waveguiding device. As a waveguide the V-groove is one of the most promising plasmonic waveguides in the optical regime. However, there exist quite a number of gaps in the current knowledge of V-groove waveguides which this thesis will attempt to fill. In particular, the effect of rounded groove tip on plasmon propagation has been assessed for the V-groove. The investigation of rounded groove tip is important, as due to modern fabrication processes it’s not possibly to produce an infinitely sharp groove, and the existing literature has not considered the impact of this problem. The thesis will also investigate the impacts of the inclusion of dielectric filling in the groove on plasmon propagation parameters. This research will be important for optimising the propagation characteristics of the mode for certain applications, but it may also lead to easier methods of fabricating the V-groove device and prevent oxidation of the metal film. The gap plasmon waveguide is easier to fabricate than the V-groove, and is a new type of sub-wavelength waveguide which displays many advantages over other types of plasmon waveguides, including ease of fabrication, almost 100% transmission around sharp bends, sub-wavelength localisation and long propagation distances of the guided mode, etc. This waveguide may prove invaluable in the development of compact photonic devices. In the past the modes supported by this structure were not thoroughly analysed and the possibility of using this structure to develop sub-wavelength couplers for sensing and nano-optical circuits was not considered in detail. This thesis aims to resolve these issues. In conclusion, the results of this thesis will lead to a better understanding of Vgroove and gap plasmon waveguide devices for the development of nano-optical circuits, compact photonic devices and sensors. This thesis also proposes two new nano-focusing structures which are easier to fabricate than the V-groove structure and will lead to applications in sensing, coupling light efficiently into nano-scale devices and improving the resolution of near-field microscopy.

Page generated in 0.0869 seconds