• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 9
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterisation of skin-based THz communication channel for nano-scale body-centric wireless networks

Chopra, Nishtha January 2017 (has links)
In pursuit of enhancing the capabilities of healthcare diagnostics and monitoring, the electromagnetic spectrum has been utilized efficiently from the MHz up to THz and beyond. The era of smart phones, wearable devices and on-body networks have unfolded plethora of health applications with efficient channel communication mechanisms, faster data transfer rates and multi-user functionalities. With the advancement in material fabrication and spectroscopic techniques, a new realm of healthcare nanodevices have emerged with immense potential to garner in-depth information of the human body, real-time of tissue morphology, molecular features, hydration level and atmospheric water vapour on channel parameters. In addition to this, engineered skin substitute models: 2D collagen and 3D organotypics, are investigated to address the importance of individual biological features comprising of water dynamics and cell culture, affecting the channel parameters. The experimental results of various tissue samples, skin substitutes and numerical evalua-tion of channel parameters can be used to further improve the communication capabilities of in-body nanonetworks. The original contributions on characterization of skin substitutes can be applied to study various health conditions, effects of drugs and skin ageing on a molecular level. The results presented in this thesis, foresee an increasing demand in skin substitute models due to their biological flexibility and control according to desired medical applications. monitoring and tackle medical emergencies. A collection of these devices with sensing capabilities together form a nanonetwork performing computing tasks such as storage, actuation, data transfer and communication. The thesis brings forth the analysis and optimization of channel parameters; such as pathloss and molecular noise temperature, when the proposed in-body nanodevices communicate amongst each other in the terahertz (THz) range. The novel contribution of the work is mapping the optical properties of human skin by bringing together the measurement of various skin tissues and its influence on channel parameters. In the later part of the thesis, emphasis is given on the individual biological entities of the tissue contributing to channel parameters, such as collagen as an abundant protein, variation in fibrous extra-cellular matrix due to fibroblast cells and amalgamation of different layers; namely, epidermis and dermis of the skin. Recently proposed graphene-based antennas resolve the cumbersomeness of existing medical devices by drastically reducing its size to a few hundreds of nanometres. These biocompatible nanodevices focus on exchanging the intricate details of the human body via nanoscale electromagnetic communication in the terahertz domain of the spectrum. The thesis aims to investigate the material properties of skin tissues with terahertz time do-main spectroscopy and numerically evaluate the channel parameters for in-body nanoscale networks that potentially would form an essential part of a hierarchical body-centric communication network extending from inside the human body to a wider community network. The results are presented in regards to the complexity of human tissue as a channel medium. The measured refractive index and absorption coefficient data is applied to numerically calculate channel pathloss and molecular noise temperature. The results provide a real-time analysis of tissue morphology, molecular features, hydration level and atmospheric water vapour on channel parameters. In addition to this, engineered skin substitute models: 2D collagen and 3D organotypics, are investigated to address the importance of individual biological features comprising of water dynamics and cell culture, affecting the channel parameters. The experimental results of various tissue samples, skin substitutes and numerical evaluation of channel parameters can be used to further improve the communication capabilities of in-body nanonetworks. The original contributions on characterization of skin substitutes can be applied to study various health conditions, effects of drugs and skin ageing on a molecular level. The results presented in this thesis, foresee an increasing demand in skin substitute models due to their biological flexibility and control according to desired medical applications.
12

Ballistic electron transport in graphene nanodevices and billiards

Datseris, George 13 September 2019 (has links)
No description available.
13

Transport Properties and Nanosensors of Oxide Nanowires and Nanobelts

Lao, Changshi 29 October 2007 (has links)
ZnO is one of the most important materials for electronics, optoelectronics, piezoelectricity and optics. With a wide band gap of 3.37eV and an exiton binding energy of 60meV, ZnO 1D nanostructures exhibit promising properties in a lot of optical device applications. It is also an important piezoelectric material and has applications in a new category of nanodevices, nano-piezotronics. Demonstrated prototype of devices includes nanogenerators, piezoelectric-FET, and a series of evolutive devices based on the concept of nanogenerator. This is based on working principle of a semiconductor and piezoelectric coupled property. This thesis is about the growth, characterization and device fabrication of ZnO nanowires and nanobelts for sensors and UV detectors. First, the fundamental synthesis of ZnO nanostructurs is investigated, particularly polar surface dominated nanostructues, to illustrate the unique growth configurations of ZnO. Detail study in this part includes nanobelts, nanorings, nanocombs, nanonetworks, and nanodiskettes synthesis. Important factors in driving the nanostructure synthesis mechanism are analyzed, such as the chemical activities of different surface of ZnO and the polar surface dominated effects. Then, the devices fabricated methods using individual nanowires/nanobelts and their electrical transport properties were carefully characterized. In this part, dominant factors which are critical for nanobelt device performance are investigated, such as the contact properties, interface effects, and durability testing. Also, a metal doping method is studied to explore the controlling and modification of nanowire electric and optical properties. Further more, I will present the surface functionalization of nanobelt for largely improving its electrical, optoelectronic and chemical performance. Surface functionalization of nanobelts is proven to be an effective method in enhancing the semiconductor and metal contact. Piezoelectric field-effect transistors will be demonstrated as a powerful approach as chemical sensors. Finally, a technique is illustrated for functionalizing the surfaces of ZnO nanobelts for enhancing its UV sensitivity by over five orders of magnitude. This demonstrates an effective approach for fabricatiing ultrasensitive UV detectors. The research results presented in this thesis have made great contribution to the growth, device fabrication and novel applications of ZnO nanostructures for photonics, optoelectronics and sensors.
14

Croissance et caractérisation de super-réseaux de boites quantiques à base de siliciures métalliques et SiGe pour des applications thermoélectriques / Growth and characterization of metal silicides/SiGe-based quantum dots superlattices for thermoelectric applications

Stein, Sergio Silveira 18 December 2014 (has links)
Les nouvelles avancées théoriques et technologiques basées sur les nanotechnologies ont permis de remettre au goût du jour la récupération d'énergie utilisant la thermoélectricité. Dans le cas de dispositifs en couches minces, des applications telles que la micro-génération de puissance ainsi que le refroidissement localisé de composants microélectroniques peuvent être envisagées. Des dispositifs en couches minces à base de SiGe présentent l'avantage d'une grande intégrabilité grâce aux technologies issues de l'industrie microélectronique ainsi qu'une faible toxicité comparée aux matériaux classiques utilisés à base de Bi et Te. L'utilisation industrielle de ces matériaux est freinée par les faibles rendements obtenus à des basses températures. Dans le cadre de cette thèse, l'inclusion de nano particules à base de siliciures de Ti et Mo dans des couches minces de SiGe sous forme de super-réseau de boîtes quantiques (SRBQ) a été choisie comme méthode pour augmenter les performances thermoélectriques de ce matériau. Pour cela, un bâtie industriel de type CVD a été modifié et adapté à l'utilisation de précurseurs liquides et solides. Différents SRBQ ont été produits, en variant le type de dopage, la cristallinité et la nature des nano-inclusions utilisées. Les propriétés thermoélectriques de ces matériaux ont été mesurées et l'augmentation des performances de ces matériaux a été démontrée grâce aux inclusions nanométriques. / The recent theoretical and technological advances based on nanotechnology have provided new interest on energy harvesting based on thermoelectricity. For thin film devices, applications such as micro powering and local cooling for microelectronic components can be expected. SiGe-based devices have the advantage of integration possibility thanks to microelectronics technologies and of the low toxicity of SiGe compared to materials tradionally employed for thermoelectric devices such as Bi and Te. SiGe-based devices have not yet been employed in large scale mostly due to its low efficiency at room temperature. In this thesis, the production of quantum dot superlattices (QDSL) based on the inclusion of Ti and Mo silicides quantum dots in a SiGe matrix was chosen as a method to improve the material's thermoelectric properties. In order to accomplish this, an industrial CVD tool was modified to allow the employ of solid and liquid precursors. Different QDSL were produced, with different dopants, crystallinity and inclusions. The thermoelectric properties of the obtained materials were measured and the improvement of the material's thermoelectric performance after the inclusion of nanometric particles was demonstrated.
15

Návrh modelu pohybu pro nano-zařízení v simulačním prostředí NS-3 / Design of Mobility Model for Nano-Devices in NS-3 Simulation Environment

Miklica, Jan January 2014 (has links)
This thesis focuses on the description of nanocommunication networks, models for wireless communication networks and the description of motion in nanocommunication networks. The practical part describes the settings of the simulation scenarios for the definition of Brownian motion. Description is made for the simulation software NS-3 and N3Sim. In this thesis, the measured results of the simulations are summarized in tables and graphs. From the measured results the regression analysis is prepared. General summary of the results is provided at the end of thise thesis.
16

Determinação in vitro do fator de proteção solar de preparações cosméticas usando dispositivos fotoquímicos nanoestruturados / In vitro determination of the Sun Protection Factor of cosmetic formulations using nanostructured photochemical devices

Paula, Leonardo Rodrigues de 13 December 2010 (has links)
A determinação do Fator de Proteção Solar (FPS) de protetores solares atualmente é uma exigência regulatória na grande maioria dos países e blocos econômicos mundiais. Para tal, adota-se exclusivamente o uso de métodos que requerem a irradiação UV de voluntários humanos nos procedimentos de determinação do FPS. Alguns métodos in vitro não-invasivos estão descritos na literatura, mas até o momento nenhum deles foi aceito pela comunidade internacional para a determinação do Fator de Proteção Solar de preparações cosméticas. Portanto, o desenvolvimento de métodos para a determinação do FPS in vitro, com boa correlação com os métodos in vivo, é de enorme interesse de pesquisadores e empresas do setor. Visando oferecer alternativas não-invasivas para a determinação do FPS de protetores solares, serão descritos procedimentos de preparo de um dispositivo fotoquímico nanoestruturado e sua aplicação no desenvolvimento de metodologias in vitro para a determinação do FPS de protetores solares. Todas as amostras utilizadas no desenvolvimento das metodologias foram previamente avaliadas em estudos clínicos para a determinação do Fator de Proteção Solar. Os resultados obtidos in vitro apresentaram boa correlação com os resultados in vivo, demonstrando que os dispositivos apresentam grande potencialidade e viabilidade para aprimoramento e construção de um equipamento capaz de reduzir ou até substituir os ensaios clínicos in vivo atualmente exigidos e praticados. / The determination of the Sun Protection Factor (SPF) of sunscreen formulations is currently a regulatory requirement in most countries and economic blocs in the world. Strict methodologies are adopted to determine the SPF, based on the UV irradiation of human volunteers in order to induce an erythemal response in the presence and absence of sunscreen applied to the skin. Some non-invasive in vitro test methods can be found in the scientific literature but, so far, none of them have been accepted by the international community as a standard for determination of the Sun Protection Factor. Therefore, the development of in vitro methods for determination of the SPF, exhibiting good correlation with the in vivo methods, is of enormous interest for researchers and companies. Thus, a non-invasive alternative for in vitro determination of the SPF of sunscreens, based on nanostructured photochemical devices, is described. The accuracy and reprodutibility of the new methodology were verified using clinicaly evaluated samples and correlating the in vitro with the in vivo Sun Protection Factors data. The in vitro results showed good correlation with in vivo results, demonstrating that UV-dosimeters are suitable for FPS measurements, having great potentiality for the development of equipments that would reduce or even replace the in vivo clinical trials currently in use
17

Determinação in vitro do fator de proteção solar de preparações cosméticas usando dispositivos fotoquímicos nanoestruturados / In vitro determination of the Sun Protection Factor of cosmetic formulations using nanostructured photochemical devices

Leonardo Rodrigues de Paula 13 December 2010 (has links)
A determinação do Fator de Proteção Solar (FPS) de protetores solares atualmente é uma exigência regulatória na grande maioria dos países e blocos econômicos mundiais. Para tal, adota-se exclusivamente o uso de métodos que requerem a irradiação UV de voluntários humanos nos procedimentos de determinação do FPS. Alguns métodos in vitro não-invasivos estão descritos na literatura, mas até o momento nenhum deles foi aceito pela comunidade internacional para a determinação do Fator de Proteção Solar de preparações cosméticas. Portanto, o desenvolvimento de métodos para a determinação do FPS in vitro, com boa correlação com os métodos in vivo, é de enorme interesse de pesquisadores e empresas do setor. Visando oferecer alternativas não-invasivas para a determinação do FPS de protetores solares, serão descritos procedimentos de preparo de um dispositivo fotoquímico nanoestruturado e sua aplicação no desenvolvimento de metodologias in vitro para a determinação do FPS de protetores solares. Todas as amostras utilizadas no desenvolvimento das metodologias foram previamente avaliadas em estudos clínicos para a determinação do Fator de Proteção Solar. Os resultados obtidos in vitro apresentaram boa correlação com os resultados in vivo, demonstrando que os dispositivos apresentam grande potencialidade e viabilidade para aprimoramento e construção de um equipamento capaz de reduzir ou até substituir os ensaios clínicos in vivo atualmente exigidos e praticados. / The determination of the Sun Protection Factor (SPF) of sunscreen formulations is currently a regulatory requirement in most countries and economic blocs in the world. Strict methodologies are adopted to determine the SPF, based on the UV irradiation of human volunteers in order to induce an erythemal response in the presence and absence of sunscreen applied to the skin. Some non-invasive in vitro test methods can be found in the scientific literature but, so far, none of them have been accepted by the international community as a standard for determination of the Sun Protection Factor. Therefore, the development of in vitro methods for determination of the SPF, exhibiting good correlation with the in vivo methods, is of enormous interest for researchers and companies. Thus, a non-invasive alternative for in vitro determination of the SPF of sunscreens, based on nanostructured photochemical devices, is described. The accuracy and reprodutibility of the new methodology were verified using clinicaly evaluated samples and correlating the in vitro with the in vivo Sun Protection Factors data. The in vitro results showed good correlation with in vivo results, demonstrating that UV-dosimeters are suitable for FPS measurements, having great potentiality for the development of equipments that would reduce or even replace the in vivo clinical trials currently in use
18

Litografia por oxidação anódica seletiva de nanodispositivos através de microscopia de força atômica / Local anodic oxidation (LAO) lithography of nanodevices by means of atomic force microscopy

Fernández Siles, Pablo Roberto 16 March 2006 (has links)
Orientadores: Gilberto Medeiros Ribeiro, Jose A. Brum / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-11T11:03:18Z (GMT). No. of bitstreams: 1 FernandezSiles_PabloRoberto_M.pdf: 9728988 bytes, checksum: 0fd358f0e4752f26b8ebfa6e4a5e3c5a (MD5) Previous issue date: 2006 / Resumo: A Oxidação anódica local em substratos tanto semicondutores quanto metálicos através do Microscópio de Força Atômica tem surgido ao longo dos últimos anos como uma das técnicas de litografia mais confiáveis e versáteis para a fabricação de dispositivos e estruturas em escala nanométrica. Embora aspectos fundamentais, como a dinâmica envolvida no processo de oxidação anódica em relação a diferentes parâmetros de controle, é ainda objeto de estudo. Pretende-se neste trabalho realizar uma caracterização de diferentes processos de litografia por AFM, com o objetivo de obter um melhor entendimento da cinética envolvida na oxidação assim como também determinar e quantificar a influência dos principais parâmetros de controle envolvidos no processo. Através de um processo de oxidação dinâmico, onde a ponta do microscópio encontra-se em movimento sobre a superfície da amostra durante o processo de oxidação, são determinadas as taxas de formação das estruturas de óxido em relação a parâmetros como a tensão aplicada na interface ponta-amostra, a umidade e a velocidade de varredura do microscópio. Finalmente, implementa-se a técnica para a fabricação de dispositivos em pequena escala. A construção de dispositivos passa por duas etapas de litografia, uma de ajuste grosso de padrões microscópicos, uma de ajuste fino onde linhas e demais geometrias são gravadas em uma escala de dezenas de nanômetros. O objetivo neste trabalho é de se fazer ambos os passos, sendo que a litografia fina será realizada por litografia por oxidação anódica local através do microscópio de força atômica. Para a definição das estruturas em escala nanométrica é proposta aqui, uma estrutura de duas camadas (PMMA-Ge), utilizada como resist. O sistema a ser estudado centra-se primeiramente nos pontos quânticos auto-formados (QDs). Pretende-se, em se integrando esta litografia e o crescimento de QDs, reunir o melhor de cada um destes processos, a precisão da litografia por oxidação anódica local e as propriedades eletrônicas limpas dos QDs, de maneira a estudar as propriedades eletrônicas de um pequeno número de QDs isolados / Abstract: Local Anodic Oxidation of conducting and non-conducting substrates by means of Atomic Force Microscopy has raised in the last years as a solid and versatile lithographic technique for fabrication of devices and structures in a nanometric scale. Although, fundamental aspects, as the kinetics involved during the oxidation, are still under study. The objective of this work is to develop a characterization process of this AFM lithographic technique aiming not only to obtain a better understanding of the kinetics involved in the oxidation process but also be able to determine and quantify the influence of the main processing parameters that control the anodic oxidation reaction in the probe-sample interface. By means of a dynamic oxidation process, where the AFM probe is scanning the sample's surface during the oxidation process, we determine the volumetric growth rates of the oxide patterns as a function of the applied voltage in the probe-sample interface, the humidity and the scanning rate of the microscope. As an example of the potential of this technique, it is implemented for the fabrication of devices in a sub-micrometric scale.The fabrication of nano-scaled devices is developed by means of two stages of lithography, first a course adjustment of microscopic patterns and then a fine adjustment where lines and other geometries are patterned in a scale of dezens of nanometers. The goal of this work is to develop both processes. Fine lithography will be done by means of local anodic oxidation (LAO oxidation) with an Atomic Force Microscopy (AFM). A two-layer (PMMA-Ge) resist structure is proposed here for de½nition of structures in a nanometric scale. The system to be studied is essentially based on the self-assembled quantum dots (QDs). The idea of the implementation of LAO oxidation and growth of QDs is to obtain the best performance of each of these processes, the high precision of local anodic lithography and the clean electronic properties of the QDs, aiming to study electronic properties of a small number of isolated QDs / Mestrado / Física da Matéria Condensada / Mestre em Física
19

Nanoosciladores atomísticos de nanotubos de Carbono e de Nitreto de Boro / Atomistic nanooscillators of Carbon nanotubes and Boron Nitride

Garcez, Karl Marx Silva 21 August 2007 (has links)
Made available in DSpace on 2016-08-18T18:19:29Z (GMT). No. of bitstreams: 1 Karl Marx Silva.pdf: 2976285 bytes, checksum: 02b42e292682101cc350470d85dea0d7 (MD5) Previous issue date: 2007-08-21 / The Nanotechnology quickly advances to the development of new nanodevices. One of most important in the electronics is clocks that they synchronize the functioning of diverse devices in a determined circuit. In this work we study the development of nanooscillators based upon Carbon nanotubes and Boron-Nitride nanotubes. The atom that oscillates in the interior of each tube is the Neon atom under various temperature conditions and for different nanotubes lengths. The results indicate oscillation stability in a large range of temperatures, what it could mean its potential construction and application as a new device for nanoelectronics. / A Nanotecnologia avança rapidamente para o desenvolvimento de novos nanodispositivos. Uns dos mais importantes na eletrônica são os clocks que sincronizam o funcionamento de diversos dispositivos num determinado circuito. Neste trabalho estudamos o desenvolvimento de nanoosciladores a base de nanotubos de Carbono e nitreto de Boro. O átomo que oscila no interior de cada tubo é o átomo de Neônio sob diversas condições de temperatura e para diferentes comprimentos de nanotubos. Os resultados indicam estabilidade de oscilação numa ampla faixa de temperatura, o que pode significar o seu potencial construção e aplicação como um novo dispositivo para nanoeletrônica.
20

Electrical characterization and modeling of low dimensional nanostructure FET / Electrical characterization and modeling of low-dimensional nanostructure FET

Lee, Jae Woo 05 December 2011 (has links)
At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper. / At the beginning of this thesis, basic and advanced device fabrication process which I haveexperienced during study such as top-down and bottom-up approach for the nanoscale devicefabrication technique have been described. Especially, lithography technology has beenfocused because it is base of the modern device fabrication. For the advanced device structure,etching technique has been investigated in detail.The characterization of FET has been introduced. For the practical consideration in theadvanced FET, several parameter extraction techniques have been introduced such as Yfunction,split C-V etc.FinFET is one of promising alternatives against conventional planar devices. Problem ofFinFET is surface roughness. During the fabrication, the etching process induces surfaceroughness on the sidewall surfaces. Surface roughness of channel decreases the effectivemobility by surface roughness scattering. With the low temperature measurement andmobility analysis, drain current through sidewall and top surface was separated. From theseparated currents, effective mobilities were extracted in each temperature conditions. Astemperature lowering, mobility behaviors from the transport on each surface have differenttemperature dependence. Especially, in n-type FinFET, the sidewall mobility has strongerdegradation in high gate electric field compare to top surface. Quantification of surfaceroughness was also compared between sidewall and top surface. Low temperaturemeasurement is nondestructive characterization method. Therefore this study can be a propersurface roughness measurement technique for the performance optimization of FinFET.As another quasi-1 D nanowire structure device, 3D stacked SiGe nanowire has beenintroduced. Important of strain engineering has been known for the effective mobility booster.The limitation of dopant diffusion by strain has been shown. Without strain, SiGe nanowireFET showed huge short channel effect. Subthreshold current was bigger than strained SiGechannel. Temperature dependent mobility behavior in short channel unstrained device wascompletely different from the other cases. Impurity scattering was dominant in short channelunstrained SiGe nanowire FET. Thus, it could be concluded that the strain engineering is notnecessary only for the mobility booster but also short channel effect immunity.Junctionless FET is very recently developed device compare to the others. Like as JFET,junctionless FET has volume conduction. Thus, it is less affected by interface states.Junctionless FET also has good short channel effect immunity because off-state ofjunctionless FET is dominated pinch-off of channel depletion. For this, junctionless FETshould have thin body thickness. Therefore, multi gate nanowire structure is proper to makejunctionless FET.Because of the surface area to volume ratio, quasi-1D nanowire structure is good for thesensor application. Nanowire structure has been investigated as a sensor. Using numericalsimulation, generation-recombination noise property was considered in nanowire sensor.Even though the surface area to volume ration is enhanced in the nanowire channel, devicehas sensing limitation by noise. The generation-recombination noise depended on the channelgeometry. As a design tool of nanowire sensor, noise simulation should be carried out toescape from the noise limitation in advance.The basic principles of device simulation have been discussed. Finite difference method andMonte Carlo simulation technique have been introduced for the comprehension of devicesimulation. Practical device simulation data have been shown for examples such as FinFET,strongly disordered 1D channel, OLED and E-paper.

Page generated in 0.331 seconds