• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 60
  • 40
  • 39
  • 17
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 413
  • 413
  • 413
  • 140
  • 96
  • 91
  • 88
  • 87
  • 79
  • 61
  • 51
  • 50
  • 42
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Efficient Semi-Implicit Time-Stepping Schemes for Incompressible Flows

Loy, Kak Choon January 2017 (has links)
The development of numerical methods for the incompressible Navier-Stokes equations received much attention in the past 50 years. Finite element methods emerged given their robustness and reliability. In our work, we choose the P2-P1 finite element for space approximation which gives 2nd-order accuracy for velocity and 1st-order accuracy for pressure. Our research focuses on the development of several high-order semi-implicit time-stepping methods to compute unsteady flows. The methods investigated include backward difference formulae (SBDF) and defect correction strategy (DC). Using the defect correction strategy, we investigate two variants, the first one being based on high-order artificial compressibility and bootstrapping strategy proposed by Guermond and Minev (GM) and the other being a combination of GM methods with sequential regularization method (GM-SRM). Both GM and GM-SRM methods avoid solving saddle point problems as for SBDF and DC methods. This approach reduces the complexity of the linear systems at the expense that many smaller linear systems need to be solved. Next, we proposed several numerical improvements in terms of better approximations of the nonlinear advection term and high-order initialization for all methods. To further minimize the complexity of the resulting linear systems, we developed several new variants of grad-div splitting algorithms besides the one studied by Guermond and Minev. Splitting algorithm allows us to handle larger flow problems. We showed that our new methods are capable of reproducing flow characteristics (e.g., lift and drag parameters and Strouhal numbers) published in the literature for 2D lid-driven cavity and 2D flow around the cylinder. SBDF methods with grad-div stabilization terms are found to be very stable, accurate and efficient when computing flows with high Reynolds numbers. Lastly, we showcased the robustness of our methods to carry 3D computations.
372

Solving incompressible Navier-Stokes equations on heterogeneous parallel architectures / Résolution des équations de Navier-Stokes incompressibles sur architectures parallèles hétérogènes

Wang, Yushan 09 April 2015 (has links)
Dans cette thèse, nous présentons notre travail de recherche dans le domaine du calcul haute performance en mécanique des fluides. Avec la demande croissante de simulations à haute résolution, il est devenu important de développer des solveurs numériques pouvant tirer parti des architectures récentes comprenant des processeurs multi-cœurs et des accélérateurs. Nous nous proposons dans cette thèse de développer un solveur efficace pour la résolution sur architectures hétérogènes CPU/GPU des équations de Navier-Stokes (NS) relatives aux écoulements 3D de fluides incompressibles.Tout d'abord nous présentons un aperçu de la mécanique des fluides avec les équations de NS pour fluides incompressibles et nous présentons les méthodes numériques existantes. Nous décrivons ensuite le modèle mathématique, et la méthode numérique choisie qui repose sur une technique de prédiction-projection incrémentale.Nous obtenons une distribution équilibrée de la charge de calcul en utilisant une méthode de décomposition de domaines. Une parallélisation à deux niveaux combinée avec de la vectorisation SIMD est utilisée dans notre implémentation pour exploiter au mieux les capacités des machines multi-cœurs. Des expérimentations numériques sur différentes architectures parallèles montrent que notre solveur NS obtient des performances satisfaisantes et un bon passage à l'échelle.Pour améliorer encore la performance de notre solveur NS, nous intégrons le calcul sur GPU pour accélérer les tâches les plus coûteuses en temps de calcul. Le solveur qui en résulte peut être configuré et exécuté sur diverses architectures hétérogènes en spécifiant le nombre de processus MPI, de threads, et de GPUs.Nous incluons également dans ce manuscrit des résultats de simulations numériques pour des benchmarks conçus à partir de cas tests physiques réels. Les résultats obtenus par notre solveur sont comparés avec des résultats de référence. Notre solveur a vocation à être intégré dans une future bibliothèque de mécanique des fluides pour le calcul sur architectures parallèles CPU/GPU. / In this PhD thesis, we present our research in the domain of high performance software for computational fluid dynamics (CFD). With the increasing demand of high-resolution simulations, there is a need of numerical solvers that can fully take advantage of current manycore accelerated parallel architectures. In this thesis we focus more specifically on developing an efficient parallel solver for 3D incompressible Navier-Stokes (NS) equations on heterogeneous CPU/GPU architectures. We first present an overview of the CFD domain along with the NS equations for incompressible fluid flows and existing numerical methods. We describe the mathematical model and the numerical method that we chose, based on an incremental prediction-projection method.A balanced distribution of the computational workload is obtained by using a domain decomposition method. A two-level parallelization combined with SIMD vectorization is used in our implementation to take advantage of the current distributed multicore machines. Numerical experiments on various parallel architectures show that this solver provides satisfying performance and good scalability.In order to further improve the performance of the NS solver, we integrate GPU computing to accelerate the most time-consuming tasks. The resulting solver can be configured for running on various heterogeneous architectures by specifying explicitly the numbers of MPI processes, threads and GPUs. This thesis manuscript also includes simulation results for two benchmarks designed from real physical cases. The computed solutions are compared with existing reference results. The code developed in this work will be the base for a future CFD library for parallel CPU/GPU computations.
373

Um esquema upwind polinomial por partes para problemas em mecânica dos fluidos / A piecewise polynomial upwind scheme for problems in fluid mechanics

Patrícia Sartori 20 April 2011 (has links)
Este trabalho de pesquisa é dedicado ao desenvolvimento, análise e implementação de um novo esquema upwind de alta resolução (denominada PFDPUS) para a aproximação de termos convectivos em leis de conservação e problemas relacionados em mecânica dos fluídos. Usando variáveis normalizadas de Leonard, o equema PFDPUS é baseado em uma função polinomial por partes que satisfaz os critérios de estabilidade CBC e TVD. O desempenho do esquema PEDPUS é investigado na solução das equações de advecção de escalares, Burgers, Euler e MHD. O novo esquema é então aplicado para simular escoamentos incompressíveis envolvendo superfícies livres móveis. Para tanto, o esquema PFDPUS é implementado dentro do software CLAWPACK para problemas compressíveis, e no código Freeflow para poblemas incompressíveis. Os resultados numéricos são comparados com dados experimentais, numéricos e analíticos / This work is dedicated to the development, analysis and implementation of a new high-resolution upwind scheme (called PFDPUS) for approximation of convective terms in conservation laws and related fluid mechanics problems. By using the normalized variables of Leonard, the PFDPUS scheme is based on a piecewise polynomical function that satisfies the CBC and TVD stability criteria. The performance of the PFDPUS scheme is assessed by solving advection of scalars, Burgers, Euler and MHD equations. Then the new scheme is applied to simulate incompressible flows involving moving free surfaces. The PFDPUS scheme is implemented into the CLAWPACK software for compressible problems, and in the Freeflow code for incompressible problems. The numerical results are compared with experimental, numerical and analytical data
374

Um novo esquema upwind de alta resolução para equações de conservação não estacionárias dominadas por convecção / A new high-resolution upwind scheme for non stationary conservation equations dominated by convection

Laís Corrêa 29 March 2011 (has links)
Neste trabalho apresenta-se um novo esquema prático tipo upwind de alta resolução, denominado EPUS (Eight-degree Polynomial Upwind Scheme), para resolver numericamente equações de conservação TVD e é implementado no contexto do método das diferenças finitas. O desempenho do esquema é investigado na resolução de sistemas hiperbólicos de leis de conservação e escoamentos incompressíveis complexos com superfícies livres. Os resultados numéricos mostraram boa concordãncia com outros resultados numéricos e dados experimentais existentes / Is this work a new practical high resolution upwinding scheme, called EPUS (Eight-degree Polynomial Upwind Scheme), for the numerical solution of transient convection-dominated conservation equations is present. The scheme is based on TVD stability criterion and is implemented in the context of the finite difference methodology. The performance of the scheme is investigated by solving hyperbolic systems of conservation laws and complex incompressible flows with free surfaces. The numerical results displayed good agreement with other existing numerical and experimental data
375

Estudo de métodos de interface imersa para as equações de Navier-Stokes / Study of immersed interface methods for the Navier-Stokes equations

Gabriela Aparecida dos Reis 24 June 2016 (has links)
Uma grande limitação dos métodos de diferenças finitas é que eles estão restritos a malhas e domínios retangulares. Para descrever escoamentos em domínios complexos, como, por exemplo, problemas com superfícies livres, faz-se necessário o uso de técnicas acessórias. O método de interfaces imersas é uma dessas técnicas. Nesse trabalho, primeiramente foi desenvolvido um método de projeção, totalmente livre de pressão, para as equações de Navier-Stokes com variáveis primitivas em malha deslocada. Esse método é baseado em diferenças finitas compactas, possuindo segunda ordem temporal e quarta ordem espacial. Esse método foi combinado com o método de interface imersa de Linnick e Fasel [2] para resolver numericamente as equações de Stokes com quarta ordem de precisão. A verificação do código foi feita por meio do método das soluções manufaturadas e da comparação com resultados de outros autores em problemas clássicos da literatura. / A great limitation of finite differences methods is that they are restricted to retangular meshes and domains. In order to describe flows in complex domains, e.g. free surface problems, it is necessary to use accessory techniques. The immersed interface method is one of such techniques. In the present work, firstly, a projection method was developed, which is completely pressure-free, for the Navier-Stokes equations with primitive variables in a staggered mesh. This method is based on compact finite differences, with temporal second-order precision and spatial foruth-order precision. This method was combined with the immersed interface method from Linnick e Fasel [2] in order to numerically solve the Stokes equations with fourth-order precision. The verification of the code was performed with the manufactured solutions method and by comparing results with other authors for some classical problems in the literature.
376

Desenvolvimento de estratégias de captura de descontinuidades para leis de conservação e problemas relacionados em dinâmica de fluídos / Development of strategies to capture discontinuities for conservation laws and related problems in fluid dynamics

Giseli Aparecida Braz de Lima 23 March 2010 (has links)
Esta dissertação trata da solução numérica de problemas em dinâmica dos fluidos usando dois novos esquemas upwind de alta resolução, denominados FDPUS-C1 (Five-Degree Polynomial Upwind Scheme of \' C POT. 1\' Class) e SDPUS-C1 (Six-Degree Polynomial Upwind Scheme of \'C POT.1\' Class), para a discretização de termos convectivos lineares e não-lineares. Os esquemas são baseados nos critérios de estabilidade TVD (Total Variation Diminishing) e CBC (Convection Boundedness Criterion) e são implementados, nos contextos das metodologias de diferenças finitas e volumes finitos, no ambiente de simulação Freeflow (an integrated simulation system for Free surface Flow) para escoamentos imcompressíveis 2D, 2D-1/2 e 3D, ou no código bem conhecido CLAWPACK ( Conservation LAW PACKage) para problemaw compressíveis 1D e 2D. Vários testes computacionais são feitos com o objetivo de verificar e validar os métodos numéricos contra esquemas upwind populares. Os novos esqumas são então aplicados na resolução de uma gama ampla de problemas em CFD (Computational Fluids Dynamics), tais como propagação de ondas de choque e escoamentos incompressíveis envolvendo superfícies livres móveis. Em particular, os resultados numéricos para leis de conservação hiperbólicas 2D e equações de Navier-Stokes incompressíveis 2D, 2D-1/2 e 3D demosntram que esses novos esquemas convectivos tipo upwind polinomiais funcionam muito bem / This dissertation deals with the numerical solution of fluid dynamics problems using two new high resolution upwind schemes,. namely FDPUS-C1 and SDPUS-C1, for the discretization of the linear and non-linear convection terms. The Schemes are based on TVD and DBC stability criteria and are implemented in the context of the finite difference and finite volume methodologies, either into the Freeflow code for 2D, 2D-1/2 and 3D incompressible flows or in the well-known CLAWPACK code for 1D and 2D compressible flows. Several computational tests are performed to verify and validate the numerical methods against other popularly used upwind schemes. The new schemes are then applied to solve a wide range of problems in CFD, such as shock wave propagation and incompressible fluid flows involving moving free msurfaces. In particular, the numerical results for 2D hyperbolic conservation laws and 2D, 2D-1/2 and 3D incompressible Navier-Stokes eqautions show that new polynomial upwind convection schemes perform very well
377

Esquemas de captura de descontinuidades para equações gerais de conservação / Stock capturing scheme for general conservation equations

Rodolfo Junior Pérez Narváez 22 February 2013 (has links)
Três esquemas de captura de descontinuidade são apresentados para simular hiperbólicos de leis de conservação e equações de Navier-Stokes incompressíveis, a saber: FDHERPUS (Five Degree Hermite Upwind Scheme); RUS (Rational Upwind Scheme); e CSPUS (Cubic Spline Polynomial Upwind Scheme). Esses esquemas são baseados nos critérios de estabilidade CBC e TVD e implementados nos contextos das metodologias diferenças finitas e volumes finitos. A precisão local dos esquemas é verificada acessando o erro e a taxa de convergência em problemas testes de referência. Um estudo comparativo entre os esquemas estudados (incluido o WENO5) e o esquema bem estabelecido de van Albada, para resolver leis de conservação lineares e não lineares, é também realizado. O esquema de convecção que fornece melhores resultados em leis de conservação hiperbólicas é então examinado na simulação de escoamentos de fluidos newtonianos com superfícies livres móveis de complexidade crescente; resultados satisfatórios têm sido observados em termos do comportamento global / Three shock capturing schemes for numerical solution of hyperbolic conservation laws and incompressible Navier-Stokes equations are presented, namely: FDHERPUS (Five Degree Hermite Polynomial Upwind Scheme); RUS (Rational Upwind Scheme); and CSPUS ( Cubic Spline Polynomial Upwind Scheme). These schemes are based on CBC and TVD stability criteria and implemented in the context of finite volume methodologies. The local observed accuracy of the schemes is verified by assessing the error and convergence rate on benchmark test cases. A comparative study between the schemes (including WENO5) and the well established van. Albada scheme to solve standard linear and nonlinear hyperbolic conservation laws is also accomplished. The scheme that has provided better results in hyperbolic conservation laws is then examined in the simulation of Newtonian moving free surface flows of increasing complexity, satisfactory agreement has been observed in terms of the overall behavior
378

Modifikace Navier-Stokesových rovnic za předpokladu kvazipotenciálního proudění / Modification of Navier_Stokes equations asuming the quasi-potential flow

Navrátil, Dušan January 2019 (has links)
The master's thesis deals with Navier-Stokes equations in curvilinear coordinates and their solution for quasi-potential flow. The emphasis is on detailed description of curvilinear space and its expression using Bézier curves, Bézier surfaces and Bézier bodies. Further, fundamental concepts of hydromechanics are defined, including potential and quasi-potential flow. Cauchy equations are derived as a result of the law of momentum conservation and continuity equation is derived as a result of principle of mass conservation. Navier-Stokes equations are then derived as a special case of Cauchy equations using Cauchy stress tensor of Newtonian compressible fluid. Further transformation into curvilinear coordinates is accomplished through differential operators in curvilinear coordinates and by using curvature vector of space curve. In the last section we use results from previous chapters to solve boundary value problem of quasi-potential flow, which was solved by finite difference method using Matlab environment.
379

Numerické řešení proudění v časově závislých oblastech s elastickými stěnami / Numerical solution of flows in time dependent domains with elastic walls

Hadrava, Martin January 2010 (has links)
Title: Numerical solution of flows in time dependent domains with elastic walls Author: Martin Hadrava Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Miloslav Feistauer, DrSc., dr. h. c. Supervisor's e-mail address: feist@karlin.mff.cuni.cz Abstract: This work is devoted to the numerical solution of flow in time dependent domains with elastic walls. This problem has several applications in engineering and medicine. The flow is described by the system of Navier-Stokes equations supplemented with suitable initial and boundary conditions. A part of the boundary of the region oc- cupied by the fluid is represented by an elastic wall, whose deformation is described by a hyperbolic partial differential equation with initial and boundary conditions. Its right- hand side represents the force by which the fluid flow acts on the elastic wall. The goal of this work is to elaborate a numerical method for solving this coupled problem based on the finite element method and the ALE formulation of the equations describing flow. A for- mulation and analysis of the problem together with discretization, algorithmisation and programming of modules, which were added to an existing software package, is presented. The method that was worked out is applied to solve test problems. Keywords: interaction of flow and an...
380

Comportement d’un fluide autour d’un petit obstacle, problèmes de convections et dynamique chaotique des films liquides / Motion of a small rigid body in an incompressible viscous fluid, convection problems and dynamics of falling films

He, Jiao 20 September 2019 (has links)
Cette thèse est consacrée à trois différentes équations d’évolution non-linéaires dans le cadre de mécanique des fluides : le système fluide-solide, le système de Boussinesq et un modèle de films liquides. Pour le système fluide-solide, nous étudions l’évolution d’un petit solide en mouvement dans un fluide newtonien incompressible dans le cas où l’obstacle se contracte vers un point. En supposant que la densité du solide tend vers l’infini, nous montrons la convergence des solutions du système fluide-solide vers une solution des équations de Navier-Stokes dans $\mathbb{R}^d$ , avec $d^2$ et 3. Pour le problème de convection, nous travaillons sur l’unicité des solutions ‘mild’ du système de Boussinesq et généralise de plusieurs manières différentes des résultats classiques d’unicité pour les équations de Navier-Stokes. Dans la dernière partie, nous exposons nos contributions à l’étude des interface 2D de films liquides en dimension trois. Nous montrons qu’une variante 2D, non-local, de l’équation de Kuramoto-Sivashinsky admet un attracteur globale compact et obtenons enfin une majoration du nombre d’oscillations spatiales des solutions / This thesis is devoted to three different non-linear evolution equations in fluid mechanics : the fluid-solid system, the Boussinesq system and a falling films model. For the fluid-solid system, we study the evolution of a small moving solid in incompressible viscous fluid in the case the obstacle converges to a point. Assuming that the density of the solid tends to infinity, we prove that the rigid body has no influence on the limit equation by showing the convergence of solutions of the fluid-solid system towards to a solution of the Navier-Stokes equations in the full $\mathbb{R}^d$ , avec $d^2$ et 3. For the convection problem, we provide several uniqueness classes on the velocity and the temperature and generalize some classical uniqueness result for ‘mild’ solutions of the Navier-Stokes equations. We then work on a falling films model in three dimensions (2D interface). We show that a non-local variant of the Kuramoto-Sivashinsky equation admits a compact global attractor and we study the number of spatial oscillations of the solutions

Page generated in 0.1483 seconds