Spelling suggestions: "subject:"neurologie."" "subject:"neurologies.""
211 |
Contrôle postural et intégration sensorielle chez l’enfant en santé, chez l’adolescent atteint du syndrome Gilles de la Tourette ainsi que chez l’adulte atteint de la maladie de HuntingtonBlanchet, Mariève 02 1900 (has links)
Le contrôle postural et la perception des limites de la stabilité sont des processus complexes qui nécessitent le traitement et l’intégration d’informations sensorielles multimodales. Pendant l’enfance, le développement de la stabilité posturale s’effectue de façon non-monotonique. Plusieurs auteurs ont suggéré que ce profil non linéaire serait provoqué par une période de recalibration des systèmes sensoriels. Cette phase, nommée période de transition, est observée vers l’âge de 6-7 ans. Nous disposons toutefois de très peu d’information sur le rôle spécifique des afférences et des mécanismes d’intégration sensorielle au cours du développement postural.
Les dysfonctions dans les noyaux gris centraux, telles que ceux observés dans la maladie de Parkinson, ont été associées à divers déficits dans le contrôle de la posture, dans le traitement et l’intégration sensoriel plus particulièrement, au niveau des informations proprioceptives. De plus, les limites fonctionnelles de la stabilité posturale des personnes atteintes de la maladie de Parkinson sont significativement réduites. Cependant, les connaissances concernant comment certaines pathologies des noyaux gris centraux, telles que le syndrome Gilles de la Tourette (SGT) et la maladie de Huntington (MH) affectent la capacité d’utiliser les informations sensorielles pour contrôler la posture demeurent à ce jour, incomplètes.
Cette thèse porte sur le rôle des noyaux gris centraux dans les processus de traitements et d’intégration sensorielle, particulièrement les afférences proprioceptives dans le contrôle de la posture au cours du développement de l’enfant en santé, atteint du SGT et chez l’adulte atteint de la MH avec et sans symptôme clinique.
Notre protocole expérimental a été testé chez ces trois populations (enfants en santé, SGT et MH). Nous avons utilisé des mesures quantitatives à partir de données issues d’une plateforme de force afin d’évaluer les ajustements posturaux dans les limites de la stabilité posturale. Les participants devaient s’incliner le plus loin possible dans quatre différentes directions (avant, arrière, droite et gauche) et maintenir l’inclinaison posturale maximale pendant 10 secondes. Afin de tester la capacité à traiter et à intégrer les informations sensorielles, la tâche expérimentale a été exécutée dans trois conditions sensorielles : 1) yeux ouverts, 2) yeux fermés et 3) yeux fermés, debout sur une mousse. Ainsi, la contribution relative de la proprioception pour le contrôle postural augmente à travers les conditions sensorielles.
Dans la première étude, nous avons évalué la capacité à traiter et à intégrer les informations sensorielles avant (4 ans) et après (8-10 ans) la période de transition comparativement aux adultes. Dans la deuxième et la troisième étude, nous avons également évalué le traitement et l’intégration des informations sensorielles chez les patients atteints de désordres des noyaux gris centraux. La deuxième étude portera spécifiquement sur les adolescents atteints du SGT et la troisième, sur la MH avant et après l’apparition des symptômes cliniques.
En somme, les résultats de la première étude ont démontré que la performance des enfants est affectée de façon similaire par les différentes conditions sensorielles avant et après la période de transition. Toutefois, le profil de développement des mécanismes responsables des ajustements posturaux de l’axe antéropostérieur est plus précoce comparativement à ceux de l’axe médiolatéral. Ainsi, nos résultats ne supportent pas l’hypothèse de la période de recalibration des systèmes sensoriels pendant cette période ontogénétique mais suggèrent que la période de transition peut être expliquée par la maturation précoce des mécanismes d’ajustements posturaux dans l’axe antéropostérieur.
Dans l’ensemble, les résultats de nos études chez les populations atteintes de désordres des noyaux gris centraux (MH et SGT) démontrent non seulement qu’ils ont des déficits posturaux mais également que les ajustements posturaux dans les deux axes sont affectés par les conditions sensorielles. Pour la première fois, nos études démontrent des déficits globaux de traitements et d’intégration sensorielle accentués pour les signaux proprioceptifs. Ces résultats sont similaires à ceux observés dans la maladie de Parkinson. De plus, les adolescents atteints du SGT éprouvent également des troubles posturaux marqués dans la condition visuelle ce qui suggère des déficits d’intégrations visuelles et/ou multimodaux. / Postural control and the perception of the stability limits are complex mechanisms requiring the processing and integration of multimodal sensory information. During childhood, the development of postural control skills improves in a non-monotonic manner. Many researchers suggested that this non linear profile is caused by the recalibration of sensory systems. This recalibration phase, named transition period, is generally observed at 6-7 years of age. However, the exact cause of this critical turning point remains undetermined. Moreover, very little is known about the specific role of sensory information and sensorimotor mechanisms during postural development.
Basal ganglia disorders such as Parkinson’s disease are associated with postural control impairments and deficits in the processing and integration of sensory information, especially in proprioception. Moreover, the limits of stability are significantly reduced in Parkinson’s disease. However, the knowledge on how other basal ganglia dysfunctions such as Gilles de la Tourette syndrome (GTS) and Huntington’s disease (HD) impact on the ability to process and integrate sensory information for postural control is still limited.
In this thesis, we explored the role of basal ganglia in the processing an integration of sensory information, particularly proprioceptive signals for the postural control during the development of healthy children, in adolescents with GTS and in adults with premanifest and manifest HD.
Our stability limits protocol was used to test the postural control skills of these three populations. We calculated center of pressure displacements obtained from a force plate and we investigated postural adjustments during the maximum leaning posture. The participants were asked to lean as far as possible and maintain this position during 10 seconds in different directions (forward, backward, rightward or leftward). This task simulates functional positions that frequently occur in daily life. In order to test the ability to process and integrate sensory information for postural control, the stability limits task was assessed in three sensory conditions: 1) eyes open, 2) eyes closed and 3) eyes closed while standing on foam. Thus, the relative contribution of proprioceptive signals for postural control increased across sensory conditions.
In the first study, we investigated the children’s ability to process and integrate sensory information for postural control before (4 years old) and after (8 to 10 years old) the transition period compared to adults. In the second and third studies, the ability to process and integrate sensory information for postural control was assessed in participants with basal ganglia disorders, namely adolescents with GTS and adults with manifest and premanifest HD.
In sum, our ontogenetic study indicated that the younger children (4 years old) were not differentially affected by sensory conditions than the older children (8 to 10 years old). Thus, our results do not support the hypothesis that an important recalibration of sensorial systems takes place during the transition period. However, the results revealed axis-dependent differences among the groups in postural control. Until the age of 10, children have a reduced ability to perform appropriate center of pressure adjustments along the mediolateral direction compared to adults. In contrast, the ability to produce precise center of pressure adjustments along the anteroposterior axis was already developed at 4 years of age, but it reached the adult level of performance after the transition period.
Altogether, the assessment of participants with basal ganglia disorders indicated that they have postural adjustment impairments in both movement axes and are affected by sensory conditions. For the first time, we reported global deficits in the processing and integration of sensory information, especially in proprioception in GTS and in premanifest and manifest HD. These results are similar to those reported for Parkinson’s disease patients. Moreover, the adolescents with GTS also displayed marked postural control abnormalities in the visual condition which might be explained by either deficit in the processing of visual information and/or in multimodal sensory integration mechanisms.
|
212 |
Modulation of nociception and pain by attention and stressCardinal-Aucoin, Natalie 11 1900 (has links)
Les facteurs psychologiques tels que l'hypnose, l'émotion, le stress et l’attention exercent un effet modulant puissant sur la nociception et la douleur. Toutefois, l’influence de l'attention sur la nociception et la douleur, ainsi que les mécanismes neuronaux sous-jacents, ne sont pas clairs. La littérature actuelle sur la modulation attentionnelle des réponses spinales nociceptives, telles que mesurées par le réflexe RIII, et de la perception de l’intensité de la douleur est discordante et souvent contradictoire. Ce mémoire fournit un nouveau cadre pour examiner la modulation du réflexe RIII et de la douleur par l’attention. Une tâche de discrimination sensorielle a été décomposée en trois composantes attentionnelles : la vigilance, l’orientation, et le contrôle exécutif. Auparavant, la nature multidimensionnelle de l’attention fut largement ignorée dans la littérature. Nous démontrons que les composantes attentionnelles ont des effets modulatoires distincts sur la nociception et la douleur et suggérons que ceci représente une partie de la confusion présente dans la littérature. En prenant compte du stress indépendamment, nous démontrons, pour la première fois, que le stress inhibe la modulation attentionnelle du réflexe RIII ce qui indique une interaction et dissociation de la modulation des réponses nociceptives par l’attention et le stress. Ces résultats importants clarifient, en grande partie, les contradictions dans la littérature, puisque les tâches cognitives produisent souvent des augmentations du stress ce qui confond l’interprétation des résultats. De plus, la tâche de discrimination inclut des stimuli visuels et somatosensoriels et révèle que l’influence de l'attention sur la douleur est spatialement spécifique tandis que la modulation attentionnelle de la nociception est spécifique à la modalité des stimuli, au moins en ce qui concerne les modalités examinées. A partir de ces résultats, un nouveau modèle de la modulation attentionnelle des processus de la douleur, basée sur les composantes attentionnelles, a été proposé. Celui-ci est appuyé par la littérature et fournit une explication systématique et intégratrice des résultats antérieurement contradictoires. De plus, à partir de ce modèle, plusieurs mécanismes neuronaux ont été proposés pour sous-tendre la modulation attentionnelle de la nociception et de la douleur. / Psychological factors such as hypnosis, emotion, stress, and attention produce powerful modulatory effects on nociception and pain. However, the influence of attention on nociception and pain and the underlying neural mechanism responsible are unclear. The current literature on attentional modulation of spinal nociceptive responses, as measured by the RIII reflex, and pain perception (pain intensity) is inconsistent and often contradictory. The present thesis provides a new component-based framework for the examination of attentional modulation of the RIII reflex and pain. A delayed-discrimination task was decomposed into the three components of attention – namely alerting, orienting, and executive control (sensory working memory). Previously, the multidimensional nature of attention was largely ignored in the pain literature. We show that each component of attention exerts a distinct modulatory effect on nociception and pain and suggest that this accounts for some of the confusion in the literature. By considering stress separately, we demonstrate for the first time that stress blocks attentional modulation of the RIII reflex, indicating an interaction and dissociation of attention- and stress-mediated modulation of spinal nociceptive responses. This important finding clarifies much of the disagreement in the literature, since cognitive tasks often induce increases in stress that consequently confound interpretation. Additionally, both visual and somatosensory stimuli were included in the discrimination task, revealing that the influence of attention on pain intensity is spatially-specific whereas attentional modulation of nociception is modality-specific, at least for the modalities investigated. From these findings a component-based model for the attentional modulation of pain processes is proposed. This model is substantially supported by the literature and provides a meaningful and cohesive explanation of the seemingly contradictory results across studies. Moreover, this model suggests potential neural mechanisms underlying the attentional modulation of pain.
|
213 |
Mechanisms of translation regulation in long-term synaptic plasticityHebert-Seropian, Sarah 12 1900 (has links)
Les souvenirs sont encodés dans le cerveau grâce aux configurations uniques de vastes réseaux neuronaux. Chaque connexion dans ces circuits est apte à être modifiée. Ces changements durables s’opèrent au niveau des synapses grâce à une synthèse de protéines de novo et génèrent ce qu’on nomme des traces mnésiques. Plusieurs preuves indiquent que, dans certaines formes de plasticité synaptique à long terme, cette synthèse a lieu dans les dendrites près des synapses activées plutôt que dans le corps cellulaire. Cependant, les mécanismes qui régulent cette traduction de protéines demeurent encore nébuleux. La phase d’initiation de la traduction est une étape limitante et hautement régulée qui, selon plusieurs chercheurs, constitue la cible principale des mécanismes de régulation de la traduction dans la plasticité synaptique à long terme. Le présent projet de recherche infirme cette hypothèse dans une certaine forme de plasticité synaptique, la dépression à long terme dépendante des récepteurs métabotropiques du glutamate (mGluR-LTD). À l’aide d’enregistrements électrophysiologiques de neurones hippocampiques en culture couplés à des inhibiteurs pharmacologiques, nous montrons que la régulation de la traduction implique les étapes de l’élongation et de la terminaison et non celle de l’initiation. De plus, nous démontrons grâce à des stratégies de knockdown d’expression d’ARN que la protéine de liaison d’ARNm Staufen 2 joue un rôle déterminant dans la mGluR-LTD induite en cultures. Dans leur ensemble, les résultats de la présente étude viennent appuyer un modèle de régulation de la traduction locale de protéines qui est indépendante de l’initiation. / Memories are encoded in the unique configurations of the vast neuronal networks of the brain. Each of these connections possesses the ability to be modified. Such long-lasting changes at the synapse often require the synthesis of new proteins that create what we call memory traces. Evidence suggests that the signal-induced activation of translation in some forms of synaptic plasticity occurs locally, at the activated synapses, rather than in the soma. However, the mechanisms regulating local and rapid de novo protein synthesis are poorly understood. The initiation step of translation is a highly regulated step and is believed to be the main target of control. The present research project challenges this view for a certain form of long-term synaptic plasticity, metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). We show, using electrophysiological recordings of dissociated hippocampal neurons in cultures coupled to pharmacological inhibitors, that translation regulation depends on elongation and termination, rather than initiation. Moreover, by exploiting RNA knockdown strategies, we demonstrate that the RNA-binding protein Staufen 2 plays a crucial role in mGluR-LTD induced in cultures. Altogether, the findings of the present study support a model of translation regulation that is downstream of initiation.
|
214 |
Rôles physiologiques du transporteur vésiculaire du glutamate VGLUT2 dans les neurones dopaminergiquesFortin, Guillaume 04 1900 (has links)
Des travaux récents démontrent que certains neurones dopaminergiques du mésencéphale ont la capacité de libérer du glutamate en plus de la dopamine (DA). Ce phénomène de « co-transmission » requiert l’expression du transporteur vésiculaire du glutamate de type 2 (VGLUT2) dans les neurones dopaminergiques. Certaines observations montrent que l’expression de VGLUT2 dans les neurones dopaminergiques survient tôt durant leur développement et est essentiellement limitée aux neurones de l’aire tegmentaire ventrale (VTA). De plus, cette libération de glutamate se retrouve principalement au niveau des terminaisons de ces neurones dans le striatum ventral, mais pas dans le striatum dorsal. Ces données suggèrent d’une part un rôle développemental possible du glutamate dans les neurones dopaminergiques, et d’autre part, que les signaux dérivés des neurones cibles puissent réguler le double phénotype des neurones dopaminergiques menant ainsi à une plasticité phénotypique. Par ailleurs, il est toujours inconnu si cette libération de glutamate se fait à partir des terminaisons qui relâchent la DA ou à partir de terminaisons axonales distinctes. De plus, le rôle physiologique de ce surprenant phénomène de co-transmission reste également inconnu. Ainsi, dans cette étude, nous avons d’abord démontré in vitro et in vivo que l’expression de VGLUT2 est nécessaire pour la survie et la croissance d’une sous-population de neurones dopaminergiques. En utilisant une lignée de souris ayant une délétion génique spécifique de VGLUT2 dans les neurones dopaminergiques, nous avons observé une diminution du nombre de terminaisons dopaminergiques et glutamatergiques dans le striatum, une baisse de libération de DA dans le striatum ventral, une diminution de la coordination motrice ainsi qu’une diminution de l’activité locomotrice induite par les drogues d’abus. D’autre part, nous avons démontré in vitro et in vivo que les neurones dopaminergiques au double phénotype établissent des terminaisons distinctes afin de relâcher le glutamate et la DA. De plus, nous démontrons que ce phénomène de ségrégation des sites de libération semble être induit par une interaction avec les neurones du striatum ventral. Ces travaux démontrent le rôle physiologique déterminant de la co-transmission DA-glutamate pour l’homéostasie du système DAergique et dévoile une caractéristique fondamentale de l’établissement des terminaisons axonales de ces neurones. Ces travaux permettent ainsi de mieux comprendre les rôles physiologiques de la co-libération de glutamate par les neurones du système nerveux central et présentent une nouvelle perspective sur les dysfonctions potentielles de ces neurones dans les maladies du cerveau. / A subset of midbrain dopamine (DA) neurons has been shown to express the type 2 vesicular glutamate transporter (VGLUT2) supporting their capacity for glutamate co-release from some of their axon terminals. However, the physiological significance of this phenomenon is presently unknown. VGLUT2 expression by DA neurons occurs early during their development and is mainly found in DA neurons localized to the ventral tegmental area (VTA). Glutamate release by DA neurons can be detected at terminals contacting ventral but not dorsal striatal neurons. Together, these findings suggest the possibility glutamate co-release by DA neurons plays a developmental role and that target-derived signals regulate the neurotransmitter phenotype of DA neurons. Whether glutamate can be released from the same terminals that release DA or from a special subset of axon terminals is undetermined. Moreover, the physiological role of glutamate release by DA neurons is essentially unknown. Using a conditional gene knock-out approach to selectively disrupt the Vglut2 gene in mouse DA neurons, we obtained in vitro and in vivo evidence demonstrating reduced growth and survival of mesencephalic DA neurons, associated with a decrease in the density of DA innervation in the nucleus accumbens, reduced activity-dependent DA release, decreased motor coordination and impaired locomotor activation induced by drugs of abuse. In this study we also provide in vitro and in vivo data supporting the hypothesis that DA and glutamate-releasing terminals are mostly segregated and that striatal neurons regulate the co-phenotype of midbrain DA neurons and the segregation of release sites. These findings provide strong evidence for a functional role of the glutamatergic cophenotype in the development of mesencephalic DA neurons, unveils a fundamental feature of dual neurotransmission and plasticity of the DA system and open new perspectives into the pathophysiology of brain diseases implicatingthe DA system.
|
215 |
Metabolomics analysis in rats with thiamine deficiency identifies key metabolites in vulnerable brain regions and suggests neural stem progenitor cells play a role in ameliorating metabolic dysfunctionAzar, Ashraf 08 1900 (has links)
La documentation scientifique fait état de la présence, chez l’adulte, de cellules souches et progénitrices neurales (CSPN) endogènes dans les zones sous-ventriculaire et sous-granulaire du cerveau ainsi que dans le gyrus denté de l’hippocampe. De plus, un postulat selon lequel il serait également possible de retrouver ce type de cellules dans la moelle épinière et le néocortex des mammifères adultes a été énoncé. L’encéphalopathie de Wernicke, un trouble neurologique grave toutefois réversible qui entraîne un dysfonctionnement, voire une défaillance du cerveau, est causée principalement par une carence importante en thiamine (CT). Des observations récentes laissent envisager que les facteurs en cause dans la prolifération et la différenciation des CSPN pourraient également jouer un rôle important lors d’un épisode de CT.
L’hypothèse, selon laquelle l’identification de nouveaux métabolites entrant dans le mécanisme ou la séquence de réactions se soldant en une CT pourraient en faciliter la compréhension, a été émise au moyen d'une démarche en cours permettant d’établir le profil des modifications métaboliques qui surviennent en de telles situations. Cette approche a été utilisée pour constater les changements métaboliques survenus au niveau du foyer cérébral dans un modèle de rats déficients en thiamine (rats DT), particulièrement au niveau du thalamus et du colliculus inférieur (CI). La greffe de CSPN a quant à elle été envisagée afin d’apporter de nouvelles informations sur la participation des CSPN lors d’un épisode de CT et de déterminer les bénéfices thérapeutiques potentiels offerts par cette intervention.
Les sujets de l’étude étaient répartis en quatre groupes expérimentaux : un premier groupe constitué de rats dont la CT était induite par la pyrithiamine (rats DTiP), un deuxième groupe constitué de rats-contrôles nourris ensemble (« pair-fed control rats » ou rats PFC) ainsi que deux groupes de rats ayant subi une greffe de CSPN, soit un groupe de rats DTiP greffés et un dernier groupe constitué de rats-contrôles (rats PFC) greffés. Les échantillons de foyers cérébraux (thalamus et CI) des quatre groupes de rats ont été prélevés et soumis à des analyses métabolomiques non ciblées ainsi qu’à une analyse visuelle par microscopie à balayage électronique (SEM). Une variété de métabolites-clés a été observée chez les groupes de rats déficients en thiamine (rats DTiP) en plus de plusieurs métabolites dont la documentation ne faisait pas mention. On a notamment constaté la présence d’acides biliaires, d’acide cynurénique et d’acide 1,9— diméthylurique dans le thalamus, alors que la présence de taurine et de carnosine a été observée dans le colliculus inférieur.
L’étude a de plus démontré une possible implication des CSPN endogènes dans les foyers cérébraux du thalamus et du colliculus inférieur en identifiant les métabolites-clés ciblant les CSPN. Enfin, les analyses par SEM ont montré une amélioration notable des tissus à la suite de la greffe de CSPN. Ces constatations suggèrent que l’utilisation de CSPN pourrait s’avérer une avenue thérapeutique intéressante pour soulager la dégénérescence symptomatique liée à une grave carence en thiamine chez l’humain. / Endogenous neural-stem progenitor cells (NSPC) have been documented to be found in the subventricular and subgranular zones, the dentate gyrus, and suggestions of the possibility of these cells being found in the spinal cord and neocortex in adult mammalian brain have been postulated. Thiamine deficiency (TD) is the major cause of Wernicke's Encephalopathy, a reversible neurological disorder that results in cerebral dysfunction and impairment. Recent evidence suggests factors involved in neural NSPC proliferation and differentiation are involved during TD.
By means of a current approach for profiling metabolic changes occurring in focal areas of the TD rat brain, specifically the thalamus and the inferior colliculus (IC), it was hypothesized that new metabolites that might offer a better understanding into the sequel and/or mechanism of TD could be identified. It was also considered that the use of NSPC transplantation could offer new information into the involvement of NSPC and potential therapeutic benefit in TD.
Non-targeted metabolomics analysis, fluorescences microscopy, and scanning election microscopy (SEM) analysis visualization was performed on samples of the focal areas (thalamus and IC) of pyrithiamine induced TD rats (PTD), pair-fed controls (PFC) rats, and NSPC transplanted TD and PFC rats. Various key metabolites were identified in rats with TD, including previous undocumented metabolites such as bile acids, kynurenic acid, and 1,9-dimethyluric acid in the thalamus and taurine and carnosine in the IC. The study also demonstrated a possible involvement of endogenous NSPC in focal areas of the thalamus and IC identifying key metabolites targeting NSPC and showed tissue amelioration (observed through SEM) following NSPC transplantation. The findings suggested that NSPC could offer a therapeutic alternative to alleviate some of symptomatic degeneration of TD.
|
216 |
Impact de la cécité sur le système nociceptifSlimani, Hocine 05 1900 (has links)
La vision joue un rôle très important dans la prévention du danger. La douleur a aussi pour fonction de prévenir les lésions corporelles. Nous avons donc testé l’hypothèse qu’une hypersensibilité à la douleur découlerait de la cécité en guise de compensation sensorielle. En effet, une littérature exhaustive indique qu’une plasticité intermodale s’opère chez les non-voyants, ce qui module à la hausse la sensibilité de leurs sens résiduels. De plus, plusieurs études montrent que la douleur peut être modulée par la vision et par une privation visuelle temporaire.
Dans une première étude, nous avons mesuré les seuils de détection thermique et les seuils de douleur chez des aveugles de naissance et des voyants à l’aide d’une thermode qui permet de chauffer ou de refroidir la peau. Les participants ont aussi eu à quantifier la douleur perçue en réponse à des stimuli laser CO2 et à répondre à des questionnaires mesurant leur attitude face à des situations douloureuses de la vie quotidienne. Les résultats obtenus montrent que les aveugles congénitaux ont des seuils de douleur plus bas et des rapports de douleur plus élevés que leurs congénères voyants. De plus, les résultats psychométriques indiquent que les non-voyants sont plus attentifs à la douleur. Dans une deuxième étude, nous avons mesuré l’impact de l'expérience visuelle sur la perception de la douleur en répliquant la première étude dans un échantillon d’aveugles tardifs. Les résultats montrent que ces derniers sont en tous points similaires aux voyants quant à leur sensibilité à la douleur. Dans une troisième étude, nous avons testé les capacités de discrimination de température des aveugles congénitaux, car la détection de changements rapides de température est cruciale pour éviter les brûlures. Il s’est avéré que les aveugles de naissance ont une discrimination de température plus fine et qu’ils sont plus sensibles à la sommation spatiale de la chaleur. Dans une quatrième étude, nous avons examiné la contribution des fibres A∂ et C au traitement nociceptif des non-voyants, car ces récepteurs signalent la première et la deuxième douleur, respectivement. Nous avons observé que les aveugles congénitaux détectent plus facilement et répondent plus rapidement aux sensations générées par l’activation des fibres C. Dans une cinquième et dernière étude, nous avons sondé les changements potentiels qu’entrainerait la perte de vision dans la modulation descendante des intrants nociceptifs en mesurant les effets de l’appréhension d’un stimulus nocif sur la perception de la douleur. Les résultats montrent que, contrairement aux voyants, les aveugles congénitaux voient leur douleur exacerbée par l’incertitude face au danger, suggérant ainsi que la modulation centrale de la douleur est facilitée chez ces derniers.
En gros, ces travaux indiquent que l’absence d’expérience visuelle, plutôt que la cécité, entraine une hausse de la sensibilité nociceptive, ce qui apporte une autre dimension au modèle d’intégration multi-sensorielle de la vision et de la douleur. / Vision is important for avoiding encounters with objects in the environment that may imperil physical integrity. Since pain also plays a major role in preventing bodily injury, we tested whether, in the absence of vision, pain hypersensitivity would arise from an adaptive shift to other sensory channels. Indeed, a wealth of literature indicates that blindness leads to sensory compensation and crossmodal plasticity. Furthermore, studies have shown that pain perception can be modulated by vision and by temporary visual deprivation.
In a first study, we measured innocuous and noxious thermal thresholds using a Peltier-based thermotester in congenitally blind and normal sighted participants. We also assessed their suprathreshold pain ratings using a CO2 laser device and evaluated their attitude towards daily pain encounters using questionnaires on attention and anxiety. Results show that congenitally participants have lower pain thresholds and higher suprathreshold pain ratings. The psychometric data further indicates that they are more attentive to pain compared to their sighted peers. In a second study, we investigated whether visual experience has an impact on pain perception by replicating the first study in late blind participants. Results indicate that individuals who lost sight later in life are similar to the sighted in every aspect of pain perception that we measured. In a third study, we tested whether blind individuals have supranormal skills in detecting small and quick increases in temperature, as these thermal cues of the environment might help identifying and avoiding potentially harmful objects. Results show that congenitally blind participants outperform their sighted peers and that they are more susceptible to spatial summation of heat. In a fourth study, we examined the contribution of A∂ and C-fibres to blind individuals’ nociceptive processing, as these fibres are thought to signal the first and second pain, respectively. Our findings indicate that congenital blindness leads to an enhanced detection to C-fibre mediated sensations and to faster reaction times to these nociceptive inputs. In a fifth and final study, we probed the potential changes in the descending modulation of nociceptive inputs following visual deprivation by measuring the effects of psychological factors like anticipation and anxiety on blind individuals’ pain perception. Results show that congenitally blind participants are more sensitive to pain in response to uncertainty about threat, suggesting that they are more susceptible to top-down modulation of pain.
Overall, this work indicates that visual deprivation from birth, but not later in life, causes a leftward shift in the stimulus–response function to nociceptive stimuli and lends new support to a model of sensory integration of vision and pain processing.
|
217 |
Activité physique et récompense : impact de la leptine et de la signalisation STAT3 dans les neurones dopaminergiquesMatthys, Dominique 03 1900 (has links)
La course d’endurance active le système de récompense (SR) et est reliée aux comportements de recherche alimentaire. L’influence de la leptine sur l’activité physique (AP) volontaire est bien documentée d’un point de vue physiologique, mais très peu en termes d’impact hédonique. La leptine inhibe l’effet récompensant lié à la consommation de nourriture et joue un rôle semblable pour d’autres types de stimuli. La leptine s’arrime à la forme longue du récepteur à la leptine (Leprb) situé sur les neurones à dopamine (DA) et GABA de l’aire tegmentale ventrale (ATV) dans le mésencéphale. Signal transducer and Activator of Transcription 3 (STAT3) est un facteur de transcription important de la cascade de signalisation de la leptine. La phosphorylation de STAT3 n’est détectée que dans une parcelle des neurones DA positifs pour le Leprb, conférant aux neurones DA STAT3-spécifiques des caractéristiques uniques. Nous avons généré un modèle murin invalidé pour STAT3 sélectivement dans les neurones DA (STAT3DAT-KO). La première expérience consistait à évaluer les paramètres métaboliques de base de notre modèle en utilisant les chambres métaboliques Comprehensive Lab Animal Monitoring System (CLAMS), incluant l’activité ambulatoire, le ratio d’échanges respiratoires (RER) et la production de chaleur. Les STAT3DAT-KO sont hyperactives, démontré par une activité locomotrice augmentée, mais aucune variation entre les deux groupes n’est observée pour le RER et la production de chaleur, en plus d’un gain de poids identique. Une stratégie de récupération ciblant la réinsertion de STAT3 dans les neurones DA du système mésolimbique normalise l’AP anciennement plus élevée des STAT3DAT-KO à celle des contrôles, suivant l’accès libre à une roue d’exercice (RE) pour une durée de 4 semaines, suivant l’accès libre à une roue d’exercice (RE) pour une durée de 4 semaines. L’injection d’un psychostimulant (agoniste du récepteur DA de type 1 (D1R), le Chloro-APB-Hydrobromide (SKF 82958)) reflète une fonction dopaminergique réduite chez les STAT3DAT-KO. Un test de recherche compulsive de nourriture révèle une suppression de la prise alimentaire chez les deux groupes expérimentaux. Nous démontrons pour la première fois que la motivation alliée à la course d’endurance, indépendamment de la régulation de la prise alimentaire par la leptine, est dépendant d’une signalisation leptine-STAT3 amoindrie dans les neurones DA du système mésolimbique, révélant STAT3 comme élément clé dans la régulation du tonus dopaminergique et des propriétés récompensantes de l’AP. / Endurance running is rewarding and related to food seeking behaviors. Influence of leptin on voluntary physical activity is well documented from a physiological point of view, but little is known about its hedonic impact. Leptin inhibits the rewarding aspects of food consumption and plays a similar role for other types of stimuli. Leptin binds to the long form of the leptin receptor, situated on dopamine (DA) and GABA neurons of the ventral tegmental area (VTA) in the midbrain. Signal Transducer and Activator of Transcription 3 (STAT3) is an important transcription factor of the leptin signalling cascade. Phosphorylation of STAT3 is detected only in a subset of neurons that are positive for the leptin receptor, conferring unique properties to DA STAT3 neurons. We generated a mouse model invalidated for STAT3 selectively in dopamine neurons (STAT3DAT-KO). We first assessed basic metabolic parameters of our model using CLAMS metabolic chambers, including ambulatory acitivity, respiratory exchange ratio (RER) and heat production. STAT3DAT-KO are hyperactive as seen by a higher locomotor activity, but there is no inter-group variation of RER and heat production, and the weight gain is the same. A rescue strategy targeting the reinsertion of STAT3 in DA neurons of the mesolimbic system normalizes physical activity of the STAT3DAT-KO - which was previously much higher - to that of the control mice, following free access to a running wheel for a period of 4 weeks. The injection of a psychostimulant (agonist of the type1 DA receptor (D1R), Chloro-APB-Hydrobromide (SKF 82958)) reflects a reduced DA signalling STAT3DAT-KO. A compulsive food seeking test reveals a suppression of sucrose intake in both experimental groups. We demonstrate for the first time that the motivation allied to endurance running, independently of food intake regulation by leptin, is dependent upon a diminished leptin-STAT3 signalling in DA neurons of the midbrain, revealing STAT3 as a key player in the regulation of DA tone and the rewarding properties of physical activity.
|
218 |
Les interactions vestibulo-corticales qui sous-tendent le contrôle de la posture chez les sujets sainsNepveu, Jean-François 02 1900 (has links)
Le système vestibulaire et le cortex moteur participent au contrôle de la posture, mais la nature de leurs interactions est peu documentée. Afin de caractériser les interactions vestibulo-corticales qui sous-tendent le contrôle de l’équilibre en position debout, l’activité électromyographique (EMG) du soléaire (SOL), du tibial antérieur (TA) et du péronier long (PERL) de la jambe droite a été enregistrée chez 14 sujets sains. La stimulation galvanique vestibulaire (GVS) a été appliquée avec la cathode derrière l’oreille droite ou gauche à différents intervalles inter-stimulus (ISIs) avant ou après la stimulation magnétique transcrânienne induisant des potentiels moteurs évoqués (MEPs) au niveau des muscles enregistrés. Lorsque que la cathode était à droite, une inhibition des MEPs a été observée au niveau du SOL à un ISI de 40 et 130 ms et une facilitation des MEPS a été observée au niveau TA à un ISI de 110 ms. Lorsque la cathode était à gauche, une facilitation des MEPs a été observée au niveau du SOL, du TA et du PERL à un ISI de 50, -10 et 0 ms respectivement. L’emplacement de ces interactions sur l’axe neural a été estimé en fonction des ISIs et en comparant l’effet de la GVS sur les MEPs à son effet sur l’EMG de base et sur le réflexe-H. Selon ces analyses, les modulations observées peuvent avoir lieu au niveau spinal ou au niveau supraspinal. Ces résultats suggèrent que les commandes de la voie corticospinale peuvent être modulées par le système vestibulaire à différents niveaux de l’axe neuronal. / The vestibular system and the motor cortex are involved in the control of posture but the nature of their interactions is poorly documented. To characterize vestibulo-cortical interactions underlying the control of balance during quiet standing, the electromyographic activity (EMG) of the soleus (SOL), tibialis anterior (TA) and peroneus longus (PERL) of the right leg was recorded in 14 healthy subjects. Bipolar galvanic vestibular stimulation (GVS) was applied with the cathode behind the right or left ear at various inter-stimulus intervals (ISI) before and after transcranial magnetic stimulation eliciting motor evoked potentials (MEP) in the muscles recorded. When the cathode was on the right, MEP in the SOL were inhibited at 40 and 130 ms while MEP were facilitated in TA at 110 ms. When the cathode was on the left, MEP were facilitated in the SOL at 50 ms, in TA at -10 ms and in PERL at 0 ms. The localization of these interactions along the neural axis was estimated according to the ISI and by comparing the effect of the GVS on the MEP to its effect on the background EMG and on the SOL H-reflex. Based on these analyses, the observed modulations of MEP observed could have occurred at spinal or supraspinal level. These results suggest that the corticospinal output may be modulated by the vestibular system at different levels of the neural axis.
|
219 |
Effet de la stimulation cholinergique sur la perception visuelle chez le rat et l'humain : études comportementales et électrophysiologiquesChamoun, Mira 05 1900 (has links)
Le système cholinergique joue un rôle important dans de nombreuses fonctions cognitives telles que l'attention et l'apprentissage perceptuel. La stimulation pharmacologique du système cholinergique par le donépézil, un inhibiteur de l’acétylcholinestérase, est un moyen efficace pour améliorer les fonctions cognitives et le traitement cortical via les récepteurs muscariniques et nicotiniques. En effet, le donépézil permet l'accumulation d'acétylcholine dans la fente synaptique. Toutefois, l’effet de la stimulation pharmacologique du système cholinergique sur le traitement visuel complexe et l’apprentissage perceptuel n’est pas encore bien défini. L'objectif de cette thèse est d'étudier, d'une part, l'effet de la combinaison d’un entrainement visuel répétitif avec une stimulation cholinergique sur les capacités visuelles chez le rat et l’humain et, d'autre part, l’effet de la stimulation pharmacologique du système cholinergique sur la restauration des capacités visuelles dans un modèle de déficit visuel chez les rats. Nos résultats ont montré qu’un entrainement visuel/cholinergique entraînait : 1) une potentialisation à long terme de la réponse visuelle corticale chez le rat, 2) une récupération plus rapide des capacités visuelles chez la rat suite un écrasement du nerf optique 3) une amélioration de la performance dans une tâche perceptivo-cognitive de haut niveau plus rapide et conservée dans le temps chez les jeunes sujets sains. Le patron d’électroencéphalographie chez le sujet humain pratiquant une tâche d’attention visuelle n’est cependant pas modifié par l’administration d’une dose unique de donépézil. Ensembles, ces résultats soulignent le bénéfice considérable de la combinaison d’une stimulation du système cholinergique lors de l’entrainement visuel répétitif afin d'obtenir des améliorations de la perception visuelle. Cela présente une avenue très intéressante pour la réhabilitation chez les humains. / The cholinergic system plays an important role in many cognitive functions such as attention and perceptual learning. Pharmacological stimulation of the cholinergic system via donepezil, an acetylcholinesterase inhibitor, is an efficient tool for enhancing cognitive functions and cortical processing via muscarinic and nicotinic receptors. In fact, donepezil allows the build-up of acetylcholine in the synaptic cleft. However, whether pharmacological manipulation of the cholinergic system has an effect on complex visual processing and perceptual learning remains unclear. The goal of this thesis is to investigate on the one hand the effect of combining repetitive visual training with cholinergic enhancement on visual capacities in rats and humans and on the other hand the effect of the pharmacological stimulation of the cholinergic system on visual restoration in a model of visual deficit in rats. Our results showed that cholinergic potentiation induces 1) a long-term potentiation of visual cortical response following repetitive visual stimulation, 2) a faster recovery of brightness discrimination in rats with an optic nerve crush, 3) a faster progression of and a sustained performance in a highly demanding perceptual-cognitive task for healthy young humans. However, the EEG pattern for subjects performing a visual attention task is not modified by a single administration of donepezil. Together these results underline the substantial benefice of combining cholinergic enhancement with visual training in order to obtain visual perception improvements, which presents an interesting avenue for visual rehabilitation paradigm in humans.
|
220 |
Rôle des astrocytes dans la décharge rythmique neuronale du noyau sensoriel principal du trijumeauMorquette, Philippe 12 1900 (has links)
La communication entre les neurones est fondée sur leur capacité à changer leur patron de décharge pour l’encodage de différents messages. Pour plusieurs fonctions vitales, comme la respiration et la mastication, les neurones doivent pouvoir générer des patrons d’activité répétitifs, et les groupes de neurones responsables de ces décharges rythmiques sont des
générateurs de patron central (GPC). En dépit de recherches soutenues, les mécanismes précis qui sous-tendent la rythmogénèse dans les GPCs ne sont pas bien définis. Le plus souvent, la potentielle contribution des astrocytes demeure grandement inexplorée, même si ces cellules sont aujourd’hui connues pour leur implication dans la modulation synaptique neuronale.
Pour nos travaux, le noyau sensoriel principal du trijumeau (NVsnpr) a été pris comme modèle à cause de son rôle central dans les mouvements rythmiques de la mastication. Dans ce noyau, des travaux antérieurs ont montré que la décharge en bouffées rythmiques est déclenchée dans les neurones lorsque la concentration de calcium extracellulaire ([Ca2+]e) est artificiellement baissée. Nous fondant sur cette observation, notre première hypothèse a postulé que la baisse de la [Ca2+]e pouvait survenir de façon physiologique en lien avec des stimulations sensorielles pertinentes. Deuxièmement, parce que les astrocytes ont été impliqués dans le tamponnage et l’homéostasie d’ions extracellulaires comme le K+, nous avons postulé que ces cellules pouvaient jouer un rôle équivalent dans le contrôle de la [Ca2+]e.
Nos résultats montrent que les astrocytes peuvent réguler la [Ca2+]e et ainsi contrôler la capacité des neurones à changer leur patron de décharge. Premièrement, en stimulant les afférences sensorielles au NVsnpr, nous avons montré que des baisses physiologiques de la [Ca2+]e sont observées en parallèle à l’apparition de bouffées rythmiques neuronales. Deuxièmement, nous avons démontré que les astrocytes répondent aux mêmes stimuli qui induisent l’activité rythmique neuronale, et que leur blocage avec un chélateur de Ca2+ empêche les neurones de générer un patron de décharge en bouffées rythmiques. Cette habilité est rétablie en rajoutant la S100β, une protéine astrocytaire liant le Ca2+, dans le milieu extracellulaire, alors que l’anticorps anti-S100β empêche l’activité rythmique. Ces résultats indiquent que les astrocytes régulent une propriété neuronale fondamentale : la capacité à changer de patron de décharge. Ainsi, les GPCs dépendraient des fonctions intégrées des astrocytes et des neurones. Ces découvertes pourraient avoir des implications transposables à plusieurs autres circuits neuronaux dont la fonction dépend de l’induction d’activité rythmique. / Communication between neurons rests on their capacity to change their firing pattern to
encode different messages. For several vital functions, such as respiration and mastication,
neurons need to generate a repetitive firing pattern, and the groups of neurons responsible for
these rhythmic discharges are called central pattern generator (CPG). Despite intense research
in this field, the exact mechanisms underlying rhythmogenesis in CPGs are not completely
defined. In most instances, the potential contribution of astrocytes is largely unexplored, even
though these cells are now well known to be involved in neuronal synaptic modulation.
In our work, the trigeminal main sensory nucleus (NVsnpr) was used as a model owing to its
central role in the rhythmic movement of mastication. Previous work have shown that
rhythmic bursting discharge is triggered in NVsnpr neurons when extracellular calcium
concentration ([Ca2+]e) is artificially decreased. Based on this observation, our first hypothesis
postulated that the reduction of [Ca2+]e could also happen physiologically in relation to
relevant sensory stimulation. Secondly, because astrocytes have been involved in the buffering
and the homeostasis of extracellular ions like potassium, we have postulated that these cells
could also play a role in the control of [Ca2+]e.
The results presented in this thesis show that astrocytes can regulate [Ca2+]e and thus
control the ability of neurons to change their firing pattern. First, we showed that stimulation
of sensory afferent fibers to the NVsnpr induced neuronal rhythmic bursting and in parallel
reduction of [Ca2+]e . Secondly, we have demonstrated that astrocytes respond to the same
sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator
prevents generation of neuronal rhythmic bursting. This ability is restored by adding S100β,
an astrocytic Ca2+-binding protein, to the extracellular space, while the application of an anti-
S100β antibody prevents generation of rhythmic activity. These results indicate that astrocytes
regulate a fundamental neuronal property: that is the capacity to change their firing pattern.
Thus, CPG functions result from integrated neuronal and glial activities. These findings may
have broad implications for many other neural networks whose functions depend on the
generation of rhythmic activity.
|
Page generated in 2.4245 seconds