Spelling suggestions: "subject:"neuromusculaire"" "subject:"neuromusculaires""
41 |
Altération des stratégies musculaires chez des patients post-AVC : conséquences sur la marche et en condition de fatigue / Muscle strategies’ alteration in post-stroke patients : consequences on walking and during fatigueSouissi, Hiba 05 December 2018 (has links)
L'hémiparésie est une des déficiences fréquemment observée après un accident vasculaire cérébral (AVC). Elle s’accompagne d’une gestion anormale de la co-contraction musculaire et des déficits de production de force qui contribuent de manière significative à réduire la performance de la marche. Une réorganisation des stratégies musculaires est mise en place pour répondre aux contraintes de stabilité et de propulsion du centre de masse au cours de la marche. Cependant, la littérature reporte très peu de données sur les actions musculaires des membres, parétique et non-parétique, au cours de la marche. De plus, les patterns de co-contraction ont été évalués à partir des seules données EMG chez les patients post-AVC. Par ailleurs, les patients post-AVC présentent une fatigabilité plus importante que les individus sains. Alors que plusieurs facteurs sont impliqués dans la fatigue, le rôle de la co-contraction reste mal connu. L’objectif principal de ce travail était de caractériser les altérations des stratégies musculaires des membres inférieurs chez des patients hémiparétiques post-AVC au cours de la marche et lors de la fatigue induite par des contractions maximales volontaires concentriques isocinétiques. Ce travail introduit l'utilisation novatrice d'une modélisation neuromusculo-squelettique assistée par EMG pour estimer les forces musculaires générées autour des articulations du genou et de la cheville au cours de la marche chez des patients post-AVC. De plus, nous avons montré qu’une quantification de la co-contraction à partir des moments musculaires est préférable par rapport à des mesures EMG. Les résultats ont montré que les forces réduites développées par les fléchisseurs plantaires de la cheville et les extenseurs du genou du côté parétique seraient à l’origine des troubles de la marche hémiparétique. Les forces musculaires élevées produites par les quadriceps et les fléchisseurs du genou du côté nonparétique, ainsi que la force élevée générée par les fléchisseurs du genou du côté parétique, par rapport aux sujets sains, pendant la phase d’appui correspondrait à une réorganisation comportementale, permettant d’augmenter la stabilité et d’ajuster la propulsion du centre de masse. Cette réorganisation des patterns de coordination musculaire se manifeste également par des niveaux élevés de co-contraction (basée sur les moments musculaires) observés du côté parétique et non-parétique au cours de la marche. Il s’agit d’une stratégie d'adaptation permettant d’améliorer la stabilité articulaire. Cependant, la cocontraction plus élevée au cours de la marche peut contribuer à l’augmentation du coût énergétique chez les patients et entraîner une fatigue plus rapide. L’étude de la fatigue neuromusculaire chez les patients post-AVC a mis en évidence une fatigabilité moindre par rapport aux sujets sains en présence d’un niveau plus élevé de co-contraction (basée sur les données EMG). Le déclin de l’activité EMG agoniste lors de contractions concentriques répétées, s’est produit parallèlement à un déclin de l’activité EMG antagoniste diminuant la force d’opposition au mouvement et entraînant une moindre diminution du moment net. Ceci semble être un mécanisme potentiel par lequel la production du moment net est préservée chez les patients post-AVC qui sont intrinsèquement plus faibles. Les résultats de ce travail soulignent l’importance de développer des programmes de rééducation centrés sur le renforcement des fléchisseurs plantaires et des extenseurs du genou et sur la sélectivité du contrôle des mouvements tel que l’entraînement en puissance. / Hemiparesis is one of the most frequent deficits after stroke. It is accompanied by an abnormal muscle co-contraction pattern and an altered force production that significantly contribute to reduced gait performance. These alterations lead to a reorganization of muscle coordination patterns to ensure stability and adjust the propulsion of the center of mass during walking. However, less is known about muscle actions in the paretic and non-paretic lower limbs during walking. In addition, co-contraction patterns were evaluated from only EMG data in post-stroke patients. Furthermore, post-stroke patients manifest higher levels of fatigability than healthy individuals. While several factors are involved in fatigue, the role of co-contraction remains poorly understood. The main objective of this thesis was to characterize the alterations of the muscle strategies of the lower limbs in post-stroke hemiparetic patients during walking and during fatigue induced by isokinetic concentric maximal contractions. This thesis introduces the novel use of an EMG-driven modelling approach to measure muscle forces generated around the knee and ankle joints of the paretic and non-paretic lower limbs during gait in post-stroke patients. In addition, we have shown that quantification of co-contraction from muscle moments is preferable compared to EMG measurements. The results showed that the reduced forces exerted by the plantar-flexors and the knee-extensors on the paretic side, gives a possible explanation for hemiparetic gait abnormalities. Increased forces generated by the knee-flexor and knee-extensor muscles on the non-paretic side, as well as increased force generated by the knee flexors on the paretic side, compared to healthy subjects, during the stance phase would be a behavioral reorganization to better support body weight and properly adjust the forward center of mass. This reorganization of muscle coordination patterns is also reflected by the increased levels of co-contraction (based on muscle moments) observed on the paretic and non-paretic side during walking. This seems to be an adaptive, compensatory strategy to ensure postural stability. However, increased co-contraction during walking can contribute to an increased energy cost in patients and lead to a more rapid fatigue development. The study of neuromuscular fatigue in post-stroke patients showed less fatigability compared to healthy subjects, in the presence of a higher level of co-contraction (based on EMG data). Decreasing agonist EMG during repeated concetric contractions, occurred in parallel with decreasing antagonist EMG, reducing the relative opposing force and resulting in a less decline in net torque. This seems to be a potential mechanism by which net torque output is preserved in post-stroke patients who are inherently weaker. The results of these studies underline the importance of developing rehabilitation programs focused on the strengthening of plantar flexors and knee extensors and on the selectivity of movement control, such as power training.
|
42 |
Etude des différences de fatigue neuromusculaire entre enfants et adultes en fonction du groupe musculaire, de la longueur musculaire et du profil métabolique / Effects of Muscle Group, Muscle Length and Metabolic Profile on Differences of Neuromuscular Fatigue between Prepubertal Children and AdultsPiponnier, Enzo 30 November 2018 (has links)
Les objectifs de ce travail de thèse étaient d’évaluer les effets des différences (i) de niveau de force, en utilisant différents groupes et longueurs musculaires, et (ii) de profil métabolique entre enfants pré-pubères et adultes sur les différences de développement et d’origine de la fatigue neuromusculaire, ainsi que (iii) d’accroître nos connaissances sur les mécanismes de la fatigue neuromusculaire chez l’enfant pré-pubère. Les résultats de ce travail montrent que les différences de niveau de force pourraient être un facteur expliquant les différences de développement et d’origine de la fatigue neuromusculaire entre enfants et adultes. Toutefois, ce facteur n’est pas suffisant pour expliquer toutes les différences de fatigue entre ces deux populations. En effet, nos résultats soulignent aussi que les différences de profil métabolique pourraient être impliquées de façon importante dans les différences de développement et d’origine de la fatigue neuromusculaire entre enfants et adultes. Par ailleurs, les résultats de nos études rapportent que les enfants présentent généralement une fatigue périphérique plus faible par rapport aux adultes au profit d’une fatigue centrale plus importante suite à un protocole de fatigue maximal intermittent. Cette moindre fatigue périphérique est associée à une moindre altération des propriétés contractiles et du couplage excitation-contraction, et à une meilleure adaptation de l’oxygénation musculaire chez l’enfant pré-pubère. Nos résultats semblent suggérer que la fatigue spinale ne permettrait pas d’expliquer les différences de fatigue centrale entre enfants et adultes et donc que la fatigue centrale plus importante des enfants pourrait être attribuée à une fatigue supra-spinale plus élevée. / The aims of this PhD thesis were to evaluate the effects of differences of (i) force level, throughout different muscle groups and muscle lengths, and (ii) metabolic profile on the differences of development and etiology of the neuromuscular fatigue between prepubertal children and adults, as well as (iii) to improve our knowledge of the mechanisms of neuromuscular fatigue in children. The results of this PhD thesis showed that force level differences could be a factor underpinning the differences in the development and etiology of neuromuscular fatigue between children and adults. However, this factor cannot fully account for differences in fatigue between both populations. Indeed, our results also highlighted that metabolic profile differences could explain the difference of development and etiology of neuromuscular fatigue between children and adults. Additionally, the results of this thesis showed that children exhibit lower peripheral fatigue and greater central fatigue than adults after an intermittent maximal exercise. This lower peripheral fatigue was associated with a lower alteration of the contractile properties and excitation-contraction coupling, and a better adaptation of the muscle oxygenation in prepubertal children. Our results suggest that spinal fatigue could not explained the differences in central fatigue between children and adults, and that the greater central fatigue in children could be attributed to a greater supra-spinal fatigue.
|
43 |
Effets de la régulation de la protéostasie sur la jonction neuromusculaire dans un modèle de sclérose latérale amyotrophiqueFiore, Frédéric 12 1900 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative caractérisée par la mort des neurones moteurs. La perte de ces neurones entraîne une faiblesse musculaire qui évolue progressivement vers la paralysie et mène invariablement au décès des personnes atteintes en quelques années seulement. L’hétérogénéité et la complexité des mécanismes qui sous-tendent les déficits moteurs chez ces patients ralentissent considérablement la découverte de nouveaux médicaments. Toutefois, certains de ces mécanismes semblent jouer un rôle particulièrement important dans le déclenchement et la progression de la maladie, et constituent ainsi des cibles thérapeutiques de choix. C’est le cas notamment de l’agrégation protéique, omniprésente chez les patients, qui trahit un dérèglement global de l’homéostasie des protéines dans la SLA. Nous avons donc émis l’hypothèse qu’un traitement visant à réguler la gestion des protéines permettrait, en réduisant l’agrégation protéique, de diminuer la mort des motoneurones et de prévenir ainsi l’apparition des symptômes moteurs caractéristiques de la maladie chez des souris porteuses de la mutation SOD1G93A. Nous avons analysé l’impact de ce traitement sur la fonction motrice, la contraction musculaire et l’intégrité de la jonction neuromusculaire (JNM), la synapse entre les neurones moteurs et les muscles. Son administration au stade présymptomatique de la maladie s’est avérée moins efficace que prévu : on ne note pas d’améliorations significatives des déficits moteurs ou de l’intégrité de la JNM. Cependant, les résultats obtenus sont encourageants et laissent croire que ce traitement pourrait être encore plus efficace à l’apparition des symptômes, ce qui lui confère un grand potentiel thérapeutique. / Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of motor neurons. The loss of these neurons causes muscle weakness, which evolves to paralysis and invariably leads to the death of those affected in just a few years. The heterogeneity and complexity of the mechanisms underlying motor deficits in these patients significantly slow the discovery of new efficient drugs. However, some of these mechanisms seem to play a particularly important role in the onset and progression of the disease, and thus constitute a preferred therapeutic target. This is the case with protein aggregation, which is omnipresent in patients and betrays a global disruption of protein homeostasis in ALS. We therefore hypothesized that a treatment aimed at regulating protein management would, by reducing protein aggregation, prevent the death of motor neurons and the appearance of the motor symptoms characteristic of ALS in mutant SOD1G93A mice. We analyzed the impact of this treatment on motor function, muscle contraction and on the structural integrity of the neuromuscular junction (NMJ), the synapse between motor neurons and muscles. Overall, administration of our treatment at the presymptomatic stage of the disease was less effective than expected: neither motor deficits nor NMJ integrity were significantly improved. However, these results remain very encouraging: the trends seem to indicate a positive effect of the treatment, which even slightly improves the strength generated by muscle contractions. Our data suggests that this treatment could be even more effective at the symptoms onset, which grants it great therapeutic potential.
|
44 |
Analyse comparative pour comprendre la résistance des jonctions neuromusculaires des muscles extraoculaires dans la sclérose latérale amyotrophiqueProvost, Frédéric 04 1900 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie touchant spécifiquement les motoneurones (MN) qui se caractérise par la perte précoce des jonctions neuromusculaires (JNMs) et menant à une paralysie musculaire. La dénervation des JNMs des muscles squelettiques se produit en amont de la mort des MN de la moelle épinière. Des études récentes publiées ont révélé une altération de la transmission synaptique, une instabilité de la morphologie des JNMs ainsi que des mécanismes de réparations de la JNMs inappropriés dans le modèle SOD1, et ce avant l’apparition des symptômes moteurs. De manière intéressante, ces mécanismes sont régulés par les cellules de Schwann périsynaptiques (CSPs), la cellule gliale présente à la JNM suggérant ainsi que l’altération des fonctions des CSPs peut contribuer à la vulnérabilité des JNMs. Tandis que de nombreuses études ont démontré une susceptibilité à la dénervation qui est dépendante du type d’unité motrice (UM), l’innervation des muscles extraoculaires (EOMs) montre une importante résistance à la progression de la maladie.
Afin d’investiguer les distinctions dans les JNMs des EOMs menant à cette résistance, nous avons procédé à une analyse de la morphologie des JNMs via microscopie confocale, nous avons étudié les propriétés fonctionnelles des CSPs par imagerie calcique ainsi qu’effectuer une analyse différentielle du protéome entre les JNMs résistantes de l’EOM et les JNMs vulnérables du soleus (SOL) ou de l’extensor digitorum longus (EDL) dans la souris SOD1G37R. Peu de dénervation des JNMs et aucune altération des JNMs sont observées dans l’EOM à un stade tardif de la maladie. Contrairement aux muscles vulnérables, la sensibilité des CSPs suite à l’application locale d’ATP et de muscarine n’est pas altérée dans les EOM. L’analyse du protéome entre l’EDL et l’EOM au stade symptomatique démontre des fonctions cellulaires distinctes. Dans l’EDL, au stade symptomatique, les cascades cellulaires catabolique et reliée au protéosome sont augmentées : reflétant le processus de dénervation en cours dans ce muscle. Dans l’EOM, une diminution de l’expression de SOD1 muté, une augmentation des processus d’oxydoréductions, des protéines importantes pour maintien du repliement des protéines, des neurofilaments ainsi qu’une expression distincte des enzymes régulant les neurotransmetteurs est observée dans les JNMs résistantes.
Ainsi, comprendre les fonctions des CSPs ainsi que les profils d’expression protéomique distincte entre les JNMs vulnérables et résistantes durant la progression de la maladie peut nous fournir des informations sur les mécanismes impliqués durant la dénervation et aider à identifier les protéines potentielles qui peut favoriser la réparation et l’intégrité des JNMs. Ainsi, cette étude peut mener à l’identification de biomarqueur musculaire et de cible thérapeutique potentielle pour des perspectives curatives futures. / Amyotrophic lateral sclerosis (ALS) is a motor neuron (MNs) disease characterized by the precocious loss of neuromuscular junctions (NMJs) and muscular paralysis. The denervation of NMJs at striated muscles is an early event that occurs before the loss of spinal cord MNs. Recent data revealed an alteration of synaptic transmission, morphological instability and inappropriate repair in NMJs of SOD1 mice model prior to motor symptoms. Interestingly, these mechanisms are known to be regulated by Perisynaptic Schwann cells (PSCs), glial cells at NMJs, suggesting that the alteration of PSC functions may contribute to NMJ vulnerability. While numerous studies demonstrated a motor unit type-dependent susceptibility to denervation, the extraocular muscles (EOM) innervation shows a prominent resistance to disease progression. We hypothesized that PSCs functions and intrinsic properties at extraocular NMJs contribute to the resistance of the disease progression.
NMJ morphological analysis by immunostaining and confocal imaging, functional properties of PSCs by calcium imaging and a differential proteomic analysis using Tandem Mass Tags coupled to quantitative mass spectrometry was performed between the resistant EOM and the vulnerable, soleus (SOL) or Extensor digitorum longus (EDL) muscles in SOD1G37R mice. Fewer denervated NMJs and no alteration of NMJ integrity was observed in the EOM in comparison to the EDL. Sensitivity of EOM PSC to local application of ATP and muscarine are not altered in the EOM SOD1G37R in comparison to WT suggesting an adequate decoding of synaptic activity of PSC. Proteomics analysis between EDL and EOM at symptomatic stage demonstrates distinct cellular pathway. In the EDL, at symptomatic stage, catabolism and proteasome cellular pathways are upregulated reflecting the undergoing denervation processes observed. In the EOM, overall lower expression of SOD1, up-regulation of oxidoreduction process, of mechanism against protein unfolding, of neurofilament and distinct expression of enzymes regulating neurotransmitter homeostasis is observed in the resistant NMJ.
Understanding PSC functions and investigating the distinctive protein expression profile between vulnerable and resistant NMJs during disease progression will help provide insights into the denervation mechanisms involved and help identify potential proteins that could favor NMJ repair and integrity. Also, this study may lead to the identification of muscle biomarkers and potential therapeutic targets moving toward curative perspectives.
|
45 |
Caractérisation de la jonction neuromusculaire au cours du vieillissement chez l’humainMarchand, Sandrine 02 1900 (has links)
Le vieillissement entraîne plusieurs changements au niveau de la fonction musculaire qui peuvent mener à une perte de la masse musculaire et de sa fonction qu’on appelle sarcopénie. La sarcopénie entraîne une augmentation du risque de chutes et d’hospitalisations qui nuit à la qualité de vie des personnes âgées. Le vieillissement de la population représente un enjeu important au sein de la société en raison de son impact socioéconomique élevé. Plusieurs facteurs contribuent à ce déclin observé au cours du vieillissement, mais un des éléments clés qui y contribue sont des altérations de la jonction neuromusculaire (JNM). La JNM est une synapse tripartite composée de la terminaison nerveuse présynaptique, de la fibre musculaire postsynaptique et des cellules de Schwann périsynaptiques (CSPs), des cellules gliales. Les CSPs jouent un rôle essentiel dans la maintenance, la modulation de la transmission et de la plasticité synaptique et la réparation de la JNM. Plusieurs études effectuées chez le murin ont démontré que la JNM présente des altérations telles que de la dénervation, de la fragmentation du postsynaptique et des signes de modulation et de réparation gliaux au cours du vieillissement. Ces altérations contribuent aux déficits de la fonction neuromusculaire observés lors du vieillissement. La JNM humaine demeure cependant sous-étudiée, particulièrement en considérant sa structure tripartite. Afin de mieux comprendre le vieillissement neuromusculaire chez l’humain, des biopsies du Vastus lateralis ont été effectuées chez 4 jeunes adultes (23-28 ans) et 5 personnes âgées (60-75 ans) sains et actifs. Un marquage immunohistochimique a été effectué sur les biopsies afin d’identifier les trois composantes de base de la JNM et le type de fibre, puis visualiser en microscopie confocale. Des mesures fonctionnelles ont également été prélevées pour chacun des participants âgés. L’analyse des JNMs a permis de démontrer qu’une instabilité de l’innervation de même qu’une relation tripartite divergente se développe avec l’âge. Ces altérations corrèlent également avec un déficit fonctionnel. Dans l’ensemble, notre étude présente des altérations de la JNM humaine au cours du vieillissement ayant un impact sur la fonction neuromusculaire. Elle pourrait permettre de mieux comprendre les mécanismes à la base du vieillissement neuromusculaire pour développer des stratégies d’intervention thérapeutiques efficaces pour limiter l’impact du vieillissement. / Several changes occur in muscular function in aging which can lead to a loss of muscle mass and function called sarcopenia. Sarcopenia can lead to an increased risk of fall and hospitalization and to a poor quality of life. Aging of the population represents an important societal issue due to its high socioeconomic impact. Many factors contribute to the decline of muscular function seen in aging, but alterations of the neuromuscular junctions are a key element leading to sarcopenia. The NMJ is a tripartite synapse composed of the presynaptic nerve terminal, the postsynaptic muscle fiber as well as perisynaptic Schwann cells (PSC), glial cells. PSCs play a key role in maintenance, modulation of synaptic transmission and plasticity as well as repair of the NMJ. Several rodent studies have shown that the NMJ present alterations such as denervation, fragmentation of the postsynaptic and glial-related signs of modulation and repair in aging. These alterations contribute to the neuromuscular deficits observed in aging. However, the NMJ remain widely understudied, particularly when considering its tripartite structure. In order to get a better understanding of neuromuscular aging in humans, biopsies form the Vastus lateralis were performed on 4 young (23-28 years old) and 5 older (60-75 years old) healthy and physically active men. Immunohistochemistry labelling of the NMJ’s main components and type of fibers was performed and then imaged using confocal microscopy. Functional assessment was also measured for each older adult. Analysis of NMJs revealed an instability in the innervation as well as a divergent tripartite relationship in older individuals. These alterations also correlated with neuromuscular deficits. Taken altogether, our study highlights alterations of the NMJ in aging leading to altered neuromuscular function. This could lead to a better understanding of the underlying mechanisms leading to sarcopenia and to develop better therapeutic strategies to limit its impact during aging.
|
46 |
Contribution de l'activité muscarinique des cellules de Schwann périsynaptiques dans la vulnérabilité différentielle des jonctions neuromusculaires dans la sclérose latérale amyotrophiqueBord, Marine Angéline 06 1900 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative qui affecte spécifiquement les motoneurones (MNs) supérieurs et inférieurs conduisant à une paralysie musculaire. La dénervation des jonction neuromusculaires (JNMs) se produit en amont de la mort des MNs de la moelle épinière chez les patients atteint de la SLA et dans de nombreux modèles murins de la maladie. Récemment, des chercheurs ont révélé une altération de la transmission synaptique, une instabilité morphologique, et une réparation inappropriée des JNMs dans le modèle de souris SOD1 en amont de l’apparition des désordres moteurs. Tandis que notre laboratoire a étudié les trois éléments synaptiques, ce mémoire porte une attention particulière aux cellules de Schwann périsynaptiques (CSPs), les cellules gliales à la JNM, considérant leurs rôles fondamentaux dans la régulation de la structure et la fonction de la JNM. Alors que de nombreuses études ont démontré une susceptibilité à la dénervation dépendante du type d’unité motrice, où certaines serait plus vulnérables au processus de dénervation que d’autres, les propriétés altérées des CSPs ont été généralisé à tous les types de JNMs étudiés. Notamment, des études réalisées dans le laboratoire ont rapporté une capacité inappropriée des CSPs à décoder l’information basée sur une augmentation de l’activation des récepteurs muscariniques (mAChRs). Les fonctions des mAChRs des CSPs sont d’une importance particulière puisque leur activité est essentielle à la stabilité des JNMs et à leur réparation et est régulé par l’activité synaptique. De manière importante, nous avons observé que la diminution chronique in vivo de l’activation des mAChRs des CSPs chez les souris SOD1G37R favorise la réparation de la JNM et améliore les fonctions motrices chez l’animal. Ainsi, la moindre altération dans les propriétés des CSPs pourrait contribuer directement à la vulnérabilité des NMJs dans la SLA. Considérant le rôle crucial des cellules gliales dans la maintenance et la réparation des JNMs, nous avons émis l’hypothèse que les CSPs contribuent à la différence de vulnérabilité observée dans la SLA. Nous avons postulé que l’hyperactivité muscarinique des CSPs contribue à l’instabilité des JNMs vulnérables, alors qu’une activité muscarinique normale contribue à la stabilité des JNMs résistantes.
Pour mieux comprendre les différences dans les propriétés des CSPs contribuant à cette différence de vulnérabilité, nous avons étudié les propriétés fonctionnelles des CSPs
par imagerie calcique afin de caractériser la signature muscarinique des CSPs aux JNMs d’un muscle vulnerable, l’extensor digitorum longus (EDL). Nous avons évalué l’intégrité des JNMs par un triple marquage immunohistochimique. De manière intéressante, nos résultats ont montré que L’utilisation d’un outil chémogénétique nous a permis d’augmenter l’excitabilité des AChRs des CSPs aux JNMs résistantes des MEOs. L’évaluation de l’intégrité des JNMs par un triple marquage immunohistochimique a montré que le traitement au CNO induit de l’instabilité au niveau des JNMs et nous avons observé des signes de dénervation. Établir un potentiel rôle des CSPs dans la résistance des JNMs a permis de souligner un nouveau facteur important dans la pathophysiologie de la SLA et a fourni des connaissances dans les mécanismes de résistance sélective/vulnérabilité à la dénervation. Cela permet d’ouvrir le champ à de nouvelles cibles thérapeutiques ciblant les cellules gliales à la JNM. De plus, ce nouveau contexte conceptuel de susceptibilité des JNMs peut être transposé à d’autres maladies neuromusculaires. / Amyotrophic lateral sclerosis (ALS) is a fatal late-onset neurodegenerative disease characterized by progressive loss of upper and lower motor neurons (MNs) leading to muscular paralysis. Denervation of the neuromuscular junction (NMJ) is an early pathological event that occurs before the loss of spinal cord MNs in ALS patients and various murine models of the disease. Recently, authors revealed an alteration of synaptic transmission, morphological instability, and inappropriate repair in NMJs of SOD1 mice model prior to motor impairments. While our laboratory studied all three synaptic elements, we put a particular attention to Perisynaptic Schwann cells (PSC), glial cells at the NMJ, owing to their fundamental roles in regulating NMJ structure and function. While numerous studies demonstrated a motor-unit type dependent susceptibility to denervation where some motor units (MUs) would be more vulnerable than others, altered PSC properties were generalized among all types of NMJ studied. Notably, studies performed in the laboratory reported an inappropriate PSC decoding capability based on an enhanced activation of mAChRs. PSC mAChR functions is of particular importance since it is essential for the management of NMJ stability and repair and is regulated by synaptic activity. Importantly, we observed that chronic in vivo dampening of PSC muscarinic activation in SOD1G37R fostered NMJ repair and improved motor function in the ALS mouse model. Hence, any alteration of PSC properties may directly contribute to NMJ vulnerability in ALS. Owing to the critical roles of glial cells for the maintenance and repair of NMJs, we hypothesized that PSC contribute to the differential vulnerability observed in ALS. We proposed that the hyperactive muscarinic excitation of PSCs contributes to NMJ instability at vulnerable NMJs while the normal muscarinic activity contributes to their stability in resistant ones.
To better understand the distinctions in PSCs properties contributing to a difference in NMJ vulnerability, we studied the PSC functional properties by calcium imaging to characterize the muscarinic signature of PSCs at the NMJ of a vulnerable muscle, the extensor digitorum longus (EDL). We assessed the integrity of the NMJ by a triple immunostaining. Interestingly, our data revealed that altering PSC properties at resistant NMJs by enhancing the muscarinic excitation of PSCs using a viral strategy created NMJ instability with signs of denervation. Determining the potential role of PSC in the resistance of NMJs highlighted a novel important factor underlying the pathophysiology of ALS and provided significant insights into the mechanisms of selective resistance/vulnerability to denervation. This could pave the way to novel therapeutic targets and strategies targeting glial cells at the NMJ. Furthermore, this novel conceptual context may be carried over to NMJ susceptibility for other neuromuscular diseases.
|
47 |
Identification des mécanismes périphériques impliqués dans la douleur chronique expérimentale des muscles de la masticationFerreira, Renato Alves 12 1900 (has links)
L’objectif premier de notre projet était d’établir un modèle animal de douleur chronique orofaciale, lequel pourrait imiter la sensibilité retrouvée chez les patients souffrant de douleur orofaciale myalgique. Nous avons procédé à des injections intramusculaires de saline acide (2 injections à 2 jours d’intervalle pH 4.0) pour induire une sensibilisation mécanique des mucles massétérins. La réponse nocifensive a été mesurée à l’aide de filaments de von Frey avant et après ces injections dans des rats Sprague-Dawley. Par la suite, le potentiel analgésique de différents antagonistes des récepteurs glutamatergiques fût évalué par l’injection intramusculaire de ces antagonistes à différents moments.
Nos résultats suggèrent que deux injections de saline acide, produisent une hypersensibilité mécanique signalée par l’augmentation du nombre de réponses à l’application de filaments de von Frey. Cet effet dure plusieurs semaines et est bilatéral, même lorsque les injections sont unilatérales, indiquant qu’une composante centrale est forcément impliquée. Toutefois, une composante périphérique impliquant les récepteurs glutamatergiques semble présider le tout puisque les antagonistes glutamatergiques, appliqués de façon préventive empêchent le développement de l’hypersensibilité. Cependant, le maintien de cette hypersensibilité doit dépendre de mécanismes centraux puisque l’application d’antagonistes une fois la sensibilisation induite, ne diminue en rien le nombre de réponses obtenues.
Ce modèle semble approprié pour reproduire une hypersensibilité musculaire durable de bas niveau. Nos données indiquent que les récepteurs glutamatergiques périphériques participent à l’induction de cette hypersensibilité de longue durée.
Nous croyons que ce modèle pourra éventuellement contribuer à une meilleure compréhension des mécanismes à l’origine des myalgies faciales persistantes. / The first objective of this project was to establish an animal model of chronic orofacial pain, which could mimic symptoms of patients suffering from orofacial myalgia. We used acidic saline injections (2 injections, 2 days apart at pH 4.0) in masseteric muscles to induce mechanical hypersensitivity. Nocifensive behavior was measured before and after the injections using von Frey filaments in male Sprague Dawley rats. Later, the potential analgesic effect of glutamate receptors antagonists was measured by intramuscular administration of these antagonists at different times.
Our results suggest that two injections of acidic saline produce a mechanical hypersensitivity as reflected by the increased number of responses to applications of von Frey filaments. This effect lasts several weeks and is bilateral, even when the injections are unilateral, indicating that a central component must be involved. However, the initial stage of induction of this hypersensitivity involves peripheral glutamate receptors since injection of their antagonists before the second acidic saline injection prevents development of the nocifensive response, whereas their injection at later times is ineffective in blocking development of the response.
This model based on a double injection of acidic saline seems appropriate to reproduce low intensity, long-lasting muscle pain. Our data suggests that peripheral glutamate receptors are involved in the induction of this long-term hypersensitivity.
We believe that this model may contribute to a better understanding of the mechanisms behind persistent orofacial muscle pain.
|
48 |
L’altération des interactions neurone-glie à la jonction neuromusculaire de souris âgéesKrief, Noam 12 1900 (has links)
Durant le vieillissement, l’ensemble des fonctions de l’organisme se détériore, que ce soit aussi bien au niveau moteur que cognitif. Le vieillissement s’accompagne d’une diminution de la force, ainsi que de la masse musculaire. Des études récentes tendent à montrer que cette perte de masse musculaire que l’on appelle sarcopénie aurait pour origine un dérèglement de la jonction neuromusculaire. Les changements au niveau du présynaptique et du post synaptiques lors du vieillissement normal font l’objet de plusieurs études, mais les changements relatifs aux cellules de Schwann périsynaptique sont très peu connus. Le but de cette étude est donc d’analyser les modifications des interactions neurone-glie à la jonction neuromusculaire.
Dans cette étude, nous montrons que certaines fonctions des cellules gliales de la synapse âgée sont déréglées, en particulier, le type de récepteurs activés par une stimulation nerveuse à haute fréquence. D’autre part, nos résultats montrent que les mécanismes responsables de l’augmentation de la transmission synaptique suite à cette stimulation nerveuse à haute fréquence sont altérés à la synapse âgée. Enfin, outre les modifications de la terminaison axonale et de la fibre musculaire, les cellules gliales montrent des signes de réorganisation structurelle propre à une synapse en réparation.
Ces résultats montrent que le fonctionnement de la jonction neuromusculaire et a fortiori les interactions neurones-glie sont altérées lors du vieillissement normal. / Aging comes with an alteration and organism functions including cognitive and motor functions. Major weakening of the neuromuscular system occurs which includes muscle weight loss, difficulties in initiating voluntary movement and reduced muscle strength. The possible role of the alteration of the neuromuscular junction has been examined but always only considering the pre- and postsynaptic elements. However, perisynaptic Schwann cells (PSCs), glial cells at the neuromuscular junction (NMJ), play fundamental roles in the regulation of the synaptic efficacy of the NMJ as well as in its maintenance and stability. Hence, we analysed NMJ properties and their glial cells in aging.
This study shows that PSCs function at the old NMJ are dysregulated. Indeed, PSCs ability to detect synaptic transmission, determined using imaging of intracellular Ca2+, was maintained in PSCs at NMJs from old mice, but the contribution of the muscarinic component was greatly reduced. On the other hand, our results using synaptic recordings are showing that a number of synaptic plasticity events known to be regulated by PSCs are reduced at NMJs of old mice. Finally, morphological NMJ reorganisation and sprouting of PSCs were also observed.
These data suggest that PSC properties are consistent with the repair of the NMJ that may also result in their reduced ability in regulating synaptic efficacy.
|
49 |
Régulation de l’activité et de la connectivité synaptique par les cellules gliales au cours du développement de la jonction neuromusculaire de mammifèresDarabid, Houssam 12 1900 (has links)
Le système nerveux est composé de milliards de connexions synaptiques qui forment des réseaux complexes à la base de la communication dans le cerveau. Dès lors, contrôler la localisation, le type et le nombre des synapses est un défi considérable au cours du développement du système nerveux. Étonnamment, la production de connexions synaptiques est démesurée de façon à ce que beaucoup plus de synapses soient formées au cours du développement que ce qui est maintenu chez l’adulte. Ces connexions surnuméraires sont en compétition pour l’innervation d’une même cellule cible ce qui mène au maintien de certaines terminaisons nerveuses et à l’élimination de d’autres. Ces processus de compétition et d’élimination sont grandement façonnés par l’activité du système nerveux et l’expérience sensorielle de manière à ce que les terminaisons qui montrent la meilleure activité sont favorisées alors que les synapses mal adaptées sont éliminées.
Jusqu’à récemment, les mécanismes et les types cellulaires responsables de l’élimination synaptique étaient inconnus. Les études de la dernière décennie montrent que les cellules gliales jouent un rôle clé dans l’élimination de synapses. Cependant, il demeure inconnu si les cellules gliales peuvent décoder les niveaux d’activité des terminaisons en compétition, ce qui est un déterminant majeur de l’issue de la compétition synaptique. De plus, il n’est pas connu si les cellules gliales sont capables de réguler l’activité synaptique des terminaisons, ce qui pourrait influencer l’issue de l’élimination synaptique. Ceci est d’un intérêt particulier puisqu’il est connu que les cellules gliales interagissent activement avec les neurones, détectent et modulent leur activité dans plusieurs régions du système nerveux mature.
Par conséquent, l'objectif de cette thèse était d'étudier la capacité des cellules gliales à interagir avec les terminaisons nerveuses en compétition pour l'innervation d’une même cellule cible. Nous avons donc analysé la capacité des cellules gliales à décoder l’activité des terminaisons, à réguler leur activité synaptique et à influencer le processus de l’élimination synaptique au cours du développement du système nerveux. Pour cette fin, nous avons profité de la jonction neuromusculaire, un modèle simple et le bien caractérisé, et nous avons combiné l’imagerie Ca2+ des cellules gliales, un rapporteur fiable de leur activité avec des enregistrements synaptiques de jonctions neuromusculaires poly-innervées de souriceaux.
Dans la première étude, nous montrons que les cellules gliales détectent et décodent l'efficacité synaptique des terminaisons nerveuses en compétition. L’activité des cellules gliales reflète la force synaptique de chaque terminaison nerveuse et l'état de la compétition synaptique. Ce décodage est médié par des récepteurs purinergiques gliaux fonctionnellement distincts et les propriétés intrinsèques des cellules gliales. Nos résultats indiquent que les cellules gliales décodent la compétition synaptique et, par conséquent, sont favorablement positionnées pour influencer son issue.
Dans la seconde étude, nous montrons que les cellules gliales régulent différemment la plasticité synaptique de terminaisons en compétition. De manière dépendante du Ca2+, les cellules gliales induisent une potentialisation persistante de l’activité de la terminaison forte alors qu’elles n’ont que peu d’effets sur la terminaison faible. Bloquer l'activité gliale altère la plasticité des terminaisons in situ et se traduit par un retard de l'élimination des synapses in vivo. Ainsi, nous décrivons un nouveau mécanisme par lequel les cellules gliales, non seulement renforcent activement la terminaison forte, mais influencent aussi la compétition et l'élimination.
Dans l'ensemble, ces études sont les premières à démontrer que les cellules gliales sont activement impliquées dans la modulation de l'activité synaptique des terminaisons en compétition ainsi que dans la régulation de l'élimination synaptique et la connectivité neuronale. / The nervous system is composed of billions of synaptic connections forming complex networks that define the basis of neuronal communication in the brain. The control of the localization, type and number of synapses is a considerable challenge during development of the nervous system. Surprisingly, there is an excessive production of synaptic connections so that many more synapses are formed during developmental stages than what is maintained in the adult. A process of competition and elimination then occurs during which connections are in competition for the innervation of the same target cell. These processes of competition and elimination are greatly shaped by activity and sensory experience. Nerve terminals that show the best activity are favoured, while weak and poorly adapted synapses are eliminated.
Until recently, the mechanisms and the cell types responsible for the elimination of supernumerary connections were unknown. Studies from the last decade identified glial cells as major players in synapse elimination. However, it remains unknown whether glial cells are able to decode the levels of synaptic activity of competing terminals, which is a major determinant of the outcome of synaptic competition. Moreover, it is unknown whether glial cells are able to regulate synaptic activity, which could influence the outcome of synapse elimination. This is especially relevant because it is known that glial cells actively interact with neurons, detect and modulate their activity in many regions of the nervous system.
Therefore, the goal of this thesis was to study the ability of glial cells to interact with terminals competing for the innervation of the same target cell. We tested the ability of glial cells to decode the activity nerve terminals, regulate their synaptic activity and influence the process of synapse elimination during development of the nervous system. For this purpose, we took advantage of the neuromuscular junction, a simple and well-characterized model, and used simultaneous Ca2+-imaging of glial cells, a reliable reporter of their activity and synaptic recordings of dually-innervated neuromuscular junctions from newborn mice.
In the first study, we report that single glial cells detect and decode the synaptic efficacy of competing nerve terminals. Activity of single glial cells reflects the synaptic strength of each competing nerve terminal and the state of synaptic competition. This deciphering is mediated by functionally segregated purinergic receptors and intrinsic properties of glial cells. Our results indicate that glial cells decode ongoing synaptic competition and, hence, are poised to influence its outcome.
In the second study, we show that glial cells differentially regulate the synaptic plasticity of competing terminals. In a Ca2+-dependent manner, glial cells induce a long lasting synaptic potentiation of strong but not weak terminals. Preventing glial activity alters the plasticity of terminals in situ and delays synapse elimination in vivo. Thus, we describe a novel mechanism by which glial cells, not only actively reinforce the strong input but regulate synapse competition and elimination.
As a whole, these studies are the first to demonstrate that glial cells are actively involved in the modulation of synaptic activity of competing terminals as well as in the regulation of synapse elimination and neuronal connectivity.
|
50 |
Multiscale, multiphysic modeling of the skeletal muscle during isometric contraction / Modélisation multi-physiques, multi-échelles du muscle squelettique en contraction isométriqueCarriou, Vincent 04 October 2017 (has links)
Les systèmes neuromusculaire et musculosquelettique sont des systèmes de systèmes complexes qui interagissent parfaitement entre eux afin de produire le mouvement. En y regardant de plus près, ce mouvement est la résultante d'une force musculaire créée à partir d'une activation du muscle par le système nerveux central. En parallèle de cette activité mécanique, le muscle produit aussi une activité électrique elle aussi contrôlée par la même activation. Cette activité électrique peut être mesurée à la surface de la peau à l'aide d'électrode, ce signal enregistré par l'électrode se nomme le signal Électromyogramme de surface (sEMG). Comprendre comment ces résultats de l'activation du muscle sont générés est primordial en biomécanique ou pour des applications cliniques. Évaluer et quantifier ces interactions intervenant durant la contraction musculaire est difficile et complexe à étudier dans des conditions expérimentales. Par conséquent, il est nécessaire de développer un moyen pour pouvoir décrire et estimer ces interactions. Dans la littérature de la bioingénierie, plusieurs modèles de génération de signaux sEMG et de force ont été publiés. Ces modèles sont principalement utilisés pour décrire une partie des résultats de la contraction musculaire. Ces modèles souffrent de plusieurs limites telles que le manque de réalisme physiologique, la personnalisation des paramètres, ou la représentativité lorsqu'un muscle complet est considéré. Dans ce travail de thèse, nous nous proposons de développer un modèle biofidèle, personnalisable et rapide décrivant l'activité électrique et mécanique du muscle en contraction isométrique. Pour se faire, nous proposons d'abord un modèle décrivant l'activité électrique du muscle à la surface de la peau. Cette activité électrique sera commandé par une commande volontaire venant du système nerveux périphérique, qui va activer les fibres musculaires qui vont alors dépolariser leur membrane. Cette dépolarisation sera alors filtrée par le volume conducteur afin d'obtenir l'activité électrique à la surface de la peau. Une fois cette activité obtenue, le système d'enregistrement décrivant une grille d'électrode à haute densité (HD-sEMG) est modélisée à la surface de la peau afin d'obtenir les signaux sEMG à partir d'une intégration surfacique sous le domaine de l'électrode. Dans ce modèle de génération de l'activité électrique, le membre est considéré cylindrique et multi couches avec la considération des tissus musculaire, adipeux et la peau. Par la suite, nous proposons un modèle mécanique du muscle décrit à l'échelle de l'Unité Motrice (UM). L'ensemble des résultats mécaniques de la contraction musculaire (force, raideur et déformation) sont déterminées à partir de la même commande excitatrice du système nerveux périphérique. Ce modèle est basé sur le modèle de coulissement des filaments d'actine-myosine proposé par Huxley que l'on modélise à l'échelle UM en utilisant la théorie des moments utilisée par Zahalak. Ce modèle mécanique est validé avec un profil de force enregistré sur un sujet paraplégique avec un implant de stimulation neurale. Finalement, nous proposons aussi trois applications des modèles proposés afin d'illustrer leurs fiabilités ainsi que leurs utilité. Tout d'abord une analyse de sensibilité globale des paramètres de la grille HDsEMG est présentée. Puis, nous présenterons un travail fait en collaboration avec une autre doctorante une nouvelle étude plus précise sur la modélisation de la relation HDsEMG/force en personnalisant les paramètres afin de mimer au mieux le comportement du Biceps Brachii. Pour conclure, nous proposons un dernier modèle quasi dynamique décrivant l'activité électro-mécanique du muscle en contraction isométrique. Ce modèle déformable va actualiser l'anatomie cylindrique du membre sous une hypothèse isovolumique du muscle. / The neuromuscular and musculoskeletal systems are complex System of Systems (SoS) that perfectly interact to provide motion. From this interaction, muscular force is generated from the muscle activation commanded by the Central Nervous System (CNS) that pilots joint motion. In parallel an electrical activity of the muscle is generated driven by the same command of the CNS. This electrical activity can be measured at the skin surface using electrodes, namely the surface electromyogram (sEMG). The knowledge of how these muscle out comes are generated is highly important in biomechanical and clinical applications. Evaluating and quantifying the interactions arising during the muscle activation are hard and complex to investigate in experimental conditions. Therefore, it is necessary to develop a way to describe and estimate it. In the bioengineering literature, several models of the sEMG and the force generation are provided. They are principally used to describe subparts of themuscular outcomes. These models suffer from several important limitations such lacks of physiological realism, personalization, and representability when a complete muscle is considered. In this work, we propose to construct bioreliable, personalized and fast models describing electrical and mechanical activities of the muscle during contraction. For this purpose, we first propose a model describing the electrical activity at the skin surface of the muscle where this electrical activity is determined from a voluntary command of the Peripheral Nervous System (PNS), activating the muscle fibers that generate a depolarization of their membrane that is filtered by the limbvolume. Once this electrical activity is computed, the recording system, i.e. the High Density sEMG (HD-sEMG) grid is define over the skin where the sEMG signal is determined as a numerical integration of the electrical activity under the electrode area. In this model, the limb is considered as a multilayered cylinder where muscle, adipose and skin tissues are described. Therefore, we propose a mechanical model described at the Motor Unit (MU) scale. The mechanical outcomes (muscle force, stiffness and deformation) are determined from the same voluntary command of the PNS, and is based on the Huxley sliding filaments model upscale at the MU scale using the distribution-moment theory proposed by Zahalak. This model is validated with force profile recorded from a subject implanted with an electrical stimulation device. Finally, we proposed three applications of the proposed models to illustrate their reliability and usefulness. A global sensitivity analysis of the statistics computed over the sEMG signals according to variation of the HD-sEMG electrode grid is performed. Then, we proposed in collaboration a new HDsEMG/force relationship, using personalized simulated data of the Biceps Brachii from the electrical model and a Twitch based model to estimate a specific force profile corresponding to a specific sEMG sensor network and muscle configuration. To conclude, a deformableelectro-mechanicalmodelcouplingthetwoproposedmodelsisproposed. This deformable model updates the limb cylinder anatomy considering isovolumic assumption and respecting incompressible property of the muscle.
|
Page generated in 0.0726 seconds