Spelling suggestions: "subject:"koether"" "subject:"goether""
11 |
Enumerative formulas of de Jonquières type on algebraic curvesUngureanu, Mara 14 January 2019 (has links)
Diese Arbeit widmet sich der Untersuchung von zwei Problemen der abzählenden Geometrie im Zusammenhang mit linearen Systemen auf algebraischen Kurven.
Das erste Problem besteht darin, die Frage der Gültigkeit der Jonquières-Formeln zu klären. Diese Formeln berechnen die Anzahl von Divisoren mit vorgeschriebener Multiplizität, genannt de Jonquières-Divisoren, die in einem linearen System auf einer glatten projektiven Kurve enthalten sind. Um dies zu tun, konstruieren wir den Raum der de Jonquières-Divisoren als einen Determinantenzyklus des symmetrischen Produkts der Kurve und beweisen, dass er für eine allgemeine Kurve die erwartete Dimension hat. Dabei beschreiben wir die Degenerationen der Jonquières-Divisoren zu den Knotenkurven sowohl mit linearen Systemen als auch mit kompaktifizierten Picard-Schemata.
Das zweite Problem behandelt Zyklen von Untergeordneten-, oder allgemeiner, Sekanten-Divisoren zu einem gegebenen linearen System auf einer Kurve. Wir betrachten den Durchschnitt zweier solcher Zyklen, die Sekanten-Divisoren von zwei verschiedenen linearen Systemen auf der gleichen Kurve entsprechen, und untersuchen die Gültigkeit der enumerativen Formeln, die die Anzahl der Teiler im Durchschnitt zählen. Wir untersuchen einige interessante Fälle mit unerwarteten Transversalitätseigenschaften und etablieren eine allgemeine Methode, um zu überprüfen, wann dieser Durchschnitt leer ist. / This thesis is dedicated to the study of two enumerative geometry problems in the context of linear series on algebraic curves.
The first problem is that of settling the issue of the validity of the de Jonquières formulas. These formulas compute the number of divisors with prescribed multiplicity, or de Jonquières divisors, contained in a linear series on a smooth projective curve. To do so, we construct the space of de Jonquières divisors as a determinantal cycle of the symmetric product of the curve and prove that, for a general curve with a general linear series, it is of expected dimension. In doing so, we describe the degenerations of de Jonquières divisors to nodal curves using both limit linear series and compactified Picard schemes.
The second problem deals with cycles of subordinate or, more generally, secant divisors to a
given linear series on a curve. We consider the intersection of two such cycles corresponding to secant divisors of two different linear series on the same curve and investigate the validity of the enumerative formulas counting the number of divisors in the intersection. We study some interesting cases, with unexpected transversality properties, and establish a general method to verify when this intersection is empty.
|
12 |
Simetrias de Lie de equações diferenciais parciais semilineares envolvendo o operador de Kohn-Laplace no grupo de Heisenberg / Lie point synmetrics of semilinear partial differential equations involving the Kohn-Laplace operator on the Heisenberg groupFreire, Igor Leite 28 February 2008 (has links)
Orientadores: Yuri Dimitrov Bozhkov, Antonio Carlos Gilli Martins / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-09-24T19:39:04Z (GMT). No. of bitstreams: 1
Freire_IgorLeite_D.pdf: 977261 bytes, checksum: b8ba44493aeac3de0d37cdfff2fc581b (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho provamos um teorema que faz a classificacão completa dos grupos de simetrias de Lie da equação semilinear de Kohn - Laplace no grupo de Heisenberg tridimensional. Uma vez que tal equação possui estrutura variacional, determinamos quais são suas simetrias de Noether e a partir delas estabelecemos suas respectivas leis de conservação / Abstract: In this work, we carry out a complete group classification of Lie point symmetries of semilinear Kohn - Laplace equations on the three-dimensional Heisenberg group. Since this equation has variational structure, we determine which of its symmetries are Noether's symmetries. Then we establish their respectives conservation laws / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
13 |
Aplicações das simetrias de Lie na dinâmica de sistemas mecânicos /Basquerotto, Cláudio Henrique Cerqueira Costa. January 2018 (has links)
Orientador: Samuel da Silva / Resumo: Os métodos envolvendo simetria têm grande importância para o estudo das equações diferenciais decorrentes de áreas como a matemática, física, engenharia entre muitas outras. A existência de simetrias em equações diferenciais pode gerar transformações em variáveis dependentes e independentes que podem facilitar a integração. Em especial, Sophus Lie desenvolveu no século XIX uma forma de extração de simetrias que podem ser usadas efetivamente para revelar as integrais primeiras, ou seja, as constantes de movimento, que muitas vezes podem estar escondidas. Estes invariantes podem em algumas situações ser identificados pelo teorema de Noether ou a partir de manipulações das próprias equações com transformações de Lie. Assim, nesta tese foi proposto utilizar as simetrias de Lie para aplicação em problemas da dinâmica de sistemas mecânicos. As simetrias de Lie são aplicadas em dois problemas clássicos, primeiro em um pêndulo oscilando em um aro rotativo e em seguida em um pião simétrico com movimento de precessão estacionária com um ponto fixo. No primeiro problema foi realizada uma redução de ordem para solução por quadraturas da equação de movimento. Já no segundo foram mostradas as relações entre os invariantes e as leis de conservação extraídas das simetrias de Lie. Uma outra análise foi realizada através da teoria de referencial móvel, mostrando a possibilidade de outras aplicações das simetrias de Lie. Uma das aplicações desta teoria, também é a redução de ordem das equações ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The methods involving symmetry are of great importance for the study of the di erential equations arising from areas such as mathematics, physics, engineering among many others. The existence of symmetries in di erential equations can generate transformations in dependent and independent variables that may be easier to integrate. In particular, Sophus Lie developed in the nineteenth century a form of extraction of symmetries that can be used e ectively to reveal the rst integrals, that is, the motion constants, which can often be hidden. These invariants can in some situations be identi ed by the Noether theorem or from manipulations of the equations themselves with Lie transformations. Thus, in this thesis it was proposed to use the Lie symmetries for application in problems of the dynamics of mechanical systems. The Lie symmetries are applied in two classic problems, rst in a bead on a rotating wire hoop and then in a symmetric top with stationary precession with a xed point. In the rst problem, a reduction of order of the equation of motion was performed by quadratures. In the second one, the relations between the invariants and the conservation laws extracted from the Lie symmetries were shown. Another analysis was performed through the theory of moving frames, showing the possibility of other applications of Lie symmetries. One of the applications of this theory is also the order reduction of the resulting di erential equations. Thus, moving frames were calculated for th... (Complete abstract click electronic access below) / Doutor
|
14 |
Clifford index and gonality of curves on special K3 surfaces / Indice de Clifford et gonalité des courbes sur des surfaces K3 spécialesRamponi, Marco 20 December 2017 (has links)
Nous allons étudier les propriétés des courbes algébriques sur des surfaces K3 spéciales, du point de vue de la théorie de Brill-Noether.La démonstration de Lazarsfeld du théorème de Gieseker-Petri a mis en lumière l'importance de la théorie de Brill-Noether des courbes admettant un plongement dans une surface K3. Nous allons donner une démonstration détaillée de ce résultat classique, inspirée par les idées de Pareschi. En suite, nous allons décrire le théorème de Green et Lazarsfeld, fondamental pour tout notre travail, qui établit le comportement de l'indice de Clifford des courbes sur les surfaces K3.Watanabe a montré que l'indice de Clifford de courbes sur certaines surfaces K3, admettant un recouvrement double des surfaces de del Pezzo, est calculé en utilisant les involutions non-symplectiques. Nous étudions une situation similaire pour des surfaces K3 avec un réseau de Picard isomorphe à U(m), avec m>0 un entier quelconque. Nous montrons que la gonalité et l'indice de Clifford de toute courbe lisse sur ces surfaces, avec une seule exception déterminée explicitement, sont obtenus par restriction des fibrations elliptiques de la surface. Ce travail est basé sur l'article suivant :M. Ramponi, Gonality and Clifford index of curves on elliptic K3 surfaces with Picard number two, Archiv der Mathematik, 106(4), p. 355–362, 2016.Knutsen et Lopez ont étudié en détail la théorie de Brill-Noether des courbes sur les surfaces d'Enriques. En appliquant leurs résultats, nous allons pouvoir calculer la gonalité et l'indice de Clifford de toute courbe lisse sur les surfaces K3 qui sont des recouvrements universels d'une surface d'Enriques. Ce travail est basé sur l'article suivant :M. Ramponi, Special divisors on curves on K3 surfaces carrying an Enriques involution, Manuscripta Mathematica, 153(1), p. 315–322, 2017. / We study the properties of algebraic curves lying on special K3 surfaces, from the viewpoint of Brill-Noether theory.Lazarsfeld's proof of the Gieseker-Petri theorem has revealed the importance of the Brill-Noether theory of curves which admit an embedding in a K3 surface. We give a proof of this classical result, inspired by the ideas of Pareschi. We then describe the theorem of Green and Lazarsfeld, a key result for our work, which establishes the behaviour of the Clifford index of curves on K3 surfaces.Watanabe showed that the Clifford index of curves lying on certain special K3 surfaces, realizable as a double covering of a smooth del Pezzo surface, can be determined by a direct use of the non-simplectic involution carried by these surfaces. We study a similar situation for some K3 surfaces having a Picard lattice isomorphic to U(m), with m>0 any integer. We show that the gonality and the Clifford index of all smooth curves on these surfaces, with a single, explicitly determined exception, are obtained by restriction of the elliptic fibrations of the surface. This work is based on the following article:M. Ramponi, Gonality and Clifford index of curves on elliptic K3 surfaces with Picard number two, Archiv der Mathematik, 106(4), p. 355-362, 2016.Knutsen and Lopez have studied in detail the Brill-Noether theory of curves lying on Enriques surfaces. Applying their results, we are able to determine and compute the gonality and Clifford index of any smooth curve lying on the general K3 surface which is the universal covering of an Enriques surface. This work is based on the following article:M. Ramponi, Special divisors on curves on K3 surfaces carrying an Enriques involution, Manuscripta Mathematica, 153(1), p. 315-322, 2017.
|
15 |
Aplicações das simetrias de Lie na dinâmica de sistemas mecânicos / Applications of Lie symmetries in the dynamics of mechanical systemsBasquerotto, Cláudio Henrique Cerqueira Costa 20 April 2018 (has links)
Submitted by Claudio Henrique Cerqueira Costa Basquerotto (cbasquerotto@ymail.com) on 2018-05-25T15:27:47Z
No. of bitstreams: 1
Tese_Basquerotto.pdf: 7598699 bytes, checksum: 5f0c350de78925517e7db6045e9c3749 (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-05-25T17:35:47Z (GMT) No. of bitstreams: 1
basquerotto_chc_dr_ilha.pdf: 7598699 bytes, checksum: 5f0c350de78925517e7db6045e9c3749 (MD5) / Made available in DSpace on 2018-05-25T17:35:47Z (GMT). No. of bitstreams: 1
basquerotto_chc_dr_ilha.pdf: 7598699 bytes, checksum: 5f0c350de78925517e7db6045e9c3749 (MD5)
Previous issue date: 2018-04-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os métodos envolvendo simetria têm grande importância para o estudo das equações diferenciais decorrentes de áreas como a matemática, física, engenharia entre muitas outras. A existência de simetrias em equações diferenciais pode gerar transformações em variáveis dependentes e independentes que podem facilitar a integração. Em especial, Sophus Lie desenvolveu no século XIX uma forma de extração de simetrias que podem ser usadas efetivamente para revelar as integrais primeiras, ou seja, as constantes de movimento, que muitas vezes podem estar escondidas. Estes invariantes podem em algumas situações ser identificados pelo teorema de Noether ou a partir de manipulações das próprias equações com transformações de Lie. Assim, nesta tese foi proposto utilizar as simetrias de Lie para aplicação em problemas da dinâmica de sistemas mecânicos. As simetrias de Lie são aplicadas em dois problemas clássicos, primeiro em um pêndulo oscilando em um aro rotativo e em seguida em um pião simétrico com movimento de precessão estacionária com um ponto fixo. No primeiro problema foi realizada uma redução de ordem para solução por quadraturas da equação de movimento. Já no segundo foram mostradas as relações entre os invariantes e as leis de conservação extraídas das simetrias de Lie. Uma outra análise foi realizada através da teoria de referencial móvel, mostrando a possibilidade de outras aplicações das simetrias de Lie. Uma das aplicações desta teoria, também é a redução de ordem das equações diferenciais resultantes. Com isso os referenciais móveis foram calculados para os problemas do pêndulo oscilando em um aro rotativo, pião simétrico e apresentando uma aplicação em um problema de vínculo não-holonomo. A partir disto foi possível reduzir a ordem das equações e obter a solução analítica das mesmas. Com isto, esta tese buscou mostrar a aplicação das simetrias de Lie em problemas de dinâmica de sistemas mecânicos através de uma linguagem acessível e que motive a outros engenheiros a se interessarem pelo tema. / The methods involving symmetry are of great importance for the study of the di erential equations arising from areas such as mathematics, physics, engineering among many others. The existence of symmetries in di erential equations can generate transformations in dependent and independent variables that may be easier to integrate. In particular, Sophus Lie developed in the nineteenth century a form of extraction of symmetries that can be used e ectively to reveal the rst integrals, that is, the motion constants, which can often be hidden. These invariants can in some situations be identi ed by the Noether theorem or from manipulations of the equations themselves with Lie transformations. Thus, in this thesis it was proposed to use the Lie symmetries for application in problems of the dynamics of mechanical systems. The Lie symmetries are applied in two classic problems, rst in a bead on a rotating wire hoop and then in a symmetric top with stationary precession with a xed point. In the rst problem, a reduction of order of the equation of motion was performed by quadratures. In the second one, the relations between the invariants and the conservation laws extracted from the Lie symmetries were shown. Another analysis was performed through the theory of moving frames, showing the possibility of other applications of Lie symmetries. One of the applications of this theory is also the order reduction of the resulting di erential equations. Thus, moving frames were calculated for the bead on a rotating wire hoop, symmetric top and showing an application in a nonholonomic problem. From this it was possible to reduce the order of the equations and to obtain the analytical solution of the same ones. So, this thesis sought to show the application of Lie symmetries in problems of dynamics of mechanical systems through an accessible language and that motivate other engineers to take an interest in the subject.
|
16 |
Problema de Noether não-comutativo / Noncommutative Noether´s problemJoao Fernando Schwarz 12 February 2015 (has links)
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos. / In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.
|
17 |
Special Linear Systems on Curves and Algorithmic ApplicationsKochinke, Sebastian 12 January 2017 (has links)
Seit W. Diffie und M. Hellman im Jahr 1976 ihren Ansatz für einen sicheren kryptographischen Schlüsselaustausch vorgestellten, ist der sogenannte Diskrete Logarithmus zu einem zentrales Thema der Kryptoanalyse geworden. Dieser stellt eine Erweiterung des bekannten Logarithmus auf beliebige endliche Gruppen dar.
In der vorliegenden Dissertation werden zwei von C. Diem eingeführte Algorithmen untersucht, mit deren Hilfe der diskrete Logarithmus in der Picardgruppe glatter, nichthyperelliptischer Kurven vom Geschlecht g > 3 bzw. g > 4 über endlichen Körpern berechnet werden kann. Beide Ansätze basieren auf der sogenannten Indexkalkül-Methode und benutzen zur Erzeugung der dafür benötigten Relationen spezielle Linearsysteme, welche durch Schneiden von ebenen Modellen der Kurve mit Geraden erzeugt werden.
Um Aussagen zur Laufzeit der Algorithmen tätigen zu können, werden verschiedene Sätze über die Geometrie von Kurven bewiesen. Als zentrale Aussage wird zum einem gezeigt, dass ebene Modelle niedrigen Grades effizient berechnet werden können. Zum anderen wird bewiesen, dass sich bei genügend großem Grundkörper die Anzahl der vollständig über dem Grundkörper zerfallenden Geraden wie heuristisch erwartet verhällt. Für beide Aussagen werden dabei Familien von Kurven betrachtet und diese gelten daher uniform für alle glatten, nichthyperelliptischen Kurven eines festen Geschlechts.
Die genannten Resultate führen schlussendlich zu dem Beweis einer erwarteten Laufzeit von O(q^(2-2/(g-1))) für den ersten der beiden Algorithmen, wobei q die Anzahl der Elemente im Grundkörper darstellt. Der zweite Algoritmus verbessert dies auf eine heuristische Laufzeit in O(q^(2-2/(g-2))), imdem er Divisoren von höherem Spezialiätsgrad erzeugt. Es wird bewiesen, dass dieser Ansatz für einen uniform gegen 1 konvergierenden Anteil an glatten, nichthyperelliptischen Kurven eines festen Geschlechts über Grundkörpern großer Charakteristik eine große Anzahl an Relationen erzeugt. Wiederum werden zum Beweis der zugrundeliegenden geometrischen Aussagen Familien von Kurven betrachtet, um so die Uniformität zu gewährleisten.
Beide Algorithmen wurden zudem implementiert. Zum Abschluss der Arbeit werden die Ergebnisse der entsprechenden Experimente vorgestellt und eingeordnet.
|
18 |
Simetrias e integrabilidade de equações do tipo Emden-FowlerSilva, Moisés Rodrigues da January 2013 (has links)
Orientador: Igor Leirte Freire / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Matemática, 2013
|
19 |
Bridgeland stability conditions, stability of the restricted bundle, Brill-Noether theory and Mukai's programFeyzbakhsh, Soheyla January 2018 (has links)
In [Bri07], Bridgeland introduced the notion of stability conditions on the bounded derived category D(X) of coherent sheaves on an algebraic variety X. This topic is originally inspired by concepts in string theory and mathematical physics and has many interesting applications in algebraic geometry. In the first part of the thesis, we provide a direct proof of an important result in [Bri08, BMS16] which states there is a two dimensional family of weak Bridgeland stability conditions on the bounded derived category D(X) of coherent sheaves on a variety X. As a first application of this result, we prove an effective restriction theorem which provides sufficient conditions on a stable locally free sheaf on a projective variety such that its restriction to a hypersurface remains stable. Secondly, we extend and complete Mukai's program to reconstruct a K3 surface from a curve on that surface. We show that the K3 surface containing the curve can be obtained uniquely as a Fourier-Mukai partner of a suitable Brill-Noether locus of vector bundles on the curve.
|
20 |
Regeneration of Elliptic Chains with Exceptional Linear SeriesPflueger, Nathan K 06 June 2014 (has links)
We study two dimension estimates regarding linear series on algebraic curves. First, we generalize the classical Brill-Noether theorem to many cases where the Brill-Noether number is negative. Second, we extend results of Eisenbud, Harris, and Komeda on the existence of Weierstrass points with certain semigroups, by refining their dimension estimate in light of combinatorial considerations. Both results are proved by constructing chains of elliptic curves, joined at pairs of points differed by carefully chosen orders of torsion, and smoothing these chains. These arguments lead to several combinatorial problems of separate interest. / Mathematics
|
Page generated in 0.0283 seconds