Spelling suggestions: "subject:"inconforme"" "subject:"nonkonforme""
41 |
Correntes críticas e comportamento dinâmico dos vórtices em fitas supercondutoras do tipo II com arranjos conformes de centros de aprisionamento / Critical currents and dynamic behavior of vortices in type II superconducting tapes with conformal pinning arrayFilenga, Daví [UNESP] 04 April 2016 (has links)
Submitted by DAVÍ FILENGA null (davifilenga2014@gmail.com) on 2016-06-04T02:08:52Z
No. of bitstreams: 1
Versao_Final_Diss_Davi.pdf: 7092752 bytes, checksum: 39027609a3847f35afe9186806ee8144 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-06-07T12:44:39Z (GMT) No. of bitstreams: 1
filenga_d_me_bauru.pdf: 7092752 bytes, checksum: 39027609a3847f35afe9186806ee8144 (MD5) / Made available in DSpace on 2016-06-07T12:44:39Z (GMT). No. of bitstreams: 1
filenga_d_me_bauru.pdf: 7092752 bytes, checksum: 39027609a3847f35afe9186806ee8144 (MD5)
Previous issue date: 2016-04-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Na presente dissertação realizou-se o estudo das forças críticas e do comportamento dinâmico dos vórtices magnéticos de fitas supercondutoras do tipo II com arranjos conformes de centros de aprisionamento (pinning), bem como de diversos outros tipos de arranjos e também de diferentes trechos de arranjos. Além dos efeitos da geometria finita e aprisionamento, foi analisado o comportamento do sistema ao variar parâmetros externos como força de transporte e campo magnético. Os sistemas simulados correspondem a supercondutores bidimensionais, finitos na direção transversal e infinitos na direção longitudinal. A descrição das interações existentes no sistema pôde ser feita através de um conjunto de equações de Langevin, as quais foram resolvidas utilizando a técnica de Dinâmica Molecular. As soluções destas equações permitiram, dentre outros resultados, a obtenção das trajetórias e velocidades dos vórtices. Através das trajetórias, foi possível determinar o comportamento dinâmico das linhas de fluxo, e através das velocidades, os valores de força crítica. Para obter as posições iniciais dos vórtices, foi utilizado um algoritmo de Recozimento Simulado Generalizado (Generalized Simulated Annealing), o qual permitiu obter as configurações de menor energia do sistema. Os cálculos realizados foram feitos para 154 diferentes sistemas, que consistiram na análise do comportamento das interações neles existentes ao variar o campo magnético externo (H) aplicado nas amostras, bem como na análise dos efeitos de tamanho das fitas supercondutoras, utilizando diferentes arranjos e trechos de arranjos de centros de aprisionamento. Para o estudo da influência do campo magnético aplicado, foi feita uma varredura com diferentes valores de H e um valor fixo de largura de fita, tanto para o arranjo conforme quanto para os arranjos quadrado, aleatório, hexagonal e conforme deformado de centros de aprisionamento, a fim de realizar comparações. Para o estudo dos efeitos de tamanho, foram utilizados valores fixos de campo magnético externo aplicado e diferentes larguras de fita, com arranjos de centros de aprisionamento conforme, aleatório e conforme deformado, bem como diferentes trechos dos arranjos conforme e conforme deformado. Em todos os casos, a densidade de centros de aprisionamento, para efeitos de comparação, foi mantida constante para todos os tipos de arranjos e trechos de arranjos. Os resultados mostram que o arranjo conforme de centros de aprisionamento, e também trechos desse arranjo, apresentam maior estabilidade que os outros tipos de arranjos e trechos de arranjos analisados, revelando, com algumas exceções, maiores valores de força crítica para os valores de campo utilizados. Este resultado também pode ser observado em simulações numéricas que lidam com sistemas supercondutores infinitos. Entretanto, foi possível notar que o aumento na força crítica depende significativamente dos valores de campo magnético aplicados. Enquanto que em sistemas infinitos são reportados acréscimos nas forças críticas, para todos os valores de campo analisados, que podem chegar a até 100% para o arranjo conforme em relação a arranjos aleatórios de centros de aprisionamento, para o caso de fitas supercondutoras encontramos acréscimos nas forças críticas, para todos os valores de campo analisados em sistemas com largura fixa, que chegam a até 65,22%, aproximadamente, para o arranjo conforme em relação a arranjos aleatórios, bem como acréscimos que chegam a até 140% para o arranjo conforme em relação ao arranjo hexagonal de centros de aprisionamento. Ao variar a largura das amostras, encontramos acréscimos de até 81,82%, aproximadamente, para o arranjo conforme e, para trechos do arranjo conforme, um acréscimo de até 127,27%, aproximadamente, na força crítica em relação a arranjos aleatórios de centros de aprisionamento, considerando diferentes valores de H. / In this work we study the critical forces and dynamic behavior of magnetic vortices in type II superconducting tapes with conformal pinning arrays, as well several other types of arrays and also parts of arrays. In addition to the effects of finite geometry and pinning, we analyze system behavior by varying external parameters such as transport force and magnetic field. The simulated systems corresponds a two-dimensional superconductor, finite in the transverse direction and infinite in the longitudinal direction. The description of the interactions existing in the system can be made via a set of Langevin equations which were solved using Molecular Dynamics techniques. The solutions of these equations allowed, among other results, to obtain the trajectories and velocities of the vortices. Through the trajectories, it was possible to determine the dynamic behavior of the vortex lines, and through the velocities, the values of critical force. To obtain the initial positions of the vortices, we use a Generalized Simulated Annealing algorithm, which sought the settings of the lower energy system. Our calculations were made for 154 different systems, consisting in analyzing the interaction behavior contained in the systems by varying the external magnetic field (H) applied in the samples and the analysis of size effects of superconducting tapes using different arrays and parts of arrays of pinning centers. To study the influence of the applied magnetic field, a scan was taken with different values of H and a fixed value of tape width, both the conformal as for square, random, hexagonal and deformed conformal pinning centers, in order to make comparisons. To study the effects of size, were used fixed values of an external applied magnetic field and different widths of tapes, with the conformal, random and deformed conformal pinning centers, as well different parts of the conformal and deformed conformal arrays. In all cases, the density of pinning centers, for the purpose of comparison, were kept constant for all types of arrays, and parts of arrays. The results show that the conformal pinning array, and also parts of this array, exhibit greater stability than other types of arrays and parts of arrays, showing, with some exceptions, higher values of critical forces for the field values used. This result can also be observed in numerical simulations dealing with infinite superconducting systems. However, it was noticeable that the increase in critical force significantly depends on the magnetic field values applied. While in infinite systems are reported increases in critical forces to all field values analyzed which can reach up to 100% for a conformal array of pinning centers in relation to random arrays [1], for the case of superconducting tapes we found increases in critical forces for all field values analyzed in systems with fixed width, which reach up to 65.22%, approximately, to the conformal array in relation to random arrays, and increases to reach up to 140% to the conformal array in relation to the hexagonal array of pinning centers. By varying the width of the samples, there are increases up to 81.82%, approximately, for conformal pinning array, and for parts of a conformal pinning array, an increase of up to 127.27% approximately in critical force in relation to random pinning arrays, considering different H values.
|
42 |
Quantisation of the bosonic string / Quantização da Corda BosônicaYeva Gevorgyan 06 May 2016 (has links)
In this work we review the basic principles of the theory of the relativistic bosonic string through the study of the action functionals of Nambu-Goto and Polyakov and the techniques required for their canonical, light-cone, and path-integral quantisation. For this purpose, we briefly review the main properties of the gauge symmetries and conformal field theory involved in the techniques studied. / Neste trabalho fazemos uma revisão dos princípios básicos da teoria da corda bosônica relativística através do estudo dos funcionais ação de Nambu-Goto e de Polyakov e das técnicas necessárias para sua quantização canônica, no cone de luz e usando integrais de trajetória. Para tanto apresentamos uma pequena revisão das principais propriedades das simetrias de calibre a da teoria de campos conforme envolvidas nas técnicas estudadas.
|
43 |
Invariância conforme e o modelo xy triplete. / Conformal invariance and the triplet xy quantum chain.Clisthenis Ponce Constantinidis 18 August 1989 (has links)
Estudamos nesta dissertação o conteúdo de operadores da cadeia quântica do modelo XY anisotrópico com interações de três spins (XY triplete anisotrópico). Verificamos que, como no caso de interações de dois spins, este modelo pode ser visto como uma superposição de duas cadeias quânticas Ising, que neste caso apresentam interações de três spins (Ising triplete). Como conseqüência, todo o conteúdo de operadores do modelo XY triplete é obtido através de um estudo sistemático do conteúdo de operadores do Ising triplete o que é feito numericamente explorando-se as relações entre as lacunas de massa e as dimensões anômalas dos operadores do modelo, previstas pela invariância conforme. / We study in this work the operator content of the staggered XY model quantum chain with three-spin interactions (staggered XY triplet). We verified that, as quantum Ising chains, but in this case with three-spin interactions (Ising triplet). It is possible therefore to obtain all the operator content of the XY triplet model by a systematic numerical analysis of the Ising triplet´s operator content, which follows by exploiting the relations between the mass gap amplitudes and the anomalous dimension of the operators of the model, predicted by conformal invariance.
|
44 |
Eestudo do crossover no modelo XY com campo transverso / Study of the crossover in the XY model with transverse fieldMiled Hassan Youssef Moussa 22 February 1990 (has links)
Em decorrência do grande avanço alcançado pela mecânica estatística devido a introdução das idéias de invariância conforme às teorias de escala para sistemas finitos, retomamos, neste trabalho, o estudo do modelo XY em campo transverso. A princípio, apresentamos uma análise detalhada do comportamento \"crossover\" característico do modelo, onde incluímos cálculos melhorados dos expoentes da susceptibilidade e do gap de energia anteriormente apresentados por dos Santos e Stinch-combe. Em seguida, uma análise numérica do espectro foi desenvolvida, considerando-se condições livres de contorno, e comparada com as previsões da invariância conforme. Finalmente, as correções à energia do estado fundamental de cadeias finitas foram utilizadas para obter o parâmetro que caracteriza as classes de universalidade (a carga central c). / In view of the great advance attached from statistical mechanics due to the conformal invariance ideas introduced to the scale theories, we take over at this work, the study of the XY model in a transverse field. At first, we present a detailed analysis on the sample\'s typical crossover behavior. An improved calculation of the susceptibility and gap exponents early presented by dos Santos and Stinchcombe is included. Nest, a numerical analysis of the spectrum, regarding free boundary condi¬tions was developed and compared with conformal invariance predictions. Finally, the fundamental state energy corrections of finite chains were used to obtain the parameter which ,distingoishes the universality classes (the central charge c).
|
45 |
Flot de Yamabe avec courbure scalaire prescrite / Yamabe flow with prescribed scalar curvatureAmacha, Inas 30 November 2017 (has links)
Cette thèse est consacrée à l'étude d'une famille des flots géométriques associés au problème de la courbure scalaire prescrite sur une variété riemannienne compacte. Plus précisément, si on désigne par (M,g0) une variété riemannienne compacte de dimension n≥3, et si F∈C∞ (M) est une fonction donnée, le problème de la courbure scalaire prescrite consiste à trouver une métrique g conforme à g0 telle que F soit sa courbure scalaire. Ce problème est équivalent à la résolution de l'EDP suivante :-4 (n-1)/(n-2) ∆u+R0 u=Fu((n+2)/(n-2 )) , u>0 , (E), Où R0 est la courbure scalaire de la métrique initiale g0 et ∆ est le laplacien associé à g0. Il s'agit d'une équation elliptique non-linéaire dont la difficulté principale provient du terme u((n+2)/(n-2 )). Hormis le cas de la sphère standard Sn , tous les travaux consacrés à l'étude de l'équation (E) sont basés sur la méthode variationnelle. Dans cette thèse, on développe une autre approche basée sur l'étude d'une famille de flots géométriques qui permet, entre autres, de résoudre l'équation (E). La question dépend bien entendu de la métrique initiale g0 et en particulier du signe de sa courbure scalaire R0. Les flots introduits sont des flots de gradient associés à deux fonctionnelles distinctes dépendant du signe de R0. La première partie de cette thèse est consacrée au cas R0<0 et dans la deuxième partie on traite le cas R0>0. Dans les deux cas, on démontre l'existence globale du flot et on étudie son comportement asymptotique à l'infini. / This thesis is devoted to the study of a family of geometric flows associated with the prescribed scalar curvature problem. More precisely, if we denote by (M,g0) a compact riemannian manifold with dimension n≥3, and if F∈C∞ (M) is a given function, the prescribed scalar curvature problem consists of finding a conformal metric g to g0 such that F is its scalar curvature. This problem is equivalent to the resolution of the following PDE : -4 (n-1)/(n-2) ∆u+R0 u=Fu((n+2)/(n-2 )) , u>0 , (E), Where R0 is the scalar curvature of the initial metric g0 and ∆ is the laplacian associated with g0.It is a nonlinear elliptic equation, whose the main difficulty comes from the term u((n+2)/(n-2 )). Apart from the case of the standard sphere Sn all the works that study the equation (E) are based on the variational method. In this thesis, we develop another approach based on the study of a family of geometric flows which allows to solve equation (E).The flows introduced are gradient flows associated with two distinct functional functions depending on the sign of R0.The first part of this thesis is devoted to the case R0<0 and in the second part we treat the case R0>0. In both cases, our aim is to proof the global existence of the flow and study its asymptotic behavior at infinity.
|
46 |
Méthode FDTD conforme et d’ordre (2,4) pour le calcul de SER large bande de cibles complexes / Conformal FDTD(2,4) Method for wideband RCS computation of complex targetsBui, Nicolas 20 December 2016 (has links)
L'évaluation précise de la surface équivalente radar (SER) large bande de cibles complexes et de grande dimension est réalisée par des méthodes numériques rigoureuses. Parmi celles-ci, la méthode des différences finies dans le domaine temporel (FDTD) est bien adaptée pour effectuer ce calcul de SER sur une large bande de fréquence et obtenir une signature temporelle de la cible. Le schéma de Yee, schéma FDTD historique pour la simulation de propagation d'ondes électromagnétiques en régime transitoire, souffre de deux points faibles cruciaux: la dispersion numérique imposant une finesse de maillage; et l'approximation de la géométrie curviligne par un maillage cartésien avec des marches d'escalier détériorant la qualité des résultats. Les schémas FDTD d'ordre supérieur en espace ont été investigués pour la réduction de l'effet de la dispersion numérique. Dans cette thèse, le schéma Conservative Modified FDTD(2,4) a été développé dont les performances, en précision et en ressources, sont très intéressantes pour le calcul de SER. Liés au problème de l'approximation de la géométrie curviligne, le traitement des bords de plaques métalliques reste une difficulté non résolue pour les schémas FDTD(2,4) à stencil élargi. Les techniques conformes sont des approches développées pour le schéma de Yee, lesquelles ont été étudiées pour les schémas FDTD(2,4) afin de prendre en compte correctement la géométrie curviligne. Nous proposons une nouvelle approche reposant sur le modèle des fils obliques pour la modélisation des éléments surfaciques métalliques. Des applications SER de cibles montrent que celle-ci est prometteuse. / Rigorous numerical methods are used to compute an accurate wideband radar cross section (RCS) evaluation of large complex targets. Among these, finite differences in time domain method is appropriated for the wideband characteristic and also to obtain a transient responses of the target. The Yee scheme, known historically as an FDTD scheme for Maxwell equations, is hindered by two crucial weak points: numerical dispersion which imposes a high mesh resolution; and staircase approximation of curve geometry which deteriorates results quality. High-order space differential operator for FDTD schemes have been investigated to limit numerical dispersion errors. In this thesis, the Conservative Modified FDTD(2,4) scheme has been developed and its performance has shown very accurate results with reasonable workload for RCS computation. Relating to curve geometry modeling problem, metallic edges modeling is still an unsolved problem for FDTD(2,4) schemes with enlarged stencil. Conformal techniques have been developed for the Yee scheme and has been studied for FDTD(2,4) to accurately model curve geometry. We propose a new approach based on oblique thin wire model to model metallic surfaces. RCS computations of several targets have shown that this method is promising.
|
47 |
Two studies on conformal and strongly coupled quantum field theories in d>2 dimensions / Deux essais sur les theories quantiques des champs conformes et fortement couplees en d > 2 dimensionsHogervorst, Matthijs 29 June 2015 (has links)
Cette these examine deux aspects des theories conformes des champs (TCC) en d dimensions.Sa premiere parti est dediee aux blocs conformes, des fonctions speciales qui contribuent au developpement en ondes partielles des fonctions a quatre points dans les TCC. On montre que ces blocs admettent un developpement en coordonnees polaires dont les coecients se calculent par une recurrence. Les blocs conformes sont naturellement denis sur le plan complexe : on considere alors leur restriction a l'axe r eel, an de montrer qu'ils obeissent une equation dierentielle sur ce domaine, ce qui mene a un algorithme ecace pour calculer les blocs conformes et leurs derivees pour tout d. Quelques applications au programme de bootstrap sont developpees. La seconde partie de cette these examine les perturbations d'une TCC par des operateurs pertinents. On etudie de tels ots du groupe de renormalisation en utilisant la Methode de Troncature Conforme (MTC) de Yurov et Zamolodchikov, une methode numerique qui permet de faire des calculs non-perturbatifs en theorie quantique des champs. Deux theories derentes sont considerees : le boson libre avec un terme de masse, et la theorie 4. Pour le dernier cas, les resultats de la MTC mettent en evidence la brisure de symetrie Z2. Finalement, on developpe une methode pour reduire les erreurs de troncature en ajoutant des contre-termes a l'action \nue" de la MTC, suivant des travaux anterieurs en d = 2 dimensions. / This thesis investigates two aspects of Conformal Field Theories (CFTs) in d dimensions. Its rst part is devoted to conformal blocks, special functions that arise in the partial wave expansion of CFT four-point functions. We prove that these conformal blocks admit an expansion in terms of polar coordinates and show that the expansion coecients are determined by recursion relations. Conformal blocks are naturally dened on the complex plane: we study their restriction to the real line, and show that they obey a fourth-order dierential equation there. This ODE can be used to eciently compute conformal blocks and their derivatives in general d. Several applications to the conformal bootstrap program are mentioned. The second half of this thesis investigates RG ows that are dened by perturbing a CFT by a number of relevant operators. We study such ows using the Truncated Conformal Space Approach (TCSA) of Yurov and Zamolodchikov, a numerical method that allows for controlled computations in strongly coupled QFTs. Two dierent RG ows are considered: the free scalar feld deformed by a mass term, and 4 theory. The former is used as a benchmark, in order to compare numerical TCSA results to exact predictions. TCSA results for 4 theory display spontaneous Z2 symmetry breaking at strong coupling: we study the spectrum of this theory both in the Z2-broken and preserved phase, and we compare the critical exponents governing the phase transition to known values. In a separate chapter, we show how truncation errors can be reduced by adding suitable counterterms to the bare TCSA action, following earlier work in d = 2 dimensions.
|
48 |
Les probabilités de traversée sur les plages de spins identiques pour le modèle d'Ising bidimensionnelLapalme, Ervig January 1999 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
49 |
Transport laplacien, problème inverse et opérateurs de Dirichlet-NeumannBaydoun, Ibrahim 03 November 2011 (has links)
Le travail de ma thèse est basé sur ces 4 points :i) Transport laplacien d'une cellule absorbante :Soit un certain espèce (cellule) de concentration C(x), qui diffuse dans un milieu homogène et isotrope à partir d'une lointaine source localisée sur la frontière fermée $partial Omega_{0}$ vers une interface compact semi-perméable $partial Omega$ (membrane de la "cellule") à laquelle elle disparaisse àun taux d'absorption donné : W>=0. La concentration C (transport laplacien avec un coefficient de diffusion D) satisfaite le problème (P1) (voir la thèse). On s'intéresse à résoudre le problème (P1) en dimension dim = 2; 3 et à calculer les courants local et total à travers les frontières des $partial Omega$ et $partial Omega_{0}$ qui seront utiles pour résoudre le problèmeinverse de localisation. Pour faciliter les calculs et les rendre explicites, on prend $partial Omega$ et $partial Omega_{0}$ avec des formes géométriquement régulières, précisément des boules, en distinguant les deux cas : $Omega$ et $Omega_{0}$ sont concentriques ou non-concentriques. Pour le cas non-concentriques , on utilise la technique de transformation conforme et le développement orthogonal en série de Fourier pour résoudre le problème (P1) en cas bidimensionnel. Tandis que en cas tridimensionnel, on résout le problème (P1) en utilisant le développement orthogonal suivant les fonctions sphériques harmoniques.ii) Problème inverse de localisationOn s'intéresse dans cette partie à résoudre le problème inverse de localisation associé au problème (P1) où les domaines $Omega$ et $Omega_{0}$ sont considérés avec des formes géométriques régulières (précisément des boules) . Ce problème consiste à trouver les conditions de Dirichlet-Neumann sur $partial Omega_{0}$ (courant local, courant total) suffisantes pour déterminer la position de la cellule $partial$ (par rapport à $Omega_{0}$), dont ces conditions sont disponibles par une suite des mesures expérimentales.iii) Problème invesre géomètrique :Dans cette partie on traite un autre type de problème inverse qui consiste à trouver la forme géométrique de la cellule en sachant les conditions de Dirichlet-Neumann au bord extérieur(partial Omega_{0}) qui sont mésurables par une suite d'expérience. Ce type du problème, on l'appelle le problème inverse géométrique. On résout ce problème en utilisant des techniques concernant les fonctions harmoniques et les transformations conformes.iv) Opérateur de Dirichlet-NeumannOn étudie l'opérateur de Dirichlet-Neumann relatif au problème (P1) dans les dimension deux et trois en distinguant les deux cas concentriques et non-concentriques. Ensuite, on montre que cet opérateur de Dirichlet-Neumann engendre certain semi-groupe qu'on l'appelle semi-groupe de Lax. Enfin, on construit ce semi-groupe de Lax associé à cet opérateur en cas tridimensionnel concentriques afin de vérifier que ce semi-groupe admet les mêmes propriétés que celui dans le cas général. / The outline of my thesisi) Let some "species" of concentration C(p), x 2 Rd, diuse stationary in the isotropic bulk from a (distant) source localised on the closed boundary $partial Omega_{0}$ towards a semipermeable compact interface $partial Omega$ of the cell $Omega in Omega_{0}$ where they disappear at a given rate $W >= 0$. Then the steady field of concentrations C satisfy the problem $(P1)$. (see the Thesis). We interest to solve (P1) in Twodimensional and Tridimensional cases and to calculate the local and total flux in order to solving the localisation inverse problem. In order to make easy the calculations, we take $Omega$ and $Omega_{0}$ with a regularly geometricals forms by distinguishing the two cases : Concentrics and non-concentrics case. For the non-cncentrics case, we use the conformal mapping technique for resolving the problem (P1) in the twodimensional case. whereas in the tridimensional case, we use the development according to the spherical harmonics functions.ii) Localisation inverse problemThe aim of the localisation inverse problem is to find the necessary Dirichlet-to-Neumann conditions in order to determine the position of thecell $Omega$, where these conditions are measurable.iii) Geometrical inverse problemOur main results concerns a formal solution of the geometrical inverse problem for the form of absorbing domains. We restrict this study to two dimensions and we study it by the conformal mapping technique and harmonic functions.iv) Dirichlet-to-Neumann operatorWe study the Dirichlet-to-Neumann operatot relative to problem (P1) in the twodimensional and tridimensionnal cases by distinguishing the two cases : Concentrics and non-concentrics case. We prove that the Dirichlet-to-Neumann operator generates some semi-group, we call it the Lax semi-group. Finally we construct this semi group and verify that this demi-group satisfies the generals properties of a operator.
|
50 |
Fenômeno de bifurcação no problema de Yamabe sobre variedades riemannianas com bordo / Phenomenon of bifurcation in Yamabe problem on Riemannian manifolds with boundaryCardenas Diaz, Elkin Dario 16 August 2016 (has links)
No presente trabalho consideramos o produto de uma variedade Riemanniana compacta sem bordo de curvatura escalar zero e uma variedade Riemanniana compacta com bordo, curvatura escalar zero e curvatura media constante no bordo, e fazemos uso da teoria de bifurcação para provar a existência de um numero infinito de classes conforme com, pelo menos, duas métricas Riemannianas não homotéticas de curvatura escalar zero e curvatura média constante no bordo, sobre a variedade produto. / In this work, we consider the product of a compact Riemannian manifold without boundary, null scalar curvature and a compact Riemannian manifold with boundary, null scalar curvature and constant mean curvature on the boundary and we use the bifurcation theory to prove the existence of a infinite number of conformal classes with at least two non homothetic Riemannian metrics of null scalar curvature and constant mean curvature of the boundary on the product manifold.
|
Page generated in 0.044 seconds