• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 29
  • 29
  • 14
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Application of a flamelet-based combustion model to diesel-like reacting sprays

Pérez Sánchez, Eduardo Javier 25 February 2019 (has links)
[ES] El objetivo de esta tesis es la investigación y análisis de la estructura interna de los chorros diésel reactivos y el efecto de las condiciones de contorno en los parámetros asociados a la combustión. Este objetivo se consigue por medio de la simulación numérica del chorro con modelos de turbulencia RANS y LES usando un modelo de combustión avanzado basado en el concepto flamelet. Para este estudio, se aplica una aproximación simplificada de las flamelets de difusión, conocidas en la literatura como Flamelets de Difusión Aproximadas (ADF en inglés), como fundamento del modelo de combustión. En una primera etapa, el modelo se valida con combustibles de diferente complejidad química en regímenes estacionarios y transitorios para el conjunto de posibles velocidades de deformación. Una vez se confirma su idoneidad para condiciones encontradas en chorros diésel, se aplica a la simulación del chorro A del Engine Combustion Network (ECN), representativo de chorros diésel. Para proporcionar un cuadro completo de los fenómenos subyacentes, la combustión se analiza inicialmente para condiciones homogéneas y llamas laminares para las distintas condiciones de contorno de este experimento. Después este análisis se complementa con la simulación de diferentes mecanismos químicos para determinar cómo las características del encendido predichas por el esquema de oxidación afectan a la propagación de llama. Los resultados obtenidos en esta etapa se enlazan con el análisis del chorro turbulento en el contexto de simulaciones RANS y LES para describir cómo el fenómeno de la combustión se modifica con los diferentes niveles de complejidad física. La estructura del chorro turbulento se describe profundamente para las distintas condiciones de contorno y mecanismos químicos en términos de mezcla y escalares reactivos para las fases temporales y las regiones espaciales de la llama. La satisfactoria concordancia con los resultados experimentales muestran que el concepto flamelet, y más particularmente el modelo ADF, es adecuado para las simulaciones de chorros diésel. / [CA] L'objectiu d'esta tesi és la investigació i anàlisi de l'estructura interna dels dolls dièsel reactius i l'efecte de les condicions de contorn en els paràmetres associats a la combustió. Este objectiu s'aconsegueix per mitjà de la simulació numèrica del doll amb models de turbulència RANS i LES usant un model de combustió avançat basat en el concepte flamelet. Per a este estudi, s'aplica una aproximació simplificada de les flamelets de difusió, conegudes a la literatura com Flamelets de Difusió Aproximades (ADF en anglés), com a fonament del model de combustió. En una primera etapa, el model es valida amb combustibles de diferent complexitat química en règims estacionaris i transitoris per al conjunt de possibles velocitats de deformació. Una vegada es confirma la seua idoneïtat per a condicions trobades en dolls dièsel, s'aplica a la simulació del doll A del Engine Combustion Network (ECN), representatiu de dolls dièsel. Per a proporcionar un cuadre complet dels fenòmens subjacents, la combustió s'analitza inicialment per a condicions homogènies i flames laminars per a les distintes condicions de contorn d'aquest experiment. Després esta anàlisi es complementa amb la simulació de diferents mecanismes químics per a determinar com les característiques de l'encesa predites per l'esquema d'oxidació afecten la propagació de flama. Els resultats obtinguts en esta etapa s'enllacen amb l'anàlisi del doll turbulent en el context de simulacions RANS i LES per a descriure com el fenomen de la combustió es modifica amb els diferents nivells de complexitat física. L'estructura del doll turbulent es descriu profundament per a les distintes condicions de contorn i mecanismes químics en termes de mescla i escalars reactius per a les fases temporals i les regions espacials de la flama. La satisfactòria concordança amb els resultats experimentals mostren que el concepte flamelet, i més particularment el model ADF, és adequat per a les simulacions de dolls dièsel. / [EN] The objective of this thesis is the investigation and analysis of the internal structure of diesel-like reacting sprays and the effect of boundary conditions on combustion related parameters. This objective is achieved by means of the numerical simulation of the spray with RANS and LES turbulence models using an advanced combustion model based on the flamelet concept. For this study, a simplified approach for diffusion flamelets, known in the literature as Approximated Diffusion Flamelet (ADF), is applied as the basis of the combustion model. In a first step, this model is validated for fuels with different chemical complexity in steady and transient regimes for the whole set of possible strain rates. Once its suitability is confirmed for conditions found in diesel sprays, it is applied to the simulation of spray A from the Engine Combustion Network (ECN), representative of diesel-like sprays. In order to provide a complete picture of the underlying phenomena, combustion is initially analysed in homogeneous conditions and laminar flames for the different boundary conditions of this experiment. Later, this analysis is complemented with the simulation of different chemical mechanisms in order to determine how the ignition characteristics predicted by the oxidation scheme affect to the flame propagation. The results obtained at this stage are connected with the analysis of the turbulent spray in the context of RANS and LES simulations as a way to track how combustion phenomenon is modified at the different levels of physical complexity. The turbulent spray structure is thoroughly described for the different boundary conditions and chemical schemes in terms of mixing and reactive variables for both temporal phases and spatial flame regions. The satisfactory agreement with experimental results shows that the flamelet concept, and more particularly the ADF model, is suitable for diesel-like sprays simulations. / Pérez Sánchez, EJ. (2019). Application of a flamelet-based combustion model to diesel-like reacting sprays [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117316
22

Effects of turbulent flow regimes on pilot and perforated-plate stabilized lean premixed flames

Jupyoung Kim (6845579) 14 August 2019 (has links)
An experimental study of the effects of turbulent flow regime on the flame structure is conducted by using perforated-plate-stabilized hydrogen-piloted lean premixed methane/air turbulent flames. The underlying non-reacting turbulent flow field was investigated using two-dimensional three-components particle imaging velocimetry (2D3C-PIV) with and without three perforated plates. The non-reacting flow data allowed a separation of the turbulent flow regime into axial velocity dominated and vortex dominated flows. A plate with 62\% blockage ratio was used to represent the stream-dominant flow regime and another with 86\% blockage ratio was used to represent the vortex-dominant flow regime. OH laser-induced fluorescence was used to study the effects of the turbulent flow regime on the mean progress variable, flame brush thickness, flame surface density, and global consumption speed. In comparison with the stream-dominant flow, the vortex-dominant flow makes a wider and shorter flame. Also, the vortex-dominant flow has a thicker horizontal flame brush thickness and a thinner longitudinal flame brush thickness. Especially, the horizontal flame brush thickness for the vortex-dominant flow does not follow the turbulence diffusion theory. Then, the vortex-dominant flow shows a relatively constant flame surface density along the stream-wise direction, while the stream-dominant flow shows a decreasing flame surface density. Lastly, the vortex-dominant turbulent flow improves the consumption speed in comparison to the stream-dominant turbulent flow regime with the same velocity fluctuation level.
23

Instabilités de flammes de prémélange en cellule de Hele-Shaw / Premixed flames instability in Hele-Shaw cell

Al Sarraf, Elias 19 December 2017 (has links)
La combustion pré mélangée a été depuis longtemps un domaine vaste d’étude au niveau appliqué et fondamental. Bien que la plupart des applications industrielles en combustion aient lieu dans des régimes turbulents, le passage par l’étude laminaire est indispensable pour comprendre les mécanismes fondamentaux des flammes turbulentes. Ce travail de thèse porte essentiellement sur l’étude des différentes instabilités agissant sur un front de flamme laminaire de pré mélange pour des mélanges de propane-air et méthane-air, enrichis ou non en azote. L’étude consiste à mesurer les taux de croissance des perturbations dans un brûleur d’Hele-Shaw formé par deux plaques de verre ($150\times50cm$) très rapprochées (brûleur 2D). Grâce à un système de forçage constitué par des plaques modulées spatialement avec différentes longueurs d’onde, le taux de croissance peut être mesuré même en présence du développement spontané de l’instabilité avec la longueur d’onde la plus instable. A richesse constante et pour des valeurs croissantes de la dilution en oxygène le vecteur d'onde de coupure augmente avec la vitesse de flamme qui devient plus instable. Pour des mélanges de propane ce nombre d’onde augmente également lorsqu'on augmente la richesse à vitesse constante et il diminue dans le cas des mélanges de méthane, cela est en relation avec l'évolution des effets thermodiffusifs dans chacun des cas. Une augmentation de l’épaisseur de la cellule d’Hele-Shaw, aboutit à une augmentation du taux de croissance pour les petits nombres d’onde ainsi que du nombre de Markstein, et à une diminution du taux de croissance pour les grands nombres, du fait des effets des pertes thermiques. / Premixed combustion has been the subject of extensive work, concerning both applications and fundamental aspects. Although in most practical applications combustion occurs in a turbulent environment, the study of laminar flames is important to understand the fundamental mechanisms of turbulent flame propagation. The objective of this work is to study the various instabilities acting on a laminar premixed flame for mixtures of propane-air and methane-air, enriched or not with nitrogen. it consists in measuring the linear growth rates of disturbances in a Hele-Shaw burner formed by two glass plates ($150\times50cm$) separated by a thin gap width (2D burner). Using spatially modulated plates with different wavelengths, the linear growth rate of perturbations can be measured even in the presence of the most unstable wavelength. The experimental values of the linear growth rate as a function of wavenumber are fitted by a linear dispersion relation to estimate the Markstein number and the cutoff wavenumber. For a constant equivalence ratio with increasing values of the dilution in oxygen, the cutoff wavenumber grows with the flame velocity and it is becoming more unstable. The cutoff wave number rises also when the equivalence ratio increases for propane-air mixture and decreases for methane-air mixture, in relation to the evolution of thermal diffusive effects. An enlargement in the thickness of the Hele-Shaw cell results in an increase of the growth rate for small wavenumbers thus in the Markstein number, and in a decline in the growth rate for the large wavenumbers, in relation with the effects of heat losses.
24

Factors that limit control effectiveness in self-excited noise driven combustors

Crawford, Jackie H., III 27 March 2012 (has links)
A full Strouhal number thermo-acoustic model is purposed for the feedback control of self excited noise driven combustors. The inclusion of time delays in the volumetric heat release perturbation models create unique behavioral characteristics which are not properly reproduced within current low Strouhal number thermo acoustic models. New analysis tools using probability density functions are introduced which enable exact expressions for the statistics of a time delayed system. Additionally, preexisting tools from applied mathematics and control theory for spectral analysis of time delay systems are introduced to the combustion community. These new analysis tools can be used to extend sensitivity function analysis used in control theory to explain limits to control effectiveness in self-excited combustors. The control effectiveness of self-excited combustors with actuator constraints are found to be most sensitive to the location of non-minimum phase zeros. Modeling the non-minimum phase zeros correctly require accurate volumetric heat release perturbation models. Designs that removes non-minimum phase zeros are more likely to have poles in the right hand complex plane. As a result, unstable combustors are inherently more responsive to feedback control.
25

Formation des oxydes d'azote dans les flammes haute pression : étude expérimentale par fluorescence induite par laser : application aux flammes méthane/air et méthane/hydrogène/air / Nitric oxide formation in high pressure flames : experimental study by laser induced fluorescence : application to methane/air and methane/hydrogen/air flames

Molet, Julien 24 January 2014 (has links)
Le monoxyde d’azote (NO) est un polluant atmosphérique responsable d’effets nuisibles sur l’environnement et la santé. Afin de mieux contrôler ces émissions, il est indispensable de comprendre et de maîtriser leur formation,en particulier lors de la combustion à haute pression, domaine d’application industrielle (cas des turbines à gaz,des moteurs…). On distingue quatre voies principales de formation de NO : la voie thermique, la voie du NO précoce, la voie NNH et la voie N2O. L’objectif de cette thèse à caractère expérimentale est de compléter la base de données expérimentale déjà existante nécessaire à la compréhension et à l’identification de la contribution de chaque voie à la formation du NO à haute pression.Dans cette thèse, un dispositif de brûleurs à contre-courants a été utilisé pour étudier la structure de flammes laminaires, prémélangées à haute pression. Les profils de concentration de NO dans les flammes CH4/O2/N2 à différentes richesses (Фc =0,7-1,2) et différentes pressions (P=0,1-0,7 MPa) ont été mesurés par Fluorescence Induite par Laser. L’effet de l’ajout d’hydrogène (80%CH4/20%H2 : Application Hythane®) sur la formation de NO a également été étudié dans les flammes pauvres CH4/O2/N2. Le mécanisme cinétique GDF-Kin®3.0_NCN a été comparé aux mesures de NO disponibles dans la littérature ainsi qu’aux simulations des mécanismes cinétiques du Gaz Research Institute (version 2.11 et 3.0). Ces trois mécanismes ont été ensuite comparés aux mesures expérimentales réalisées dans ces travaux de thèse. / The nitric oxide (NO) is a pollutant responsible of detrimental effects on the environment and health. To better control these emissions, it’s crucial to understand and to control their formation, in particular during the combustion process at high pressure, area of industrial applications (gas turbines, engines…).There are four major routes of the NO formation: the thermal route, the prompt-NO route, the NNH route and theN2O route. The aim of this experimental thesis is to complete the existing experimental database which isnecessary to the understanding and the identification of the contribution from each route to the NO formation at high pressure.In this thesis, a facility of two twin counter-flow burners was used to study the structure of the laminar, premixed flames at high pressure. Experimental NO concentration profiles have been measured in CH4/O2/N2 flames for arange of equivalence ratio (from 0.7 to 1.2) and pressures (from 0.1 to 0.7 MPa) by Laser Induced Fluorescence.The effect of adding hydrogen (80%CH4/20%H2: Hythane® application) on the NO formation has been also studied in lean CH4/O2/N2 flames. The GDF-Kin®3.0_NCN kinetic mechanism has been compared to experimental data from the literature and also compared to the simulations from the Gas Research Institute mechanisms (version 2.11 and 3.0). These three mechanisms have been finally compared to the experimental data from this thesis.
26

Laser-induced spark ignition in flowing gases

Seunghyun Jo (11067453) 22 July 2021 (has links)
<div>This research has been studied a laser-induced spark in flowing gases. The relationship between the minimum ignition energy (MIE), the turbulence intensity, and the flame kernel propagation speed is considered. Plasma emission, produced by the laser-induced spark, and flame kernel generation by the plasma are investigated. The energy balance equation between an ignition energy and energy losses by heat transfer is studied at laminar flows and turbulent flows. Hydrogen and air mixtures were used in a premixed jet burner for ignition experiments. Particle image velocimetry (PIV) examined the velocity and the turbulence intensity under the turbulent flows. The flame kernel development was visualized using Schlieren imaging and infrared images (IR camera). Flame kernel temperatures were measured through Rayleigh scattering and infrared images (IR camera). Plasma evaluations were captured through an intensified CCD camera (ICCD camera). Minimum ignition energies were measured at the laminar flows and the turbulent flows. The MIE decreases with an increase in the turbulence intensity which changed by ignition locations and perforated plates at the constant bulk velocity. Improved mixing rates due to the ignition locations or the geometry of the perforated plates decrease the MIE at the constant bulk velocity. The turbulence intensity increases wrinkles in the flame kernel surface, thus the contact between the flame kernel and reactants increases due to the wrinkles. Therefore, the flame kernel propagation speed increases as the turbulence intensity is higher since the increased reaction by the wrinkles and the contact. Thus, the MIE decreases as the turbulence intensity increases at the constant ignition condition, including bulk velocities and ignition heights, since the high turbulence intensity increases the flame kernel propagation speed. Laser energy differences affect the plasma expansions by the laser absorption. Laser-supported radiation (LSR) wave speeds were measured and calculated using energy balance equations. Velocity does not affect the flame kernel temperature distribution during the early reaction steps because the plasma generates a flame kernel and determines the flame kernel temperature distribution. The MIE increases with increasing the bulk velocity. The energy losses considering convection, conduction, and radiation were calculated using the flame kernel radius, the flame kernel temperature, mixture properties, and the flame speed. The energy balance equation in the ignition of flowing gases is newly written at the laminar flows and the turbulent flows.</div>
27

REDUCED FIDELITY ANALYSIS OF COMBUSTION INSTABILITIES USING FLAME TRANSFER FUNCTIONS IN A NONLINEAR EULER SOLVER

Gowtham Manikanta Reddy Tamanampudi (6852506) 02 August 2019 (has links)
<p>Combustion instability, a complex phenomenon observed in combustion chambers is due to the coupling between heat release and other unsteady flow processes. Combustion instability has long been a topic of interest to rocket scientists and has been extensively investigated experimentally and computationally. However, to date, there is no computational tool that can accurately predict the combustion instabilities in full-size combustors because of the amount of computational power required to perform a high-fidelity simulation of a multi-element chamber. Hence, the focus is shifted to reduced fidelity computational tools which may accurately predict the instability by using the information available from the high-fidelity simulations or experiments of single or few-element combustors. One way of developing reduced fidelity computational tools involves using a reduced fidelity solver together with the flame transfer functions that carry important information about the flame behavior from a high-fidelity simulation or experiment to a reduced fidelity simulation.</p> <p> </p> <p>To date, research has been focused mainly on premixed flames and using acoustic solvers together with the global flame transfer functions that were obtained by integrating over a region. However, in the case of rockets, the flame is non-premixed and distributed in space and time. Further, the mixing of propellants is impacted by the level of flow fluctuations and can lead to non-uniform mean properties and hence, there is a need for reduced fidelity solver that can capture the gas dynamics, nonlinearities and steep-fronted waves accurately. Nonlinear Euler equations have all the required capabilities and are at the bottom of the list in terms of the computational cost among the solvers that can solve for mean flow and allow multi-dimensional modeling of combustion instabilities. Hence, in the current work, nonlinear Euler solver together with the spatially distributed local flame transfer functions that capture the coupling between flame, acoustics, and hydrodynamics is explored.</p> <p> </p> <p>In this thesis, the approach to extract flame transfer functions from high-fidelity simulations and their integration with nonlinear Euler solver is presented. The dynamic mode decomposition (DMD) was used to extract spatially distributed flame transfer function (FTF) from high fidelity simulation of a single element non-premixed flame. Once extracted, the FTF was integrated with nonlinear Euler equations as a fluctuating source term of the energy equation. The time-averaged species destruction rates from the high-fidelity simulation were used as the mean source terms of the species equations. Following a variable gain approach, the local species destruction rates were modified to account for local cell constituents and maintain correct mean conditions at every time step of the nonlinear Euler simulation. The proposed reduced fidelity model was verified using a Rijke tube test case and to further assess the capabilities of the proposed model it was applied to a single element model rocket combustor, the Continuously Variable Resonance Combustor (CVRC), that exhibited self-excited combustion instabilities that are on the order of 10% of the mean pressure. The results showed that the proposed model could reproduce the unsteady behavior of the CVRC predicted by the high-fidelity simulation reasonably well. The effects of control parameters such as the number of modes included in the FTF, the number of sampling points used in the Fourier transform of the unsteady heat release, and mesh size are also studied. The reduced fidelity model could reproduce the limit cycle amplitude within a few percent of the mean pressure. The successful constraints on the model include good spatial resolution and FTF with all modes up to at least one dominant frequency higher than the frequencies of interest. Furthermore, the reduced fidelity model reproduced consistent mode shapes and linear growth rates that reasonably matched the experimental observations, although the apparent ability to match growth rates needs to be better understood. However, the presence of significant heat release near a pressure node of a higher harmonic mode was found to be an issue. This issue was rectified by expanding the pressure node of the higher frequency mode. Analysis of two-dimensional effects and coupling between the local pressure and heat release fluctuations showed that it may be necessary to use two dimensional spatially distributed local FTFs for accurate prediction of combustion instabilities in high energy devices such as rocket combustors. Hybrid RANS/LES-FTF simulation of the CVRC revealed that it might be necessary to use Flame Describing Function (FDF) to capture the growth of pressure fluctuations to limit cycle when Navier-Stokes solver is used.</p> <p> </p> <p>The main objectives of this thesis are:</p> <p>1. Extraction of spatially distributed local flame transfer function from the high fidelity simulation using dynamic mode decomposition and its integration with nonlinear Euler solver</p> <p>2. Verification of the proposed approach and its application to the Continuously Variable Resonance Combustor (CVRC).</p> <p>3. Sensitivity analysis of the reduced fidelity model to control parameters such as the number of modes included in the FTF, the number of sampling points used in the Fourier transform of the unsteady heat release, and mesh size.</p> <p> </p> <p>The goal of this thesis is to contribute towards a reduced fidelity computational tool which can accurately predict the combustion instabilities in practical systems using flame transfer functions, by providing a path way for reduced fidelity multi-element simulation, and by defining the limitations associated with using flame transfer functions and nonlinear Euler equations for non-premixed flames.</p> <p> </p><br>
28

Étude de la formation de polluants lors de la combustion de carburants oxygénés / Study of the formation of pollutants during the combustion of oxygenated fuels

Tran, Luc Sy 10 December 2013 (has links)
L'épuisement des réserves pétrolières et l'augmentation de la concentration du gaz à effet de serre CO2 sont les deux principaux problèmes connus liés à l'utilisation des carburants fossiles. Les biocarburants apparaissent comme un des moyens permettant à la fois une diminution de la dépendance au pétrole et une réduction de l'impact néfaste des moteurs automobiles sur l'environnement. Les biocarburants sont en effet considérés comme une source d'énergie renouvelable. L'objectif de cette thèse était de développer et valider les modèles cinétiques de combustion des composés oxygénés de biocarburants : l'éthanol, les biocarburants de deuxième-génération des familles du furane (furane, 2-méthylfurane, 2,5-diméthylfurane), du tétrahydrofurane (tétrahydrofurane, 2-méthyltétrahydrofurane) et le tétrahydropyrane, en utilisant les nouvelles données obtenues en flamme laminaire pré-mélangée à basse pression. De 20 à 60 produits ont été quantifiés par chromatographie en phase gazeuse et identifiés par couplage avec la spectrométrie de masse. Les résultats obtenus ont ensuite été utilisés pour analyser les voies de consommation des réactifs et de formation des produits, surtout pour les polluants, dans le but de mieux comprendre la chimie de la combustion de ces biocarburants. Ce rapport comprend 5 chapitres et une conclusion. Le premier chapitre présente une revue bibliographique des travaux antérieurs sur l'oxydation de l'éthanol et des éthers cycliques. Dans le second chapitre, le dispositif expérimental est décrit, en détaillant en particulier les nouveaux développements. Enfin les chapitres 3, 4, 5 présentent les résultats de l'étude de la combustion des composés étudiés / The decrease of petroleum reserves and the increase of concentration of greenhouse gas CO2 are the two major known problems related to the use of fossil fuels. Bio-fuels appear as a means allowing a decrease of the dependence on fossil fuels and a reduction of the harmful impact of engine on the environment. Bio fuels are considered as a source of renewable energy. The aim of this thesis was to develop and validate experimentally the high temperature kinetic models for the combustion of oxygenated compounds of bio-fuels: ethanol, second-generation bio-fuels of families of furan (furan, 2-methylfuran, 2,5-dimethylfuran), of tetrahydrofuran (tetrahydrofuran, 2 methyltetrahydrofuran), and tetrahydropyran, using new data obtained in laminar premixed low-pressure flame. About 20-60 products were quantified by gas chromatography and identified using mass spectrometry. The results obtained were then used to analyze the consumption pathways of fuels and the formation pathways of products, especially for pollutants, in order to better understand the combustion chemistry of these bio-fuels. This thesis report includes 5 chapters and a conclusion. The first chapter presents a review of the major works already published in the literature for the oxidation of ethanol and cyclic ethers. In the second chapter, the experimental setup of laminar premixed flame with the analytical techniques is described, detailing in particular new developments. Eventually, chapters 3, 4, 5 present the experimental and modeling results of the study of the combustion chemistry of the compounds studied
29

Simulations of turbulent swirl combustors

Ayache, Simon Victor January 2012 (has links)
This thesis aims at improving our knowledge on swirl combustors. The work presented here is based on Large Eddy Simulations (LES) coupled to an advanced combustion model: the Conditional Moment Closure (CMC). Numerical predictions have been systematically compared and validated with detailed experimental datasets. In order to analyze further the physics underlying the large numerical datasets, Proper Orthogonal Decomposition (POD) has also been used throughout the thesis. Various aspects of the aerodynamics of swirling flames are investigated, such as precession or vortex formation caused by flow oscillations, as well as various combustion aspects such as localized extinctions and flame lift-off. All the above affect flame stabilization in different ways and are explored through focused simulations. The first study investigates isothermal air flows behind an enclosed bluff body, with the incoming flow being pulsated. These flows have strong similarities to flows found in combustors experiencing self-excited oscillations and can therefore be considered as canonical problems. At high enough forcing frequencies, double ring vortices are shed from the air pipe exit. Various harmonics of the pulsating frequency are observed in the spectra and their relation with the vortex shedding is investigated through POD. The second study explores the structure of the Delft III piloted turbulent non-premixed flame. The simple configuration allows to analyze further key combustion aspects of combustors, with further insights provided on the dynamics of localized extinctions and re-ignition, as well as the pollutants emissions. The third study presents a comprehensive analysis of the aerodynamics of swirl flows based on the TECFLAM confined non-premixed S09c configuration. A periodic component inside the air inlet pipe and around the central bluff body is observed, for both the inert and reactive flows. POD shows that these flow oscillations are due to single and double helical vortices, similar to Precessing Vortex Cores (PVC), that develop inside the air inlet pipe and whose axes rotate around the burner. The combustion process is found to affect the swirl flow aerodynamics. Finally, the fourth study investigates the TECFLAM configuration again, but here attention is given to the flame lift-off evident in experiments and reproduced by the LES-CMC formulation. The stabilization process and the pollutants emission of the flame are investigated in detail.

Page generated in 0.0309 seconds