• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 85
  • 41
  • 26
  • 25
  • 18
  • 16
  • 14
  • 7
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 653
  • 168
  • 132
  • 116
  • 111
  • 59
  • 57
  • 52
  • 49
  • 46
  • 39
  • 38
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma?

Löhr, Mario, Härtig, Wolfgang, Schulze, Almut, Kroiß, Matthias, Sbiera, Silviu, Lapa, Constantin, Mages, Bianca, Strobel, Sabrina, Hundt, Jennifer Elisabeth, Bohnert, Simone, Kircher, Stefan, Janaki-Raman, Sudha, Monoranu, Camelia-Maria 23 January 2024 (has links)
Targeting molecular alterations as an effective treatment for isocitrate dehydrogenasewildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages.
402

Children in Conflict: Assessing the Impact of UN Targeted Sanctions on Rebel Groups' Recruitment of Child Soldiers

Backryd, Rebecka January 2024 (has links)
Sanctions are becoming an increasingly utilised tool for peacemaking and consequently, it is of importance to analyse its possible consequences. This paper aims to analyse the possible covariation between UN-targeted sanctions and the recruitment of children by rebel groups. The purpose is to answer the research question: How do UN-targeted sanctions impact rebel groups' recruitment of child soldiers? Based on rational choice theory and a consideration of previous literature, it is hypothesised that imposing UN-targeted sanctions against a rebel group increases the likelihood that said rebel group will increase their recruitment of child soldiers. Utilising a qualitative research method, including a structured focused comparison, the rebel groups UNITA and FARC were selected for empirical analysis based on Mill's method of difference. The empirical analysis finds some support for the proposed theoretical argument in the case of UNITA but conflicting evidence regarding FARC indicates that the proposed causal mechanism requires further research.
403

Explaining Gender-Based Political Funding: A quantitative cross-national analysis of the impact of electoral, political, and cultural factors on political funding

Muneer, Saba January 2024 (has links)
Despite global progress on gender equality, women continue to be underrepresented in politics. One widely debated policy measure aimed at tackling this issue is gendered public funding – which has been adopted in more than 30 countries worldwide yet remains understudied in the literature on gender and politics. In this thesis, I address that research gap and examine the broader impact of electoral, political, and cultural factors on gendered political funding by conducting quantitative cross-national analyses. I used data from four different sources, such as the International IDEA Political Finance Database, the IDEA Quota Database, QOG, and V-Dem, to examine the relationship between these factors and the probability of gendered public funding adoption. It is evident from the findings of this thesis that the presence of quotas has a significant influence on determining the likelihood of adopting gender-specific public funding policies, with countries implementing quotas demonstrating a higher likelihood of adopting such policies. Contrary to theoretical expectations concerning electoral and cultural variables and earlier research, no significant effects are found. The thesis offers valuable insights into the interplay between political trends, electoral institutions, cultural dynamics, and financial mechanisms in shaping gender equality initiatives. While gender quotas may enhance the probability of gender public funding, exploring all relevant contextual factors is critical.
404

SYNTHESIS AND STUDIES OF POLYMERIC BIOMATERIALS FOR DRUG DELIVERY AND THERAPEUTIC DESIGN

Hutnick, Melanie A. January 2017 (has links)
No description available.
405

Evaluating the effect of ESEA's funds consolidation provision on school-level achievment at Title I elementary schoolwide program buildings

Igwebuike, Alvin C. January 2018 (has links)
No description available.
406

Legal and Ethical implications of Targeted Killings using CUAVs : A Comparative Analysis of Targeted Killing operations in the US and Israel

Ghaffar, Humma January 2024 (has links)
This thesis explores the ethical and legal implications of targeted killing operations employingCombat Unmanned Aerial Vehicles (CUAVs), focusing on the practices of the United Statesand Israel. Grounded in Just War Theory and international law, the research critically examineshow both nations justify these operations under the principles of self-defence and nationalsecurity. Through a comparative analysis of specific case studies, such as the assassinations ofQasem Soleimani and Baha Abu Al Ata, the study highlights the complexities of balancingsecurity imperatives with adherence to international humanitarian and human rights laws. Thefindings reveal significant ethical tensions, particularly concerning the principles ofproportionality, distinction, and the risk of extrajudicial killings. The lack of transparency andaccountability in drone operations further complicates their legitimacy. Additionally, itadvocates for comprehensive policy and legal reforms to enhance oversight and regulation,ensuring compliance with international standards and ethical norms. This research aims tocontribute to the ongoing discourse on modern military practices, urging a more just andaccountable framework for the use of lethal force in contemporary conflicts.
407

<b>BIFUNCTIONAL CHEMICAL CONJUGATION STRATEGIES FOR IMMUNOMODULATION</b>

Ahad Hossain (18424803) 23 April 2024 (has links)
<p dir="ltr">Immunotherapy has revolutionized the field of oncology. While a lot of antibodies and small molecule inhibitors have been developed for this, a lot of targets remain undruggable in humans.</p><p dir="ltr">Targeted protein degradation has opened a new horizon in drug discovery where we can target these undruggable proteins. Proteolysis targeting chimeras using the ubiquitin-proteasomal system is one of the most popular TPD strategies that complement lysosomal degradation strategies to degrade intracellular proteins, typically using bifunctional small molecule degraders. Recently, large biomolecular and antibody conjugates have been developed for degrading membrane and extracellular proteins in cells, such as lysosomal targeting chimeras (LYTACs) and genetically encoded LYTACS, among several others. However, larger molecules have limitations in penetrating solid tumors. This dissertation work focused on the development of bifunctional small molecule degraders for programmed death-ligand 1 (PD-L1), a transmembrane protein ligand for the immune checkpoint programmed cell death 1 (PD-1). PD-L1 is highly expressed on several tumors, such as triple-negative breast cancer (TNBC), non-small cell lung carcinoma, and renal cancer, and is known to suppress cancer-killing immune cells via interaction with PD-1 on T-cells. In addition, PD-L1 is also present on macrophages in the tumor microenvironments leading to further immune suppression and acquired resistance to anti-PD-1 therapy is associated with the upregulation of alternative immune checkpoints, thereby reducing anti-tumor efficacy. We have designed and synthesized bifunctional small molecules as PD-L1 degraders with different recruiters and linkers guided by computational studies with known PD-1/PD-L1 structures to show both cell surface and total protein degradation in human TNBC cells. In a separate project, we also developed small molecule conjugates to degrade an intracellular integral membrane protein of the endoplasmic reticulum with an unknown 3D structure, namely Diglyceride acyltransferase 2 (DGAT2). Recently, our lab identified DGAT2 as a new target for combating Alzheimer’s disease. Specifically, DGAT2 catalyzes triacylglycerol (TAG) synthesis using diacylglycerol and fatty acyl CoA as substrates. The accumulation of TAGs, mechanistically linked to DGAT2, results in “fat” or lipid droplets (LDs) inside the cells. Our lab showed that microglial cells (resident immune cells in the brain) accumulate LDs in the postmortem brains of human patients and mouse models (5xFAD) of Alzheimer’s disease and that the LD accumulation is driven by amyloid-beta (Ab) – a hallmark of Alzheimer’s disease – via DGAT2 pathway. Further, these LD-laden microglia have phagocytic defects and are spared Aβ thereby affecting plaque accumulation and clearance. Inhibiting DGAT2 reduces the amount of TAG in the brain, which in turn reduces LDs and restores microglial ability to phagocytose Ab. However, commercially available DGAT2 inhibitors were unable to reduce LD load in older 5xFAD mice. Using AlphaFold’s models of DGAT2, we designed and identified sites to synthesize bifunctional DGAT2 degraders that resulted in reduced LDs in mouse primary microglial cells and enhanced phagocytosis of Aβ plaques in vivo in aged 5xFAD mice. Our approach shows a framework to develop bifunctional small molecule degraders for membrane proteins to potentially combat immune dysregulation in chronic diseases.</p>
408

Targeted Delivery of Cytotoxic Metal Complexes into Cancer Cells with and without Macromolecular Vehicles

Mitra, Raja January 2013 (has links) (PDF)
Anticancer active metal complexes such as cisplatin are routinely used for treating various cancers since 1978. However, the side effects of cisplatin overwhelm its therapeutic potential, especially in the latter stages of treatment. The nonspecific cytotoxicity of drugs could be avoided if targeted delivery to cancer cells is achieved using two different methodologies namely, enhanced permeability and retention in solid tumors (EPR) and receptor mediated endocytosis using a homing agent (RME). Ru(II)-arene complexes which are delivered specifically into cancer cells by the transferrin enzyme are less toxic compared to other metal complexes. The thesis describes the synthesis and use of Ru(II)-η6cymene complexes with different ancillary ligands which modulates the anticancer activity and the utility of two macromolecular vehicles in directed drug delivery. Ru(II)-η6cymene complexes with different heterocyclic ancillary ligands are synthesized and their anticancer activity tested against various cancer cell lines. Ruthenium complexes with mercaptobenzothiazoles are found to be quite active against the H460 cell lines that overexpress transferrin receptors and non-cytotoxic to the normal cell line, HEL299. Biophysical studies show that complexes (H1 and H8) can unwind the pBR322 DNA and inhibit the Topo IIα enzyme. A unique biphasic melting curve of CT DNA is observed in the presence of H1 which is attributed to formation of a dinuclear species (H20). Half-sandwich complexes of 6-thioguanine (6-TG) have also been prepared to improve the delivery and efficacy of 6-TG which is used in spite of a deleterious photoreaction. The Ru complexes cytotoxic to several leukemia cell lines. As they are photostable and anticancer active, they are better than 6-TG. Anticancer activity exhibiting piazselenols are used as ancillary ligands to make Ru(II)-arene complexes. Unfortunately, 1H NMR spectra suggests that piazselenol complexes dissociate in solution. However, the nitro substituted piazselenol and its Ru complex show the greatest cytotoxicity (<0.1 µM) against the A2780 cell line. The utility of PAMAM dendrimers and hyper branched polymers (hybramers) conjugated with a homing agent to target cancer cells by EPR and RME is probed. A cytotoxic copper complex (CuATSM) is covalently attached to the macromolecules through a disulfide linker, cleaved in the presence of GSH. Targeting efficacy of the folic acid-dendrimer conjugates is checked against two glioma cell lines. The folic acid-dendrimer conjugate is more active compared to dendrimer conjugate without folic acid against folate-receptor-overexpressing LN18 cell line. Biotin conjugated dendrimer shows better accumulation in HeLa cells, which require high amounts of biotin for growth. In vivo studies demonstrate that the conjugate can cross the blood-brain barrier. These studies suggest that PAMAM dendrimer can be used as a targeted delivery vehicle for cytotoxic metal complexes. Hyperbranched polymers decorated with propargyl groups and hydrophilic OH terminated TEG groups are attached to biotin and a cytotoxic Cu complex. (CuATSM-SS-CONH-N3) through ‘click’ reactions and tested against the HeLa cell line. On the basis of the studies conducted, it is concluded that targeted delivery of cytotoxic metal complexes are possible in the case of Ru(II) half-sandwich complexes and macromolecular vehicles like dendrimers are suitable for specifically delivering copper complexes into cancer cells.
409

Development of multifunctional microgels for novel biomedical applications

Kodlekere, Purva Ganesh 07 January 2016 (has links)
A range of microgels with two different functionalities were synthesized, and their utility in novel bioapplications was examined. Cationic microgels with varying properties were developed by tuning synthesis conditions. Their size and primary amine content was analyzed, and one microgel system was selected as a model construct. Its primary amine groups were conjugated to two dyes with properties favorable for utilization as contrast agents in photoacoustic imaging. The concentration of contrast agent in single particles was determined. The implications of a high local dye concentration in the generation of high intensity photoacoustic signals, are discussed. The second bioapplication involved the targeted delivery of fibrinolytics to fibrin clots, in order to bring about dissolution of abnormal thrombi. For this purpose, core/shell microgels with carboxylic acid groups in their shells were synthesized in three size ranges. Following this, their dimension based differential localization in and around porous fibrin clots was examined. Fibrin-specific peptides were then conjugated onto the shells of these particles and the conjugates were shown to demonstrate strong interactions with the fibrin clots. The microgels conjugated to the peptide with the highest binding affinity to fibrin, were observed to bring about disruption of fibrin clots, merely through interference in the dynamic interactions among clot fibers, due to the equilibrium nature of the fibrin polymer. The implications of these novel results and future studies required to facilitate a better understanding of the phenomena involved, are discussed.
410

Investigation of the ESX-4 secretion system interactome of Mycobacterium tuberculosis

Smit, Michelle 12 1900 (has links)
Thesis (MScMedSc (Biomedical Sciences. Medical Biochemistry))--University of Stellenbosch, 2010. / Bibliography / ENGLISH ABSTRACT: The genome of the pathogen Mycobacterium tuberculosis contains five copies of the ESAT-6 (ESX) gene cluster region, which encodes for a novel type VII secretion system. These gene cluster regions, which are directly involved in pathogenicity and phagosomal escape, contain genes encoding exported T-cell antigens ESAT-6 and CFP-10. The mechanism of action of the ESX secretion system however, remains largely unknown. This study focused on ESX gene cluster region 4 (ESX-4), which has been shown to be the most ancestral region and is also present in other species of Mycobacteria and even in other high G+C Gram-positive bacteria, such as Corynebacterium diptheriae and Streptomyces coelicolor. This project aimed to investigate the protein-protein interactions of ESX-4 of M. tuberculosis in the model organism Mycobacterium smegmatis by means of Mycobacterial Protein Fragment Complementation (M-PFC). M-PFC is a two-hybrid technique which employs two cloning vectors, pUAB300 (conferring resistance to hygromycin B) and pUAB400 (conferring resistance to kanamycin). Genes of interest are cloned into these vectors and co-transformed into the model organism M. smegmatis after which it is expressed as fusion proteins. Interaction of the proteins allows selective growth on a medium containing the antibiotic trimethoprim. Various interactions were identified throughout this region, including selfinteractions as well as the expected interaction between the ESAT-6 and CFP-10 protein family members esxT and esxU. Since this region is ancestral, ESX-4 provides the basic model of the mechanism of secretion of the type VII secretion system. Many similarities were apparent when the interactions identified for ESX-4 were compared to the interactions previously identified in ESX-3. Interactions identified by means of M-PFC provide a basis for the further study of the structure of this secretion system, and should be confirmed by means of other techniques, such as co-immunoprecipitation. Despite the ability of M-PFC to identify protein-protein interactions in a mycobacterial system, and thus overcoming some of the limitations of the classical yeast two-hybrid model, it must still be regarded as a fishing experiment for potential interactions. A further aim of the project was to construct a knock-out of ESX-4 in the model organism M. smegmatis, which contains three ESX regions, namely ESX-1, -3 and -4. Homologous recombination proved to be an effective technique for the construction of the knock-out, also indicating that ESX-4 is not essential for in vitro growth of M. smegmatis. The knock-out strain showed no morphological differences to the wild type strain of M. smegmatis. The knock-out strain will in future be compared to the wild type strain in various functional studies in order to determine the function of the ancestral ESX region. / AFRIKAANSE OPSOMMING: Die genoom van die patogeen Mycobacterium tuberculosis bavat vyf kopieë van die ESAT-6 geen groep gebiede wat kodeer vir ‘n unieke tipe VII sekresie sisteem. Die geen groep gebiede, wat direk betrokke is by patogenisiteit en fagosomale ontsnapping, bevat gene wat kodeer vir die gesekreteerde T-sel antigene ESAT-6 en CFP-10. Die meganisme van die ESX sekresie sisteem is egter steeds tot ‘n groot mate onbekend. Hierdie studie het gefokus op die ESX geen groep gebied 4 (ESX-4), wat voorheen bepaal is om die vroegste kopie van die gebied te wees en wat ook in ander species van Mikobakterieë en hoë G+C Gram-positiewe bakterieë, soos Corynebacterium diptheriae en Streptomyces coelicolor, voorkom. Hierdie projek was daarop gemik om die proteïen-proteïen interaksies van ESX-4 van M. tuberculosis in die model organisme Mycobacterium smegmatis te ondersoek deur middel van Mikobakteriële Proteïen Fragment Komplementasie (M-PFK). M-PFK is ‘n twee-hibried tegniek wat van twee kloningsvektore, naamlik pUAB300 (wat weerstand teen hygromycin B bied) en pUAB400 (wat weerstand teen kanamycin bied) gebruik maak. Gene van belang word in die vektore ingekloneer en in die model organisme, M. smegmatis geko-transformeer, waarna dit as fusieproteïene uitgedruk word. Indien ‘n interaksie tussen die proteïene plaasvind, sal selektiewe groei op ‘n medium wat die antibiotikum trimethoprim bevat, waargeneem word. Verskeie interaksies is in hierdie gebied geïdentifiseer, insluitende self-interaksies, sowel as die verwagte interaksie tussen die ESAT-6 en CFP-10 proteïen familielede esxT en esxU. Aangesien hierdie gebied die vroegste kopie is, bied ESX-4 die basiese model vir die meganisme van sekresie van die tipe VII sekresie sisteem. Wanneer interaksies wat vir ESX-4 geïdentifiseer is met die wat voorheen vir ESX-3 geïdentifiseer is vergelyk word is daar heelwat ooreenkomste. Interaksies wat deur middel van M-PFK geïdentifiseer is, verskaf ‘n basis vir die vêrdere studie van interaksies van hierdie gebied, en sal bevestig moet word deur gebruik te maak van aanvullende tegnieke, soos ko-immunopresipitasie. Ten spyte van die vermoë van M-PFK om proteïen-proteïen interaksies in ‘n mikobakteriële sisteem, wat dus sommige van die beperkings van die klassieke gis twee-hibriedmodel oorkom, te bestudeer, behoort dit steeds as ‘n voorlopige metode van identifikasie beskou te word. ‘n Vêrdere doel van die projek was om ‘n uitslaanmutant van ESX-4 in die model organisme M. smegmatis, wat drie van die ESX gebiede, naamlik ESX-1, -3 en -4 bevat, te skep. Homoloë rekombinasie is bewys om ‘n effektiewe tegniek te wees vir die skep van ‘n uitslaanmuntant en het daarop gedui dat ESX-4 nie essensieel is vir die in vitro groei van M. smegmatis nie. Die uitslaanstam het ook geen morfologiese verskille getoon teenoor die oorspronklike stam nie. Die uitslaanmutant sal in die toekoms gebruik word in ‘n verskeidenheid funksionele studies waar dit vergelyk sal word met die oorspronklike stam, ten einde die funksie van die vroegste ESX-gebied te bepaal. / Medical Research Council of South Africa / National Research Foundation of South Africa / Ernst and Ethel Eriksen Trust

Page generated in 0.0386 seconds