• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 48
  • 48
  • 48
  • 18
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

遺傳模式在匯率上分析與預測之應用 / Genetic Models and Its Application in Exchange Rates Analysis and Forecasting

許毓云, Hsu, Yi-Yun Unknown Date (has links)
Abstract In time series analysis, we often find the trend of dynamic data changing with time. Using the traditional model fitting can't get a good explanation for dynamic data. Therefore, many scholars developed various methods for model construction. The major drawback with most of the methods is that personal viewpoint and experience in model selection are usually influenced in them. Therefore, this paper presents a new approach on genetic-based modeling for the nonlinear time series. The research is based on the concepts of evolution theory as well as natural selection. In order to find a leading model from the nonlinear time series, we make use of the evolution rule: survival of the fittest. Through the process of genetic evolution, the AIC (Akaike information criteria) is used as the adjust function, and the membership function of the best-fitted models are calculated as performance index of chromosome. Empirical example shows that the genetic model can give an efficient explanation in analyzing Taiwan exchange rates, especially when the structure change occurs.
42

遺傳模式在轉折區間判定上的應用 / The application of genetic models in change periods detection

洪鵬凱 Unknown Date (has links)
近幾年來,非線性時間數列轉折點的研究愈來愈受到重視,學者們也提出許多關於轉折點的偵測及檢定方法。若考慮實際資料走勢轉變的情形,“轉折區間”的概念更可以解釋結構改變的現象。但文獻中對於如何找尋時間數列結構改變之轉折區間的研究並不多。本文擬以時間數列統計模式及模糊學理論的角度來研究,並結合遺傳演算的規則而提出主導模式的概念,來架構出時間數列遺傳模式,再藉由轉折區間決策法則來找出數列的轉折區間。其中,我們以統計模式為遺傳演化過程中的染色體,而以候選模式之隸屬度函數為衡量染色體適應能力的指標。最後,我們舉出臺灣股價收盤指數之實例,分別以我們所提出的方法及其他方法找出數列的轉折區間及轉折點,並做比較。 / For recent years, the research of change point in nonlinear time series has been considered to be more and more important. Scholars have proposed a lot of detecting and testing methods about change points.If considering the trend of real situation, the concept of change period will show the phenomena of structure change.But there are not many researches about how to find change period in time series.My paper is based on the points of time series models and fuzzy theory.Besides,it combines the rules of genetic algorithm and provides the concepts of leading model to construct time seriep genetic model and to find out change period by decision rule.ln this paper, we use time series statistical models as chromosome in procedure of genetic evolution, and we also use membership function of selected models as pereformance: index of chromosome.Finally, the empirical application about change periods and change points detecting by our method and other's for Taiwan stock closing prices is demonstrated and make a comparision with these results.
43

遺傳演算法在門檻自迴歸模式(d,r)值估計的應用 / The Application of Genetic Algorithms in Parameters (d,r) Estimation of Threshold Autoregressions

張新發, Chang, Sin Fa Unknown Date (has links)
近幾年來,非線性時間數列分析有快速的發展。其中的門檻自迴歸模式(SETAR),以具有許多線性ARIMA模式所不能配適的特性而受到重視。但是,自1978年Tong建立SETAR模式以來,門檻參數估計的問題一直是SETAR模式在發展應用上的一個瓶頸。本文將探討以實數編碼遺傳演算法,結合統計學上的模式選取準則,建構SETAR模式門檻與延遲參數估計程序的可行性。並從這個基礎上,進一步地研究較精確的門檻參數估計法。 / Non-linear time series analysis has rapidly developed in recent years. Self-exciting threshold autoregression(SETAR) model of non-linear time series models is attentive, because it has some characters which linear ARIMA model fail to fit. But, It has not yet been applied widely because the question of estimation of threshold parameter limits its development and application since Tong proposed SETAR model in 1978. In this paper, we will study the feasibility which constructs a procedure of estimation of SETAR's threshod and delay parameters with real-coded genetic algorithm and statistical criterion of model selection, and develop a more precise estimation of threshold parameter in the basis.
44

時間數列分析在偵測型態結構差異上之探討 / Application Of Time Series Analysis In Pattern Recgnition And alysis

蘇曉楓, Su, Shiau Feng Unknown Date (has links)
依時間順序出現之一連串觀測值,通常會呈現某一型態,而根據所產生的 型態可以作為判斷事件發生的基礎。例如,震波形成原因的判斷﹔追查環 境污染源﹔以及在醫學方面,辨識一個正常人心電圖的型態與患有心臟病 的病人其心電圖的型態…等。對於這些問題,傳統之辨識方法常因前提假 設的限制而失去其準確性。在本文中,我們應用神經網路中的逆向傳播演 算法則來訓練網路,並利用此受過訓練的網路來辨別線性時間數列ARIMA 及非線性時間數列 BL(1,0,1,1)。結果發現,網路對於模擬資料中雙線性 係數介於0.2至$0.8$之間的資料有高達$80\%$以上的辨識能力。而在實例 研究中,我們訓練網路來判斷震波形成的原因,其正確率亦高達80\%以上 。同時,我們也將神經網路應用在環境保護方面,訓練網路來判斷二地區 空氣品質的型態。 / A series of observations indexed in time often produces a pattern that may form a basis for discriminatingetween different classes of events. For instance, in theeology, what are the causes of seismic waves? a earthquakesr the nuclear explosions ?in the eathenics, we can use theethod to inquire the source which pollutes the air in somelace, and in the medicine, to distinguish the difference oflectrocardiograms between a health person and an a patient..ect. In this paper, we utilize the back-propagation to trainnetwork and use of the trained networks to judge the linearRIMA(1,0,0) model between the nonlinear BIL(1,0,1,1) model,e can find that the trained network has a good recognitionhose accurate rate is above 80\% for the coefficient of the bilinear model being equal to 0.5 or 0.8. In a living example, we have trained a network to decidehich is the cause of seismic wave, and the trained networkhose accurate rate is larger than 80\%. At the same time, e also applied neural network in environmental protection.
45

Nächste-Nachbar basierte Methoden in der nichtlinearen Zeitreihenanalyse / Nearest-neighbor based methods for nonlinear time-series analysis

Merkwirth, Christian 02 November 2000 (has links)
No description available.
46

Functional network macroscopes for probing past and present Earth system dynamics

Donges, Jonathan Friedemann 14 January 2013 (has links)
Vom Standpunkt des Physikers aus gesehen, ist die Erde ein dynamisches System von großer Komplexität. Funktionale Netzwerke werden aus Beobachtungs-, und Modelldaten abgeleitet oder aufgrund theoretischer Überlegungen konstruiert. Indem sie statistische Zusammenhänge oder kausale Wirkbeziehungen zwischen der Dynamik gewisser Objekte, z.B. verschiedenen Sphären des Erdsystems, Prozessen oder lokalen Feldvariablen darstellen, bieten funktionale Netzwerke einen natürlichen Ansatz zur Bearbeitung fundamentaler Probleme der Erdsystemanalyse. Dazu gehören Fragen nach dominanten, dynamischen Mustern, Telekonnektionen und Rückkopplungsschleifen in der planetaren Maschinerie, sowie nach kritischen Elementen wie Schwellwerten, sogn. Flaschenhälsen und Schaltern im Erdsystem. Der erste Teil dieser Dissertation behandelt die Theorie komplexer Netzwerke und die netzwerkbasierte Zeitreihenanalyse. Die Beiträge zur Theorie komplexer Netzwerke beinhalten Maße und Modelle zur Analyse der Topologie (i) von Netzwerken wechselwirkender Netzwerke und (ii) Netzwerken mit ungleichen Knotengewichten, sowie (iii) eine analytische Theorie zur Beschreibung von räumlichen Netzwerken. Zur Zeitreihenanalyse werden (i) Rekurrenznetzwerke als eine theoretisch gut begründete, nichtlineare Methode zum Studium multivariater Zeitreihen vorgestellt. (ii) Gekoppelte Klimanetzwerke werden als ein exploratives Werkzeug der Datenanalyse zur quantitativen Charakterisierung der komplexen statistischen Interdependenzstruktur innerhalb und zwischen distinkten Feldern von Zeitreihen eingeführt. Im zweiten Teil der Arbeit werden Anwendungen zur Detektion von dynamischen Übergängen (Kipppunkten) in Zeitreihen, sowie zum Studium von Flaschenhälsen in der atmosphärischen Zirkulationsstruktur vorgestellt. Die Analyse von Paläoklimadaten deutet auf mögliche Zusammenhänge zwischen großskaligen Veränderungen der afrikanischen Klimadynamik während des Plio-Pleistozäns und Ereignissen in der Menschheitsevolution hin. / The Earth, as viewed from a physicist''s perspective, is a dynamical system of great complexity. Functional complex networks are inferred from observational data and model runs or constructed on the basis of theoretical considerations. Representing statistical interdependencies or causal interactions between objects (e.g., Earth system subdomains, processes, or local field variables), functional complex networks are conceptually well-suited for naturally addressing some of the fundamental questions of Earth system analysis concerning, among others, major dynamical patterns, teleconnections, and feedback loops in the planetary machinery, as well as critical elements such as thresholds, bottlenecks, and switches. The first part of this thesis concerns complex network theory and network-based time series analysis. Regarding complex network theory, the novel contributions include consistent frameworks for analyzing the topology of (i) general networks of interacting networks and (ii) networks with vertices of heterogeneously distributed weights, as well as (iii) an analytical theory for describing spatial networks. In the realm of time series analysis, (i) recurrence network analysis is put forward as a theoretically founded, nonlinear technique for the study of single, but possibly multivariate time series. (ii) Coupled climate networks are introduced as an exploratory tool of data analysis for quantitatively characterizing the intricate statistical interdependency structure within and between several fields of time series. The second part presents applications for detecting dynamical transitions (tipping points) in time series and studying bottlenecks in the atmosphere''s general circulation structure. The analysis of paleoclimate data reveals a possible influence of large-scale shifts in Plio-Pleistocene African climate variability on events in human evolution.
47

Scalable and Efficient Analysis of Large High-Dimensional Data Sets in the Context of Recurrence Analysis

Rawald, Tobias 13 February 2018 (has links)
Die Recurrence Quantification Analysis (RQA) ist eine Methode aus der nicht-linearen Zeitreihenanalyse. Im Mittelpunkt dieser Methode steht die Auswertung des Inhalts sogenannter Rekurrenzmatrizen. Bestehende Berechnungsansätze zur Durchführung der RQA können entweder nur Zeitreihen bis zu einer bestimmten Länge verarbeiten oder benötigen viel Zeit zur Analyse von sehr langen Zeitreihen. Diese Dissertation stellt die sogenannte skalierbare Rekurrenzanalyse (SRA) vor. Sie ist ein neuartiger Berechnungsansatz, der eine gegebene Rekurrenzmatrix in mehrere Submatrizen unterteilt. Jede Submatrix wird von einem Berechnungsgerät in massiv-paralleler Art und Weise untersucht. Dieser Ansatz wird unter Verwendung der OpenCL-Schnittstelle umgesetzt. Anhand mehrerer Experimente wird demonstriert, dass SRA massive Leistungssteigerungen im Vergleich zu existierenden Berechnungsansätzen insbesondere durch den Einsatz von Grafikkarten ermöglicht. Die Dissertation enthält eine ausführliche Evaluation, die den Einfluss der Anwendung mehrerer Datenbankkonzepte, wie z.B. die Repräsentation der Eingangsdaten, auf die RQA-Verarbeitungskette analysiert. Es wird untersucht, inwiefern unterschiedliche Ausprägungen dieser Konzepte Einfluss auf die Effizienz der Analyse auf verschiedenen Berechnungsgeräten haben. Abschließend wird ein automatischer Optimierungsansatz vorgestellt, der performante RQA-Implementierungen für ein gegebenes Analyseszenario in Kombination mit einer Hardware-Plattform dynamisch bestimmt. Neben anderen Aspekten werden drastische Effizienzgewinne durch den Einsatz des Optimierungsansatzes aufgezeigt. / Recurrence quantification analysis (RQA) is a method from nonlinear time series analysis. It relies on the identification of line structures within so-called recurrence matrices and comprises a set of scalar measures. Existing computing approaches to RQA are either not capable of processing recurrence matrices exceeding a certain size or suffer from long runtimes considering time series that contain hundreds of thousands of data points. This thesis introduces scalable recurrence analysis (SRA), which is an alternative computing approach that subdivides a recurrence matrix into multiple sub matrices. Each sub matrix is processed individually in a massively parallel manner by a single compute device. This is implemented exemplarily using the OpenCL framework. It is shown that this approach delivers considerable performance improvements in comparison to state-of-the-art RQA software by exploiting the computing capabilities of many-core hardware architectures, in particular graphics cards. The usage of OpenCL allows to execute identical SRA implementations on a variety of hardware platforms having different architectural properties. An extensive evaluation analyses the impact of applying concepts from database technology, such memory storage layouts, to the RQA processing pipeline. It is investigated how different realisations of these concepts affect the performance of the computations on different types of compute devices. Finally, an approach based on automatic performance tuning is introduced that automatically selects well-performing RQA implementations for a given analytical scenario on specific computing hardware. Among others, it is demonstrated that the customised auto-tuning approach allows to considerably increase the efficiency of the processing by adapting the implementation selection.
48

Models for Analyzing Nonlinearities in Price Transmission / Modelle zur Analyse von Nichtlinearitäten in der Preistransmission

Ihle, Rico 04 February 2010 (has links)
No description available.

Page generated in 0.0579 seconds