• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 30
  • 7
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 115
  • 115
  • 59
  • 59
  • 26
  • 26
  • 23
  • 21
  • 21
  • 19
  • 16
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Hipertensão arterial e disfunção autonômica induzidas por dieta hiperlipídica: papel do CART e de fatores inflamatórios em núcleos autonômicos do sistema nervoso central. / High blood pressure and autonomic dysfunction induced by high-fat diet: role of CART and inflammatory factors in central autonomic network.

Chaar, Laiali Jurdi El 27 June 2016 (has links)
Obesidade é fator de risco para a hipertensão arterial e os mecanismos envolvidos nesta doença não são totalmente esclarecidos. Camundongos C57BL/6J e transgênicos com com deleção em neurônios e glia da via inflamatória do receptor toll-like-NFκB foram submetidos à dieta hiperlipídica (HL) por 8 e 15 semanas e avaliados parâmetros metabólicos, pressão arterial, frequência cardíaca, atividade do sistema nervoso autônomo, fatores inflamatórios e neuropeptídeos no hipotálamo e no tronco encefálico. Os camundongos expostos HL desenvolveram hipertensão arterial acompanhada de disfunção autonômica e aumento de CART no DMH. Os animais transgênicos quando submetidos à dieta HL desenvolveram um quadro de obesidade, porém não apresentaram hipertensão arterial e disfunção autonômica. Além disso, o grupo de animais HL aumentou o RNAm de CCL5 no hipotálamo e de CD86 no tronco-encefálico e a densidade de microglia no NTS caudal. Os resultados sugerem novos mecanismos para a hipertensão e disfunção autonômica secundárias à ingestão de dieta hiperlipídica mostrando o papel do CART o DMH e o envolvimento da via inflamatória do TLR-NFκB em neurônios e glia nos mecanismos desta patologia. / Obesity is a risk factor for high blood pressure and the mechanisms involved in this disease are not fully clarified. C57BL/6J and transgenic mice with toll-like-NFκB receptor inflammatory- pathway deletion in neurons and glia were fed with high-fat diet (HL) for 8 or 15 weeks and assessed metabolic parameters, blood pressure, heart rate, autonomic nervous system activity, inflammatory factors and neuropeptides in the hypothalamus and brainstem. The HL mice developed hypertension accompanied with autonomic dysfunction and increased CART in DMH. Transgenic animals when submitted to HL diet developed obesity, but not showed high blood pressure and autonomic dysfunction. In addition, HL animals had increased CCL5 mRNA in hypothalamus, CD86 mRNA in brainstem and micróglia density in caudal NTS. The results suggest new mechanisms for hypertension and autonomic dysfunction secondary to intake of high-fat diet by showing CART role in DMH and the involvement of the inflammatory pathway TLR-NFκB in neurons and glia.
112

Signal transduction mechanisms for stem cell differentation into cardiomyocytes

Humphrey, Peter Saah January 2009 (has links)
Cardiovascular diseases are among the leading causes of death worldwide and particularly in the developed World. The search for new therapeutic approaches for improving the functions of the damaged heart is therefore a critical endeavour. Myocardial infarction, which can lead to heart failure, is associated with irreversible loss of functional cardiomyocytes. The loss of cardiomyocytes poses a major difficulty for treating the damaged heart since terminally differentiated cardiomyocytes have very limited regeneration potential. Currently, the only effective treatment for severe heart failure is heart transplantation but this option is limited by the acute shortage of donor hearts. The high incidence of heart diseases and the scarcity donor hearts underline the urgent need to find alternative therapeutic approaches for treating cardiovascular diseases. Pluripotent embryonic stem (ES) cells can differentiate into functional cardiomyocytes. Therefore the engraftment of ES cell-derived functional cardiomyocytes or cardiac progenitor cells into the damaged heart to regenerate healthy myocardial tissues may be used to treat damaged hearts. Stem cell-based therapy therefore holds a great potential as a very attractive alternative to heart transplant for treating heart failure and other cardiovascular diseases. A major obstacle to the realisation of stem cell-based therapy is the lack of donor cells and this in turn is due to the fact that, currently, the molecular mechanisms or the regulatory signal transduction mechanisms that are responsible for mediating ES cell differentiation into cardiomyocytes are not well understood. Overcoming this huge scientific challenge is absolutely necessary before the use of stem cell-derived cardiomyocytes to treat the damaged heart can become a reality. Therefore the aim of this thesis was to investigate the signal transduction pathways that are involved in the differentiation of stem cells into cardiomyocytes. The first objective was the establishment and use of cardiomyocyte differentiation models using H9c2 cells and P19 stem cells to accomplish the specific objectives of the thesis. The specific objectives of the thesis were, the investigation of the roles of (i) nitric oxide (ii) protein kinase C (PKC), (iii) p38 mitogen-activated protein kinase (p38 MAPK) (vi) phosphoinositide 3-kinase (PI3K) and (vi) nuclear factor-kappa B (NF-kB) signalling pathways in the differentiation of stem cells to cardiomyocytes and, more importantly, to identify where possible any points of convergence and potential cross-talk between pathways that may be critical for differentiation to occur. P19 cells were routinely cultured in alpha minimal essential medium (α-MEM) supplemented with 100 units/ml penicillin /100 μg/ml streptomycin and 10% foetal bovine serum (FBS). P19 cell differentiation was initiated by culturing the cells in microbiological plates in medium containing 0.8 % DMSO to form embryoid bodies (EB). This was followed by transfer of EBs to cell culture grade dishes after four days. H9c2 cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM) supplemented with 10% FBS. Differentiation was initiated by incubating the cells in medium containing 1% FBS. In both models, when drugs were employed, they were added to cells for one hour prior to initiating differentiation. Cell monolayers were monitored daily over a period of 12 or 14 days. H9c2 cells were monitored for morphological changes and P19 cells were monitored for beating cardiomyocytes. Lysates were generated in parallel for western blot analysis of changes in cardiac myosin heavy chain (MHC), ventricular myosin chain light chain 1(MLC-1v) or troponin I (cTnI) using specific monoclonal antibodies. H9c2 cells cultured in 1% serum underwent differentiation as shown by the timedependent formation of myotubes, accompanied by a parallel increase in expression of both MHC and MLC-1v. These changes were however not apparent until 4 to 6 days after growth arrest and increased with time, reaching a peak at day 12 to 14. P19 stem cells cultured in DMSO containing medium differentiated as shown by the timedependent appearance of beating cardiomyocytes and this was accompanied by the expression of cTnI. The differentiation of both P19 stem cells and H9c2 into cardiomyocytes was blocked by the PI3K inhibitor LY294002, PKC inhibitor BIM-I and the p38 MAPK inhibitor SB2035800. However when LY294002, BIM-I or SB2035800 were added after the initiation of DMSO-induced P19 stem cell differentiation, each inhibitor failed to block the cell differentiation into beating cardiomyocytes. The NF-kB activation inhibitor, CAPE, blocked H9c2 cell differentiation into cardiomyocytes. Fast nitric oxide releasing donors (SIN-1 and NOC-5) markedly delayed the onset of differentiation of H9c2 cells into cardiomyocytes while slow nitric oxide releasing donors (SNAP and NOC-18) were less effective in delaying the onset of differentiation or long term differentiation of H9c2 cells into cardiomyocytes. Akt (protein kinase B) is the key downstream target of PI3K. Our cross-talk data also showed that PKC inhibition and p38 MAPK inhibition respectively enhanced and reduced the activation of Akt, as determined by the phosphorylation of Akt at serine residue 473. In conclusion, PKC, PI3K, p38 MAPK and NF-kB are relevant for the differentiation of stem cells into cardiomyocytes. Our data also show that the PKC, PI3K and p38 MAPK signalling pathways are activated as very early events during the differentiation of stem cells into cardiomyocytes. Our data also suggest that PKC may negatively regulate Akt activation while p38 MAPK inhibition inhibits Akt activation. Our fast NO releasing donor data suggest that nitric oxide may negatively regulate H9c2 cell differentiation.
113

Hipertensão arterial e disfunção autonômica induzidas por dieta hiperlipídica: papel do CART e de fatores inflamatórios em núcleos autonômicos do sistema nervoso central. / High blood pressure and autonomic dysfunction induced by high-fat diet: role of CART and inflammatory factors in central autonomic network.

Laiali Jurdi El Chaar 27 June 2016 (has links)
Obesidade é fator de risco para a hipertensão arterial e os mecanismos envolvidos nesta doença não são totalmente esclarecidos. Camundongos C57BL/6J e transgênicos com com deleção em neurônios e glia da via inflamatória do receptor toll-like-NFκB foram submetidos à dieta hiperlipídica (HL) por 8 e 15 semanas e avaliados parâmetros metabólicos, pressão arterial, frequência cardíaca, atividade do sistema nervoso autônomo, fatores inflamatórios e neuropeptídeos no hipotálamo e no tronco encefálico. Os camundongos expostos HL desenvolveram hipertensão arterial acompanhada de disfunção autonômica e aumento de CART no DMH. Os animais transgênicos quando submetidos à dieta HL desenvolveram um quadro de obesidade, porém não apresentaram hipertensão arterial e disfunção autonômica. Além disso, o grupo de animais HL aumentou o RNAm de CCL5 no hipotálamo e de CD86 no tronco-encefálico e a densidade de microglia no NTS caudal. Os resultados sugerem novos mecanismos para a hipertensão e disfunção autonômica secundárias à ingestão de dieta hiperlipídica mostrando o papel do CART o DMH e o envolvimento da via inflamatória do TLR-NFκB em neurônios e glia nos mecanismos desta patologia. / Obesity is a risk factor for high blood pressure and the mechanisms involved in this disease are not fully clarified. C57BL/6J and transgenic mice with toll-like-NFκB receptor inflammatory- pathway deletion in neurons and glia were fed with high-fat diet (HL) for 8 or 15 weeks and assessed metabolic parameters, blood pressure, heart rate, autonomic nervous system activity, inflammatory factors and neuropeptides in the hypothalamus and brainstem. The HL mice developed hypertension accompanied with autonomic dysfunction and increased CART in DMH. Transgenic animals when submitted to HL diet developed obesity, but not showed high blood pressure and autonomic dysfunction. In addition, HL animals had increased CCL5 mRNA in hypothalamus, CD86 mRNA in brainstem and micróglia density in caudal NTS. The results suggest new mechanisms for hypertension and autonomic dysfunction secondary to intake of high-fat diet by showing CART role in DMH and the involvement of the inflammatory pathway TLR-NFκB in neurons and glia.
114

Genetic predisposition to corticosteroid : related complications of childhood Acute Lymphoblastic Leukemia (cALL) treatment

Plesa, Maria 06 1900 (has links)
L’ostéonécrose (ON) et les fractures (FR) sont des complications qui prennent de plus en plus place dans le traitement pédiatrique de la leucémie aiguë lymphoblastique (LAL). L’ON peut être causée par différents facteurs, dont principalement l’utilisation de glucocorticoïdes. Les glucocorticoïdes sont administrés lors du traitement de la leucémie dans le but d’initier l’apoptose des cellules malignes tout en ayant un effet anti-inflammatoire. Cependant, l’utilisation de ces corticostéroïdes comprend des effets secondaires sérieux, notamment le développement d’ostéonécrose. Des variantes génétiques peuvent mettre certains patients plus à risque que d’autres. Plusieurs gènes ont déjà été signalés comme régulés par les actions glucocorticoïdes (GC). Les variations génétiques présentes dans les régions régulatrices de ces gènes peuvent affecter leur fonctionnement normal et, en fin de compte, de déterminer un risque accru de développer l’ON associé au traitement contre la leucémie. Pour cette raison, plusieurs polymorphismes ont été identifiés et étudiés dans la cohorte QcALL de Ste-Justine, concernant les gènes suivants : ABCB1, ACP1, BCL2L11, NFKB1, PARP1, et SHMT1. Ces gènes jouent majoritairement un rôle dans les mécanismes d’action des glucocorticoïdes, mais quelques-uns ont plutôt un effet direct sur le développement d’ostéonécrose. Nos recherches ont démontré une corrélation entre ces polymorphismes et l’apparition d’ostéonécrose chez les patients de la cohorte QcALL, traités aux glucocorticoïdes. L'incidence cumulative de l'ostéonécrose a été évaluée rétrospectivement chez 305 enfants atteints de la leucémie qui ont subi un traitement à l’hôpital Ste-Justine selon les protocoles DFCI de Boston (87-01, 91-01, 95-01 et 2000-01). Parmi les huit polymorphismes de BCL2L11 étudiés, les 891T> G (rs2241843) et 29201C> T (rs724710) ont été significativement associés à ON (p = 0.01 et p = 0.03, respectivement). L'association du polymorphisme 891T> G a été modulée par le type de corticostéroïde (CS), l’âge, le sexe et le groupe à risque (p ≤ 0,05). Le polymorphisme 29201C> T était particulièrement apparent chez les patients à haut risque (p = 0,003). La même étude était conduite en parallèle sur des patients de la cohorte DFCI de Boston (N = 192), et montrait des résultats significatifs pour les polymorphismes étudiés. En conclusion, les résultats de cette étude permettront de confirmer l’association de ces polymorphismes au développement d’ON chez les patients de LLA traités aux GC. / Osteonecrosis (ON) and fractures (FR) are complications that take place in the treatment of children acute lymphoblastic leukemia (cALL). They can be caused by various factors, mainly using glucocorticoids. The corticosteroids, dexamethasone (DXM) and prednisone (PDN) are administered during the treatment of leukemia to initiate apoptosis of malignant cells; while having an anti-inflammatory effect. However, the use of these corticosteroids has severe side effects, including the development of osteonecrosis. Moreover, some patients develop resistance to treatment, and are at risk of developing side effects. The genetic variants predispose some patients at higher risk than others. Several genes have been previously reported as up- or down regulated by the GCs actions. The genetic variations present in gene coding or regulatory regions can affect their function and ultimately determine an increased risk of developing ON associated to ALL therapy. Therefore, we investigated the association between several single nucleotide polymorphisms (SNPs) in six candidate genes: BCL2L11, NFKB1, PARP1, ABCB1, ACP1, and SHMT1. These genes play a role in the mechanisms of action of glucocorticoids, but some have more of a direct effect on the development of osteonecrosis. Our research has shown a correlation between these polymorphisms and the occurrence of osteonecrosis in patients in the QCALL cohort, treated with glucocorticoids. Cumulative incidence of osteonecrosis was assessed retrospectively in 305 children with ALL who underwent treatment with DFCI protocols (87-01, 91-01, 95-01 and 2000-01) in childhood ALL cohort from Quebec (QcALL). Among the eight tag BCL2L11 polymorphisms studied the 891T>G (rs2241843) and 29201C>T (rs724710) were significantly associated with ON (p = 0.01 and p = 0.03, respectively). Association of 891T>G polymorphism was modulated by type of corticosteroid (CS), age, sex and risk group (p ≤ 0.05 and that of 29201C>T was particularly apparent among high risk (p = 0.003) patients. These polymorphisms have shown significant ON association in several QcALL risk groups, mainly in corticosteroid groups, age < 10 years, and high risk (HR) group. Furthermore, the same study was conducted in parallel with patients in the replication (DFCI) cohort (N = 192), and we showed significant genetic association results for all studied polymorphisms. In conclusion, this study identifies that some ALL children have a high incidence of ON during the treatment that is highly associated with polymorphisms in different genes regulated by corticosteroids and ALL prognostic factors.
115

Mecanismes de regulació en l'activitat biològica del factor de transcripció Snail

Domínguez Solà, David 03 April 2003 (has links)
Els factors de transcripció de la família Snail són fonamentals en la "transició epiteli-mesènquima", procés morfogènic essencial en el desenvolupament embrionari i en els fenòmens metastàsics tumorals.En els mamífers l'activitat d'Snail és modulada per dos mecanismes. (i) En el promotor humà es troben regions definides de resposta a factors repressors, predominants en les cèl·lules epitelials, i elements diferenciats de resposta a inductors de la "transició epiteli-mesènquima". (ii) L'activitat d'Snail és condicionada també per la seva localització subcel·lular, modulada per mecanismes no transcripcionals: la fosforilació d'Snail determina si és o no exclós del nucli. Al citosol no pot actuar com a repressor transcripcional però pot interaccionar amb la xarxa microtubular, que estabilitza i en condiciona el dinamisme. Això coincideix amb l'activació de la GTPasa RhoA i la reorientació dels filaments de vimentina, fets associats a l'adquisició de capacitat migratòria. L'efecte com a repressor transcripcional i la modulació del dinamisme microtubular són possiblement esdeveniments coordinats necessaris per al rol biològic d'Snail en mamífers. / Snail family of transcription factors is fundamental to the "epithelial-mesenchymal transition", morphogenic process essential to embryonic development and metastatic phenomena in tumors.Snail's activity is modulated in two ways in mammals. (i) The human promoter harbors definite regions that respond to repressor factors, which prevail in epithelial cells; and differentiated elements that respond to known inducers of the "epithelial-mesenchymal transition". (ii) Snail's activity is also conditioned by its subcellular localization, mechanism not dependent on its transcriptional control: Snail phosphorylation determines whether Snail is excluded or not from the nucleus. When in the cytosol, Snail is unable to act as a transcriptional repressor, but however binds to the microtubular meshwork, which becomes stabilized and whose dynamism is conditioned as a result. This fact coincides with the activation of the RhoA GTPase and reorientation of vimentin filaments, both phenomena being related to the acquisition of cell motility. The transcriptional repressor and the microtubule dynamics effects are probably two coordinated events necessary to Snail's biological role in mammals.

Page generated in 0.0355 seconds