• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 63
  • 22
  • 21
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 457
  • 123
  • 122
  • 113
  • 79
  • 79
  • 78
  • 73
  • 54
  • 53
  • 51
  • 51
  • 48
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Levedura hidrolisada como fonte de nucleotídeos para leitões recém desmamados / Hidrolyzed yeast as source of nucleotides for weanling pigs

Carla de Andrade 22 January 2010 (has links)
O objetivo deste trabalho foi avaliar os efeitos de níveis de nucleotídeos nas dietas de leitões recém-desmamados sobre o desempenho, a morfometria de órgãos e a histologia do epitélio intestinal. Foram utilizados 144 leitões desmamados aos 21 dias de idade e com peso médio inicial de 5,80 ± 0,16 kg em um experimento inteiramente ao acaso, com seis tratamentos, seis repetições por tratamento e quatro animais por baia (unidade experimental). Os tratamentos foram: Am (antimicrobiano) dieta basal com inclusão de 40 ppm de sulfato de colistina, assim como dieta basal com 0, 150, 300, 450 e 600 ppm de nucleotídeos. Ao final do experimento, foi abatido um animal de cada baia para coleta das amostras para avaliação da morfometria de órgãos e da histologia do epitélio intestinal. No período de 1 a 14 dias de experimentação, houve piora linear (P<0,01) das variáveis de desempenho, enquanto que no período total de 34 dias, houve redução linear (P=0,03) do peso final dos animais com o aumento dos níveis de nucleotídeos na dieta. Os leitões alimentados com a dieta com o antibiótico colistina apresentaram maior (P<0,01) comprimento do intestino delgado e menor (P<0,01) relação altura de vilosidade:profundidade de cripta (AV:PC) no duodeno do que aqueles que receberam nucleotídeos. Foi observado, também, aumento linear (P<0,01) no peso relativo do baço, assim como redução linear (P<0,01) da relação AV:PC e redução linear (P<0,01) da profundidade de cripta no duodeno dos animais em função da adição de nucleotídeos na dieta. Assim, embora os níveis de até 600 ppm de nucleotídeos em dietas complexas de leitões recém-desmamados não tenham proporcionado melhora no desempenho, eles acarretaram benefícios à morfometria de órgãos e à histologia do epitélio intestinal dos animais. / The purpose of this work was to evaluate the effects of dietary nucleotide levels on performance, organs morphometry and intestinal histology of weanling pigs. One hundred and forty-four pigs weaned at 21 days of age and 5.80 ± .16 kg initial live weight were used a completely randomized design experiment with six treatments, six replications per treatment and four animals per pen (experimental unit). The treatments were: Am antimicrobial: basal diet with 40 ppm of colistin sulfate and basal diet with 0, 150, 300, 450 and 600 ppm of nucleotides. At the end of experimental period, an animal of each pen was slaughtered to evaluate of organs morphometry and intestinal epithelium histology. For the 1 to 14 days of experimental period, dietary nucleotides depressed linearly (P<.01) performance traits, while for the total experimental period of 34 days linear reduction of final live weight (P=.03) was observed with added nucleotides. Pigs fed diet with colistin showed greater (P<.01) length of small intestine and lower (P<.01) villus height:crypt depth ratio (AV:PC) of duodenum than those fed nucleotides. Also, a linear increase (P<.01) of relative weight of spleen, as well as a linear reduction (P<.01) of AV:PC and linear reduction (P<.01) of crypt depth of duodenum were observed with added dietary nucleotides. Therefore, although added nucleotides up to 600 ppm in complex diet did not improve performance, they showed some beneficial effects on organs morphometry and intestinal epithelium histology of weanling pigs.
372

Cooperativity in Mammalian RNA Silencing: A Dissertation

Broderick, Jennifer A. 26 July 2011 (has links)
Argonaute proteins are the core component of an RNA silencing complex. The human genome encodes four Argonaute paralogs –Ago1, Ago2, Ago3 and Ago4– proteins that are guided to target mRNAs by microRNAs. More than 500 miRNAs are conserved between mammals, and each microRNA can repress hundreds of genes, regulating almost every cellular process. We still do not fully understand the molecular mechanisms by which miRNAs regulate gene expression. Although we understand many aspects of microRNA biogenesis and formation of the RNA-induced silencing complex, much less is known about the subsequent steps leading to target mRNA regulation. Mammalian microRNAs rarely have complete complementarity to their target mRNAs so, instead of endonucleolytic cleavage by Ago2, microRNAs destabilize or repress translation of target mRNAs. Here I explored the functional limits of Argonaute proteins bound to their targets directly and indirectly through microRNAs in mammalian cells. I revealed the different abilities for Argonaute proteins bound at multiple sites in a target to generate cooperativity in silencing based on the extent of pairing between the microRNA and target mRNA. Further, I harnessed the endogenous microRNA silencing mechanism to repress an mRNA that is not a direct target of the microRNA by tethering the RNA-induced silencing complex to the 3´ UTR of an mRNA. This strategy allows tissue-specific gene silencing due to the limited endogenous expression profile of the recruited microRNA. Efforts made herein further our mechanistic knowledge of microRNA-induced gene silencing in mammalian cells and advance microRNA-based strategies toward treating human disease.
373

Synthèse d'analogues de l'adénosine-5'-triphosphate, agonistes potentiels du récepteur P2Y11

Dabeux, François 04 July 2008 (has links)
L’ATP est l’agoniste naturel du récepteur P2Y11. Ce nucléotide ne peut cependant pas être utilisé comme agent thérapeutique car, in vivo, il s’hydrolyse rapidement en ADP ou en AMP qui ne possèdent qu’une faible activité pour le récepteur. D’où l’intérêt de disposer d’analogues de synthèse moins sensibles à l’hydrolyse et possédant une affinité égale ou supérieure à celle de l’ATP.<p><p>Le premier objectif que nous nous sommes fixés au cours de notre thèse de doctorat fut de mettre au point un schéma de synthèse permettant d’obtenir des analogues de l’adénosine-5’-triphosphate [1] portant un motif thioalkyle ou thioaryle en position 2 de la base ainsi qu’un groupement dichlorométhylène entre les phosphores b et g & / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
374

Characterization of the Interaction Between the Attachment and Fusion Glycoproteins Required for Paramyxovirus Fusion: a Dissertation

Melanson, Vanessa R. 16 December 2005 (has links)
The first step of viral infection requires the binding of the viral attachment protein to cell surface receptors. Following binding, viruses penetrate the cellular membrane to deliver their genome into the host cell. For enveloped viruses, which have a lipid bilayer that surrounds their nucleocapsids, entry into the host cell requires the fusion of viral and cellular membranes. This process is mediated by viral glycoproteins located on the surface of the virus. For many enveloped viruses, such as influenza, Ebola, and human immunodeficiency virus, the fusion protein is responsible for mediating both attachment to cellular receptors and membrane fusion. However, paramyxoviruses are unique among fusion promoting viruses because their receptor binding and fusion activities reside on two separate proteins. This unique distribution of functions necessitates a mechanism by which the two proteins can transmit the juxtaposition of the viral and host cell membranes, mediated by the attachment protein (HN/H), into membrane fusion, mediated by the fusion (F) protein. This mechanism allows for paramyxoviruses to gain entry into and spread between cells, and therefore, is an important aspect of virus infection and disease progression. Despite the conservation of receptor binding activity among members of the Paramyxovirinaesubfamily, for most of these viruses, including Newcastle disease virus (NDV), heterologous HN proteins cannot complement F in the promotion of fusion; both the HN and F proteins must originate from the same virus. This is consistent with the existence of a virus-specific interaction between the two glycoproteins. Thus, one or more domains on the HN and F proteins is thought to mediate a specific interaction between them that is an integral part of the fusion process. Therefore, the primary focus of this thesis is the identification of the site(s) on HN that directly contacts F in the HN-F interaction. The ectodomain of the HN protein consists of a stalk and a terminal globular head. Analysis of the fusion activity of chimeric paramyxovirus HN proteins indicates that the stalk region of HN determines its F protein specificity. The first goal of this research was to address the question of whether the stalk not only determines F-specificity, but does so by directly mediating the interaction with F. To establish a correlation between the amount of fusion and the extent of the HN-F interaction, a specific and quantitative co-immunoprecipitation assay was used that detects the HN-F complex at the cell surface. As an initial probe of the role of the HN stalk in mediating the interaction with F, N-glycans were individually added at several positions in the region. N-glycan addition at positions 69 and 77 in the stalk specifically and completely block both fusion and the HN-F interaction without affecting either HN structure or its other activities. However, though they also prevent fusion, N-glycans added at other positions in the stalk also modulate activities that reside in the globular head of HN. This correlates with an alteration of the tetrameric structure of the protein as indicated by sucrose gradient sedimentation analyses. These additional N-glycans likely indirectly affect fusion, perhaps by interfering with changes in the conformation of HN that link receptor binding to the fusion activation of F. To address the issue of whether N-glycan addition at any position in HN would abolish fusion, an N-glycan was added in another region at the base of the globular head of HN (residues 124-152), which was previously predicted by a peptide-based analysis to mediate the interaction with F. HN carrying this additional N-glycan exhibits significant fusion promoting activity, arguing against this site being part of the F-interactive domain in HN. These data support the idea that the F-interactive site on HN is defined by the stalk region of the protein. Site-directed mutagenesis was used to begin to explore the role of individual residues in the stalk in the interaction with F. The characteristics of the F-interactive domain in the stalk of HN are that it is a conserved motif with enough sequence heterogeneity to account for the specificity of the interaction. One such region that meets these requirements is the intervening region (IR) (residues 89-95); a non-helical domain situated between two conserved heptad repeats. Several amino acid substitutions for a completely conserved proline residue in this region impair not only fusion and the HN-F interaction, but also decrease neuraminidase activity in the globular domain and alter the structure of the protein, suggesting that the substitutions indirectly affect the HN-F interaction. Substitutions for L94 also interfere with fusion, but have no significant effect on any other HN function or its structure. Amino acid substitutions at two other positions in the IR (A89 and L90) also modulate only fusion. In all cases, diminished fusion correlates with a decreased ability of the mutated HN protein to interact with F at the cell surface. These findings indicate that the IR is critical to the role of HN in the promotion of fusion and are consistent with its direct involvement in the interaction with the homologous F protein. These are the first point mutations in the HN protein for which a correlation has been demonstrated between the extent of the HN-F interaction and the amount of fusion. This argues strongly that the co-IP assay is an accurate reflection of the HN-F interaction. The second goal of this research was to address the HN-F interaction from the perspective of the F protein by investigating the relationship between receptor binding, the HN-F interaction, and fusion using a highly fusogenic form of the F protein. It has previously been shown that an L289A substitution in NDV F eliminates the requirement for HN in the promotion of fusion and enhances HN-dependent fusion above wild-type (wt) levels. Here, it was shown that the HN-independent fusion exhibited by L289A-F in Cos-7 cells cannot be duplicated in BHK cells. However, when L289A-F is co-expressed with wt HN, enhanced fusion above wt levels is observed in BHK cells. Additionally, when L289A-F is co-expressed with IR-mutated HN proteins previously shown to promote low levels of fusion with wt F, a 2.5-fold increase in fusion was observed. However, similar to wt F, an interaction between L289A-F and the IR-mutated HN proteins was not detected. These results imply that the attachment function of HN, as well as the conformational change in L289A-F, are necessary for the enhanced level of fusion exhibited by HN proteins co-expressed with L289A-F. Indeed, two MAbs detected a conformational difference between L289A-F and the wt F protein. These findings support the idea that the L289A substitution converts F to a form that is less dependent on an interaction with HN for conversion to the fusion-active form. The last goal of this research was to address the cellular site of the HN-F interaction, still a controversial issue based on conflicting data from studies of different paramyxoviruses, using various approaches. This is a particular point of interest, as it speaks to the mechanism by which the HN-F interaction regulates fusion. Thus, NDV HN and F were successfully retained intracellularly with a multiple arginine or KK motif, respectively. The results of Endoglycosidase H resistance and F cleavage studies indicate that the mutated proteins, HN-ER and F-ER, are retained in a compartment prior to the medial-Golgi apparatus and that they are unable to interact with a high enough affinity to co-retain or even cause reduced transport of their wt partner glycoproteins. This is consistent with the HN-F interaction occurring at the cell surface, possibly triggered by receptor binding. In conclusion, this thesis presents evidence to argue that the IR in the stalk of the NDV HN protein directly mediates the interaction with the F protein that is necessary for fusion. Overall, the data presented in this thesis extend the current knowledge of the mechanism by which the paramyxovirus attachment protein can trigger the F protein to initiate membrane fusion. A clear understanding of this process has the potential to identify new anti-viral strategies, such as small molecule inhibitors, aimed at controlling paramyxovirus infection by interfering with early steps in the virus infection cycle.
375

A Characterization of Substrates and Factors Involved in Yeast Nonsense-Mediated mRNA Decay: A Dissertation

Belk, Jonathan Philip 08 January 2002 (has links)
Many intricate and highly conserved mechanisms have evolved to safeguard organisms against errors in gene expression. The nonsense-mediated mRNA decay pathway (NMD) exemplifies one such mechanism, specifically by eliminating mRNAs containing premature translation termination codons within their protein coding regions, thereby limiting the synthesis of potentially deleterious truncated polypeptides. Studies in Saccharomyces Cerevisiae have found that the activity of at least three trans-acting factors, known as UPF1, UPF2/NMD2, and UPF3is necessary for the proper function of the NMD pathway. Further research conducted in yeast indicates that the degradation of substrates of the NMD pathway is dependent on their translation, and that the sub-cellular site of their degradation in the cytoplasm. Although most evidence in yeast suggests that substrates of the NMD pathway are degraded in the cytoplasm while in association with the translation apparatus, some mammalian studies have found several mRNAs whose decay appears to occur within the nucleus or before their transport to the cytoplasm has been completed. In addition, study of the mammalian TPI mRNA found that this transcript was unavailable as a substrate for the NMD pathway once it had been successfully exported to the cytoplasm, further supporting the notion that the degradation of mammalian substrates of the NMD pathway occurs in association with the nucleus, or during export from the nucleus to the cytoplasm. To determine if yeast cytoplasmic nonsense-containing mRNA can become immune to the NMD pathway we examined the decay kinetics of two NMDS substrate mRNAs in response to repressing or activating the NMD pathway. Both the ade2-1 and pgk1-UAG-2nonsense-containing mRNAs were stabilized by repressing this pathway, while activation of NMD resulted in the rapid and immediate degradation of each transcripts. These findings demonstrate that nonsense-containing mRNAs residing in the nucleus are potentially susceptible to NMD at each round of translation. The remainder of this thesis utilizes protein overexpression studies to gain understanding into the function of factors related to the processes of nonsense-mediated mRNA decay and translation in Saccharomyces cerevisiae. Overexpression of a C-terminal truncated form of Nmd3p was found to be dominant-negative for cell viability, translation and the normal course of rRNA biogenesis. Overexpression studies conducted with mutant forms of the nonsense-mediated mRNA decay protein Upf1p, found that overexpression of mutants in the ATP binding and ATP hydrolysis region ofUpflp were dominant-negative for growth in an otherwise wild-type yeast strain. Furthermore, overexpression of the ATP hydrolysis mutant of Upf1p (DE572AA), resulted in the partial inhibition of NMD and a general perturbation of the translation apparatus. These results support previous studies suggesting a general role for Upf1p function in translation.
376

Analysis of TAF II Function in the Yeast Saccharomyces Cerevisiae

Apone, Lynne Marie 14 January 1998 (has links)
Transcription by RNA polymerase II is a highly regulated process requiring a number of general and promoter specific transcription factors. Although many of the factors involved in the transcription reaction are known, exactly how they function to stimulate or repress transcription is not well understood. Central to understanding gene regulation is understanding the mechanism by which promoter specific transcription activators (activators) stimulate transcription. A group of factors called coactivators have been shown to be required for activator function in vitro. The best characterized coactivators to date are members of the TFIID complex. TFIID is a multisubunit complex composed of the TATA box binding protein (TBP) and 8-12 TBP associated factors (TAFIIs). Results from numerous in vitro experiments indicate that TAFIIs function by binding to activators and forming a bridge between the activator and the basal transcription machinery. In order to gain insight into the mechanism by which activators stimulate transcription, we chose to analyze the in vivo function of TAFIIs, their proposed targets. Results from the genetic disruption of a number of TAFIIs in the yeast Saccharomyces cerevisiae showed that most are encoded by essential genes. In order to study their function, temperature-sensitive and conditional alleles were constructed. Cells depleted of individual TAFIIs by either of these two methods displayed no defect in global transcription activation. Inactivation of yTAFII17, however, resulted in a promoter specific defect. In addition, inactivation of yTAFII145, yTAFII90, or TSM1, resulted in an inability of cells to progress through the cell-cycle. In an attempt to identify genes whose expression required yTAFII90, we performed subtractive hybridization on strains containing wild-type and temperature-sensitive alleles. Although this technique successfully identified genes differentially expressed in the two strains, it failed to identify genes whose expression required yTAFII90. These results indicate that TAFIIs are not the obligatory targets of activators, and that other factors must provide this role in vivo. Furthermore, that many of TAFIIs are required for cell-cycle progression.
377

Aufbau eines Screeningverfahrens zur Durchmusterung von Variantenbibliotheken der T7-RNA-Polymerase hinsichtlich des Einbaus 2’-Methoxy-modifizierter Nucleotide: Aufbau eines Screeningverfahrens zur Durchmusterung vonVariantenbibliotheken der T7-RNA-Polymerase hinsichtlich desEinbaus 2’-Methoxy-modifizierter Nucleotide

Nöbel, Nico 23 August 2011 (has links)
Thema dieser Arbeit ist die evolutive Optimierung der T7-RNA-Polymerase. Zur Stabilisierung technischer oder therapeutischer RNA-Moleküle gegenüber RNAsen wäre es wünschenswert eine RNA-Polymerase zu generieren, welche RNA vollständig aus 2’- modifizierten Nucleotiden synthetisieren kann. Zu diesem Zweck wurde ein kombiniertes Selektions- und Screeningverfahren zur Durchmusterung von Variantenbibliotheken der T7- RNA-Polymerase hinsichtlich des Einbaus von 2’-Methoxy-modifizierten Nucleotiden in RNA entwickelt. Es wurden ein gut handhabbarer, cis-regulierter Expressionsvektor sowie ein Selektionsplasmid erzeugt, die zusammen in E. coli ein in-vivo-Selektionssystem bilden, mit dessen Hilfe man Zellen, welche T7-RNA-Polymerase-Aktivität zeigen anhand ihrer grünen Fluoreszenz identifizieren konnte. Durch error-prone PCR wurden Mutantenbibliotheken generiert, und diese in das Selektionssystem eingesetzt. So konnte die Anzahl der potentiell zu testenden Varianten erheblich gesenkt werden. Zur Bestimmung der T7-RNA-Polymerase- Aktivität mit 2’-Methoxy-modifizierten Nucleotiden wurde ein Fluoreszenz-basierendes Assay etabliert. Dieses Assay, das nicht mit radioaktiv-markierten Nucleotiden arbeitete und keinen gelelektrophoretischen Separationsschritt benötigte, konnte in allen Schritten zur parallelen Bearbeitung von 96 Proben in einem Mikrotiterplatten-Format angepasst werden, so dass es prinzipiell hochdurchsatzfähig war und sich zum Screening umfangreicher Variantenbibliotheken eignete. Die Assay-Reaktion kann dabei auch unkompliziert auf ein Screening von RNA- oder DNA-Polymerase-Bibliotheken hinsichtlich anderer Eigenschaften der Polymerase-Aktivität übertragen werden.
378

Endogenous Small RNAs in the <em>Drosophila</em> Soma: A Dissertation

Ghildiyal, Megha 11 March 2010 (has links)
Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNAs have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, modes of target regulation and in the biological pathways they regulate. Historically, siRNAs were believed to arise only from exogenous double-stranded RNA triggers in organisms lacking RNA-dependent RNA polymerases. However, the discovery of endogenous siRNAs in flies expanded the biological significance of siRNAs beyond viral defense. By high throughput sequencing we identified Drosophila endosiRNAs as 21 nt small RNAs, bearing a 2´-O-methyl group at their 3´ ends, and depleted in dicer-2 mutants. Methylation of small RNAs at the 3´ end in the soma, is a consequence of assembly into a mature Argonaute2-RNA induced silencing complex. In addition to endo-siRNAs, we observed certain miRNAs or their miRNA* partners loading into Argonaute2. We discovered, that irrespective of its biogenesis, a miRNA duplex can load into either Argonaute (Ago1 or Ago2), contingent on its structural and sequence features, followed by assignment of one of the strands in the duplex as the functional or guide strand. Usually the miRNA strand is selected as the guide in complex with Ago1 and miRNA* strand with Ago2. In our efforts towards finding 3´ modified small RNAs in the fly soma, we also discovered 24-28nt small RNAs in certain fly genotypes, particularly ago2 and dcr-2mutants. 24-28nt small RNAs share many features with piRNAs present in the germline, and a significant fraction of the 24-28nt small RNAs originate from similar transposon clusters as somatic endo-siRNAs. Therefore the same RNA can potentially act as a precursor for both endo-siRNA and piRNA-like small RNA biogenesis. We are analyzing the genomic regions that spawn somatic small RNAs in order to understand the triggers for their production. Ultimately, we want to attain insight into the underlying complexity that interconnects these small RNA pathways. Dysregulation of small RNAs leads to defects in germline development, organogenesis, cell growth and differentiation. This thesis research provides vital insight into the network of interactions that fine-tune the small RNA pathways. Understanding the flow of information between the small RNA pathways, a great deal of which has been revealed only in the recent years, will help us comprehend how the pathways compete and collaborate with each other, enabling each other’s optimum function.
379

Studies on the Regulation of Cytoplasmic Polyadenylation Element-Binding Protein: A Dissertation

Lin, Chien-Ling 11 January 2012 (has links)
Post-transcriptional regulation of gene expression sits at the core of proteomic complexity; trans-acting factors that regulate RNA localization and translation capacity are thus indispensible. In this thesis, I present studies of the cytoplasmic polyadenylation element binding protein (CPEB), a sequence specific RNA-binding protein important for cell cycle progression and neural synaptic plasticity. I focus on CPEB because the activity of RNA-binding proteins affects the destiny of their mRNA substrates. As presented in Chapter II, CPEB, though mostly cytoplasmic at steady state, shuttles between the nucleus and the cytoplasm. Surprisingly, the RNA recognition motifs are essential for the nuclear localization. CPEB associates with the polyadenylation machinery in both compartments, suggesting it is involved in both nuclear mRNA processing and cytoplasmic translational regulation. Moreover, the nuclear translocalization is critical to relay a tight translation repression on CPE-containing mRNAs. Chapter III focuses on the regulation of CPEB dimerization. CPEB dimerizes through the RNA-binding domains to inhibit its own RNA binding ability in a cell cycle-dependent manner. By dimerizing, CPEB has enhanced binding to protein destruction factors so that robust active degradation occurs in the later cell cycle. The degradation of CPEB is required for translation activation of a subset of mRNAs and cell cycle progression. In addition, dimerization protects cells from being overloaded with excess CPEB. In sum, the localization and dimerization status of CPEB is dynamic and highly regulated; they in turn regulate the activity of CPEB, which results in responsive translation control. These studies provide a strong foundation to decipher CPEB-mediated gene expression.
380

Role of Host Cellular Membrane Raft Domains in the Assembly and Release of Newcastle Disease Virus: A Dissertation

Laliberte, Jason P. 01 April 2008 (has links)
Newcastle disease virus (NDV) belongs to the Paramyxoviridae, a family of enveloped RNA viruses that includes many important human and animal pathogens. Although many aspects of the paramyxovirus life cycle are known in detail, our understanding of the mechanisms regulating paramyxovirus assembly and release are poorly understood. For many enveloped RNA viruses, it has recently become apparent that both viral and host cellular determinants coordinate the proper and efficient assembly of infectious progeny virions. Utilizing NDV as a model system to explore viral and cellular determinants of paramyxovirus assembly, we have shown that host cell membrane lipid raft domains serve as platforms of NDV assembly and release. This conclusion was supported by several key experimental results, including the exclusive incorporation of host cell membrane raftassociated molecules into virions, the association of structural components of the NDV particle with membrane lipid raft domains in infected cells and the strong correlation between the kinetics of viral protein dissociation from membrane lipid raft domains and incorporation into virions. Moreover, perturbation of infected cell membrane raft domains during virus assembly resulted in the disordered assembly of abnormal virions with reduced infectivity. These results further established membrane raft domains as sites of virus assembly and showed the integrity of these domains to be critical for the proper assembly of infectious virions. Although specific viral protein-protein interactions are thought to occur during paramyxovirus assembly, our understanding of how these interactions are coordinated is incomplete. While exploring the mechanisms underlying the disordered assembly of non-infectious virions in membrane raft-perturbed cells, we determined that the integrity of membrane raft domains was critical in the formation and virion incorporation of a complex consisting of the NDV attachment (HN) and fusion (F) proteins. The reduced virus-to-cell membrane fusion capacity of particles released from membrane raft-perturbed cells was attributed to an absence of the HN – F glycoprotein-containing complex within the virion envelope. This result also correlated with a reduction of these glycoprotein complexes in membrane lipid raft fractions of membrane raft-perturbed cells. Specifically, it was determined that the formation of newly synthesized HN and F polypeptides into the glycoprotein complex destined for virion incorporation was dependent on membrane lipid raft integrity. Finally, a novel virion complex between the ribonucleoprotein (RNP) structure and the HN attachment protein was identified and characterized. Unlike the glycoprotein complex, the detection of the RNP – HN protein-containing complex was not affected by membrane raft perturbation during virus assembly in the cell. The biological importance of this novel complex for the proper assembly of an infectious progeny virion is currently under investigation. The results presented in this thesis outline the role of host cell membrane lipid raft domains in the assembly and release processes of a model paramyxovirus. Furthermore, the present work extends our understanding of how these particular host cell domains mechanistically facilitate the ordered assembly and release of an enveloped RNA virus.

Page generated in 0.0322 seconds