• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 63
  • 22
  • 21
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 457
  • 123
  • 122
  • 113
  • 79
  • 79
  • 78
  • 73
  • 54
  • 53
  • 51
  • 51
  • 48
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Post-Transcriptional Control of Human Cellular Senescence: A Dissertation

Burns, David M. 15 July 2010 (has links)
The central dogma of biology asserts that DNA is transcribed into RNA and RNA is translated into protein. However, this overtly simplistic assertion fails to portray the highly orchestrated and regulated mechanisms of transcription and translation. During the process of transcription, RNA provides the template for translation and protein synthesis as well as the structural and sequence specificity of many RNA and protein-based machines. While only 1-5% of the genome will escape the nucleus to be translated as mRNAs, complex, parallel, highly-conserved mechanisms have evolved to regulate specific mRNAs. Trans-acting factors bind cis-elements in both the 5" and 3" untranslated regions of mRNA to regulate their stability, localization, and translation. While a few salient examples have been elucidated over the last few decades, mRNA translation can be reversibly regulated by the shortening and lengthening of the 3" polyadenylate tail of mRNA. CPEB, an important factor that nucleates a complex of proteins to regulate the polyadenylate tail of mRNA, exemplifies a major paradigm of translational control during oocyte maturation and early development. CPEB function is also conserved in neurons and somatic foreskin fibroblasts where it plays an important role in protein synthesis dependent synaptic plasticity and senescence respectively. Focusing on the function of CPEB and its role in mRNA polyadenylation during human cellular senescence, the following dissertation documents the important finding that CPEB is required for the normal polyadenylation of p53 mRNA necessary for its normal translation and onset of senescence. Cells that lack CPEB have abnormal levels of mitochondria and ROS production, which are demonstrated to arise from the direct result of hypomorphic p53 levels. Finally, in an attempt to recapitulate the model of CPEB complex polyadenylation in human somatic cells, I unexpectedly find that Gld-2, a poly(A) polymerase required for CPEB-mediated polyadenylation in Xenopus laevis oocytes, is not required for p53 polyadenylation, but instead regulates the stability of a microRNA that in turn regulates CPEB mRNA translation. Furthermore, I demonstrate that CPEB requires Gld-4 for the normal polyadenylation and translation of p53 mRNA.
392

Regulation of Cellular and HIV-1 Gene Expression by Positive Transcription Elongation Factor B: A Dissertation

O'Brien, Siobhan 26 October 2010 (has links)
RNA polymerase II-mediated transcription of HIV-1 genes depends on positive transcription elongation factor b (P-TEFb), the complex of cyclin T1 and CDK9. Recent evidence suggests that regulation of transcription by P-TEFb involves chromatin binding and modifying factors. To determine how P-TEFb may connect chromatin remodeling to transcription, we investigated the relationship between P-TEFb and histone H1. We show that P-TEFb interacts with H1 and that H1 phosphorylation in cell culture correlates with P-TEFb activity. Importantly, P-TEFb also directs H1 phosphorylation during Tat transactivation and wild type HIV-1 infection. Our results also show that P-TEFb phosphorylates histone H1.1 at a specific C-terminal site. Expression of a mutant H1.1 that cannot be phosphorylated by P-TEFb disrupts Tat transactivation as well as transcription of the c-fos and hsp70 genes in HeLa cells. P-TEFb phosphorylation of H1 also plays a role in the expression of muscle differentiation marker genes in the skeletal myoblast cell line C2C12. Additionally, ChIP experiments demonstrate that H1 dissociates from the HIV-1 LTR in MAGI cells, stress-activated genes in HeLa cells, and muscle differentiation marker genes in C2C12 cells under active P-TEFb conditions. Our results overall suggest a new role for P-TEFb in both cellular and HIV-1 transcription through chromatin.
393

Analysis of Integrin α6β4 Function in Breast Carcinoma: A Dissertation

Gerson, Kristin D. 06 April 2012 (has links)
The development and survival of multicellular organisms depends upon the ability of cells to move. Embryogenesis, immune surveillance, wound healing, and metastatic disease are all processes that necessitate effective cellular locomotion. Central to the process of cell motility is the family of integrins, transmembrane cell surface receptors that mediate stable adhesions between cells and their extracellular environment. Many human diseases are associated with aberrant integrin function. Carcinoma cells in particular can hijack integrins, harnessing their mechanical and signaling potential to propagate cell invasion and metastatic disease, one example being integrin α6β4. This integrin, often referred to simply as β4, is defined as an adhesion receptor for the laminin family of extracellular matrix proteins. The role of integrin β4 in potentiating carcinoma invasion is well established, during which it serves both a mechanical and signaling function. miRNAs are short non-coding RNAs that regulate gene expression posttranscriptionally, and data describing the role of extracellular stimuli in governing their expression patterns are sparse. This observation coupled to the increasingly significant role of miRNAs in tumorigenesis prompted us to examine their function as downstream effectors of β4, an integrin closely linked to aggressive disease in breast carcinoma. The work presented in this dissertation documents the first example that integrin expression correlates with specific miRNA patterns. Moreover, integrin β4 status in vitro and in vivo is associated with decreased expression of distinct miRNA families in breast cancer, namely miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, with purported roles in cell motility. Another miRNA, miR-29a, is significantly downregulated in response to de novo expression of β4 in a breast carcinoma cell line, and β4-mediated repression of the miRNA is required for invasion. Another major conclusion of this study is that β4 integrin expression and ligation can regulate the expression of SPARC in breast carcinoma cells. These data reveal distinct mechanisms by which β4 promotes SPARC expression, involving both a miR-29a-mediated process and a TOR-dependent translational mechanism. Our observations establish a link between miRNA expression patterns and cell motility downstream of β4 in the context of breast cancer, and uncover a novel effector of β4-mediated invasion.
394

Characterization of New Factors in the 18S Nonfunctional Ribosomal RNA Decay Pathway in S. cerevisiae: A Dissertation

Merrikh, Christopher N. 05 March 2012 (has links)
The molecular biology revolution of the 1960s has given rise to an enormous body of literature describing, in great detail, the inner workings of the cell. Over the course of the past 50 years, and countless hours at the bench, biologists have used the implications of basic research to produce vaccines, antibiotics, and other therapies that have improved both the quality and duration of our lives. Despite these incredible advances, basic questions remain unanswered. In even the simplest model organism, hundreds of essential genes have never been studied. Moreover, the central dogma of molecular biology—DNA to RNA to Protein—is understood largely in terms of how the cell functions under ideal conditions. What happens when things go wrong? This study seeks to characterize one of the cell’s contingency plans—a quality control measure for the eukaryotic ribosome. Today, despite the abundance of ribosomes in all cells, we are only beginning to understand the details of how they function, and the mechanisms that monitor their behavior. Recently, inactivated ribosomes were shown to be destroyed by the cell's own quality control measures, potentially preventing them from harming the cell. This system, dubbed 18S Nonfunctional rRNA Decay, is known to utilize a pair of ribosome-binding proteins to carry out its function. Yet the pathway still functions, albeit more slowly, in the absence of these two proteins, suggesting that other components must exist. The work discussed here is largely concerned with identifying these other factors, characterizing their activities, and determining how the 18S Nonfunctional rRNA Decay pathway impacts the health of the cell.
395

Optimizing RNA Library Preparation to Redefine the Translational Status of 80S Monosomes: A Dissertation

Heyer, Erin E. 06 October 2015 (has links)
Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for identifying and quantifying RNAs in diverse sample types. The accuracy of conclusions drawn from these analyses depends on precise and quantitative conversion of the RNA sample into a DNA library suitable for sequencing. Here, we describe an optimized method of preparing strand-specific RNA deep sequencing libraries from small RNAs and variably sized RNA fragments obtained from ribonucleoprotein particle footprinting experiments or fragmentation of long RNAs. Because all enzymatic reactions were optimized and driven to apparent completion, sequence diversity and species abundance in the input sample are well preserved. This optimized method was used in an adapted ribosome-profiling approach to sequence mRNA footprints protected either by 80S monosomes or polysomes in S. cerevisiae. Contrary to popular belief, we show that 80S monosomes are translationally active as demonstrated by strong three-nucleotide phasing of monosome footprints across open reading frames. Most mRNAs exhibit some degree of monosome occupancy, with monosomes predominating on upstream ORFs, canonical ORFs shorter than ~590 nucleotides and any ORF for which the total time required to complete elongation is substantially shorter than the time required for initiation. Additionally, endogenous NMD targets tend to be monosome-enriched. Thus, rather than being inactive, 80S monosomes are significant contributors to overall cellular translation.
396

Identification of Novel (<em>R</em>NAi <em>De</em>ficient) Genes in <em>C. elegans</em>: A Dissertation

Chen, Chun-Chieh G. 26 September 2006 (has links)
RNA interference or RNAi was first discovered as an experimental approach that induces potent sequence-specific gene silencing. Remarkably, subsequent studies on dissecting the molecular mechanism of the RNAi pathway reveal that RNAi is conserved in most eukaryotes. In addition, genes and mechanisms related to RNAi are employed to elicit the regulation of endogenous gene expression that controls a variety of important biological processes. To investigate the mechanism of RNAi in the nematode C. elegans, we performed genetic screens in search of RNAi deficient mutants (rde). Here I report the summary of the genetic screens in search of rde mutants as well as the identification of two novel genes required for the RNAi pathway, rde-3 and rde-8. In addition, we demonstrate that some of the rde genes, when mutated, render the animals developmentally defective, suggesting that these rde genes also function in developmental gene regulation. This work presents novel insights on the components of the RNAi pathway and the requirement of these components in the regulation of endogenous gene expression.
397

Nucleic Acid Sensing by the Immune System: Roles For the Receptor For Advanced Glycation End Products (RAGE) and Intracellular Receptor Proteins: A Dissertation

Sirois, Cherilyn M. 14 July 2011 (has links)
As humans, we inhabit an environment shared with many microorganisms, some of which are harmless or beneficial, and others which represent a threat to our health. A complex network of organs, cells and their protein products form our bodies’ immune system, tasked with detecting these potentially harmful agents and eliminating them. This same system also serves to detect changes in the healthy balance of normal functions in the body, and for repairing tissue damage caused by injury. Immune recognition of nucleic acids, DNA and RNA, is one way that the body detects invading pathogens and initiates tissue repair. A number of specialized receptor proteins have evolved to distinguish nucleic acids that represent “threats” from those involved in normal physiology. These proteins include members of the Toll-like receptor family and diverse types of cytosolic proteins, all of which reside within the confines of the cell. Few proteins on the cell surface have been clearly characterized to interact with nucleic acids in the extracellular environment. In this dissertation, I present collaborative work that identifies the receptor for advanced glycation end products (RAGE) as a cell surface receptor for nucleic acids and positions it as an important modulator of immune responses. Molecular dimers of RAGE interact with the sugar-phosphate backbones of nucleic acid ligands, allowing this receptor to recognize a variety of DNA and RNA molecules regardless of their nucleotide sequence. Expression of RAGE on cells promotes uptake of DNA and enhances subsequent responses that are dependent on the nucleic acid sensor Toll-like receptor 9. When mice deficient in RAGE are exposed to DNA in the lung, the predominant site of RAGE expression, they do not mount a typical early inflammatory response, suggesting that RAGE is important in generating immune responses to DNA in mammalian organisms. Further evidence suggests that RAGE interacts preferentially with multimolecular complexes that contain nucleic acids, and that these complexes may induce clustering of receptor dimers into larger multimeric structures. Taken together, the data reported here identify RAGE as an important cell surface receptor protein for nucleic acids, which is capable of modulating the intensity of immune responses to DNA and RNA. Understanding of and intervention in this recognition pathway hold therapeutic promise for diseases characterized by excessive responses to self nucleic acids, such as systemic lupus erythematosus, and for the pathology caused by chronic inflammatory responses to self and foreign nucleic acids.
398

La méthylation flavine-dépendante d’acides nucléiques : aspects évolutifs, métaboliques, biochimiques et spectroscopiques / Flavin-dependent methylation of nucleic acids : evolutionary, metabolic, biochemical and spectroscopic aspects

Sournia, Pierre 14 December 2016 (has links)
La méthylation de l’uridine sur son carbone 5 est apparue au cours de l’évolution sous plusieurs formes. Tout d’abord, les thymidylate synthases permettent la synthèse de novo du dTMP, un précurseur essentiel de l’ADN des trois règnes du vivant. Deux familles de thymidylate synthases sont connues à ce jour : ThyA et la flavo-enzyme ThyX, codées par des gènes hétérologues et ayant des structures et mécanismes réactionnels radicalement différents. En outre, cette méthylation de l’uridine est apparue (probablement plus tard) sous forme de modifications post-transcriptionnelles des ARNt et ARNr. Cette thèse vise à questionner les contraintes évolutives ayant menés indépendament à ces quatres types de méthylation de l’uridine.Une première partie décrit l’identification d’une voie métabolique permetant la complémentation du phénotype d’auxotrophie pour la thymidine par des analogues nucléotidiques chez Escherichia coli. Une approche de biologie synthétique en vue d’établir une voie alternative de biosynthèse du thymidylate a aussi été mise en œuvre. Une technique de sélection de gènes de complémentation du phénotype d’auxotrophie pour la thymidine, issus de mutagénèse aléatoire, a pu être développée. Dans une seconde partie, des études biochimiques et sppectroscopiques ont été réalisées sur la méthyle-transférase flavine-dépendante TrmFO, responsable de la méthylation post-transciptionnelle de l’uridine 54 des ARNt de certains microorganismes.L’implication de certains résidus dans la fixation du substrat a pu être déterminée d’une part, et certains intermédiaires réactionnels potentiels ont été caractérisés spectralement d’autre part. Ces dernières observations s’appuient, en outre, sur des études en cours de spectroscopie résolue en temps et des simulations de dynamique moléculaire afin de mieux comprendre les flavoprotéines en général et les méthyle transférases flavine-dépendantes en particulier. / Enzymes catalyzing the methylation of uridine at its carbon 5 position have appeared independently in different forms across evolution. Thymidylate synthases ThyA and the flavoprotein ThyX catalyze the de novo synthesis of dTMP, an essential DNA precursor in the three domains of life. They are encoded by heterologous genes and have drastically different structures and reaction mechanisms. On the other hand, this uridine methylation is also performed by tRNA and rRNA post-transcriptional modification enzymes.This thesis assesses the question of the evolutionary constraints that have led independently to four kinds of uridine methylation. The first part describes the identification of a metabolic pathway allowing the complementation of thymidine auxotrophy by non-natural nucleotide analogs in Escherichia coli. A synthetic biology approach, aiming to establish an alternative pathway for thymidylate biosynthesis, was also implemented and a selection strategy for thymidine auxotrophy-complementing genes, could be developed.In a second part, biochemical and spectral studies where realised on the flavin-dependent methyltransferase TrmFO, responsible for the post-transcriptional methylation of uridine at the invariant position 54 of tRNA in several microorganisms. The involvement of specific amino acid residues in substrate fixation and in stabilization of potential reaction intermediates was demonstrated. Their spectral characterization supports previously proposed reaction schemes for flavin-dependent thymidylate forming enzymes. These observations are currently being pursued by parallel approaches combining time-resolved spectroscopy and molecular dynamics simulations, aiming to further our understanding of how flavin mediates the transfer of carbon molecules from folate to uracil rings.
399

Comparison of in Vitro Preconditioning Responses of Isolated Pig and Rabbit Cardiomyocytes: Effects of a Protein Phosphatase Inhibitor, Fostriecin

Armstrong, S. C., Kao, R., Gao, W., Shivell, L. C., Downey, J. M., Honkanen, R. E., Ganote, C. E. 01 January 1997 (has links)
Calcium tolerant pig and rabbit cardiomyocytes were isolated using retrograde aortic perfusion of nominally calcium-free collagenase. Preconditioning protocols used 1 or 3 x l0-min episodes of ischemic pelleting or pre-incubation with 100 μM adenosine, followed by a 15-min post-incubation and 180-240-min ischemic pelleting. Control cells were incubated and washed in parallel with the experimental groups. Injury was assessed by determination of cell morphology, trypan blue permeability following osmotic swelling, lactate and HPLC analysis of adenine nucleotides. Preconditioned pig cardiomyocytes had a reduced rate of ischemic contracture, but protection occurred without conservation of ATP. Preconditioned rabbit cardiomyocytes were protected without significant changes in rates of ischemic contracture or ATP depletion. Incubation of ischemic cells with the protein phosphatase inhibitor, fostriecin, at PP2A-selective concentrations (0.1-10 μM), mimicked preconditioning in both rabbit and pig cardiomyocytes. In rabbits, the K(ATP) channel blocker, 5-hydroxydecanoate (5-HD), did not block preconditioning or fostriecin protection. In the pig, 5-HD blocked both preconditioning and fostriecin protection, with return of the rates of ischemic contracture to control. However, 5-HD was an effective blocker of protection only in early ischemia. Fostriecin mimicked preconditioning in the rabbit and the early responses of the preconditioned pig. Preconditioning appears associated with protein phosphorylation in both the rabbit and the pig, but major pathways leading to protection may differ in the two species.
400

Contribution of rankl regulation to bone resorption induced by PTH receptor activation in osteocytes

Ben-awadh, Abdullah Nasser 19 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / PTH increases osteoclasts by upregulating RANKL in cells of the osteoblastic lineage, but the precise differentiation stage of the PTH target cell remains undefined. Recent findings demonstrate that PTH regulates gene expression in osteocytes and that these cells are an important source of RANKL. We therefore investigated whether direct regulation of the RANKL gene by PTH in osteocytes is required to stimulate osteoclastic bone resorption. To address this question, we examined bone resorption and RANKL expression in transgenic mice in which PTH receptor signaling is activated only in osteocytes (DMP1-caPTHR1) crossed with mice lacking the distal control region regulated by PTH in the RANKL gene (DCR -/-). Longitudinal analysis of circulating C-terminal telopeptide (CTX) in male mice showed elevated resorption in growing mice that progressively decreased to plateau at 3-5 month of age. Resorption was significantly higher (~100%) in DMP1-caPTHR1 mice and non-significantly lower (15-30%) in DCR -/-mice, versus wild type littermates (WT) across all ages. CTX in compound DMP1-caPTHR1; DCR -/-mice was similar to DMP1-caPTHR1 mice at 1 and 2 months of age, but by 3 months of age, was significantly lower compared to DMP1-caPTHR1 mice (50% higher than WT), and by 5 months, it was undistinguishable from WT mice. Micro-CT analysis revealed lower tissue material density in the distal femur of DMP1-caPTHR1 mice, indicative of high remodeling, and this effect was partially corrected in compound vi mice. The increased resorption exhibited by DMP1-caPTHR1 mice was accompanied by elevated RANKL mRNA in bone at 1 and 5 months of age. RANKL expression levels displayed similar patterns to CTX levels in DMP1-caPTHR1; DCR -/-compound mice at 1 and 5 month of age. The same pattern of expression was observed for M-CSF. We conclude that resorption induced by PTH receptor signaling requires direct regulation of the RANKL gene in osteocytes, but this dependence is age specific. Whereas DCR-independent mechanisms involving gp130 cytokines or vitamin D 3 might operate in the growing skeleton, DCR-dependent, cAMP/PKA/CREB-activated mechanisms mediate resorption induced by PTH receptor signaling in the adult skeleton.

Page generated in 0.0413 seconds