• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 63
  • 22
  • 21
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 457
  • 123
  • 122
  • 113
  • 79
  • 79
  • 78
  • 73
  • 54
  • 53
  • 51
  • 51
  • 48
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Vias intracelulares da ação do Sildenafil no diabetes insipidus induzido pelo lítio / Sildenafil action in lithium-induced NDI: intracellular pathway

Talita Rojas Cunha Sanches 13 June 2012 (has links)
Os pacientes que usam lítio (Li) para tratamento do transtorno bipolar frequentemente apresentam poliúria e deficiência de concentração urinária, sintomas do Diabetes Insipidus Nefrogênico (DIN). Animais tratados com Li apresentam baixos níveis de produção de adenosina monofosfato cíclico (AMPc) em resposta ao hormônio antidiurético (HAD). O Sildenafil (Sil), um inibidor da fosfodiesterase 5 (PDE5), eleva os níveis intracelulares de guanosina monofosfato cíclico (GMPc), levando a inserção de aquaporina 2 (AQP2) na membrana plasmática das células do ducto coletor. Portanto, inibidores de PDE podem promover a inserção de AQP2 na membrana plasmática mesmo sem a ativação do receptor de HAD, indicando a participação de uma via alternativa mediada pelo GMPc. Nós investigamos as vias de ação do Sil no tratamento da DIN induzida pelo Li. Ratos Wistar foram divididos nos seguintes grupos: grupo controle, recebendo dieta alimentar normal durante quatro semanas; grupo Li, recebendo dieta alimentar normal com 40 mmol Li por quilo de dieta durante quatro semanas; grupo Li + Sil, recebendo dieta alimentar normal com 40 mmol Li por quilo de dieta durante quatro semanas e 200 mg por quilo de dieta de Sil a partir da segunda semana; grupo Sil, recebendo dieta alimentar normal durante a primeira semana e a partir da segunda semana recebendo dieta normal com 200 mg de Sil por quilo de dieta. Os animais do grupo Li desenvolveram poliúria, diminuição da osmolalidade urinária e diminuição da expressão da AQP2 tanto na fração citoplasmática como de membrana celular e o Sil reverteu essas alterações. Demonstramos ainda que a concentração de GMPc intracelular estava aumentada nos túbulos papilares tratados com Sil. Observamos que a provável via de fosforilação da AQP2 induzida pelo GMPc é pela PKA. Além disso, o tratamento com Sil aumenta a expressão de pCreb, fator de transcrição para ativação do gene da AQP2. Observamos ainda que o Li diminui a expressão de eNOS e o tratamento com Sil normaliza essa diminuição. Assim, concluímos que o tratamento com Sil em ratos com DIN melhora a poliúria aumentando a produção e a inserção de AQP2. O tratamento com Sil pode ser benéfico para pacientes que sofrem com DIN induzido pelo Li / Patients taking lithium to treat bipolar disorder often present polyuria and urinary concentrating defect. In addition, lithium-treated animals present lower cyclic adenosine monophosphate production in response to vasopressin. Sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, elevates intracellular cyclic guanosine monophosphate (cGMP) levels, leading to plasma membrane accumulation of aquaporin 2 (AQP2). Therefore, PDE inhibitors might induce AQP2 membrane insertion even without vasopressin receptor activation by activating a parallel cGMP-mediated signal transduction pathway. We investigated Sil pathways of action in rats with lithium-induced nephrogenic Diabetes Insipidus (NDI). Wistar rats received lithium (40 mmol/kg food) or not for 4 weeks (Li or control), some rats also receiving sildenafil (200 mg/kg food) in weeks 2-4, with or without lithium (Li+Sil orSil). Animals in Li group developed polyuria, decreased urinary osmolality and decreased expression of AQP2 in both the cytoplasmic fraction and the cell membrane and Sil reversed these changes. We also demonstrated that intracellular cGMP concentration was increased in papillary tubules treated with Sil. We found that PKA may be involved in the pathway of cGMP induced AQP2 phosphorylation. In addition, Sil treatment increases Creb phosphorylation. Creb phosphorylation, acts as AQP2 gene transcription factor. We also observed that Li decreases eNOS expression and treatment with Sil normalizes this alteration. We conclude that Sil treatment improves polyuria by increasing production and insertion of AQP2. Sil treatment may be beneficial to patients suffering from induced DIN Li
422

Synthèse d'analogues des ligands naturels de récepteurs nicotiniques et purinergiques

Lemin, David 15 June 2004 (has links)
Cette thèse s’inscrit dans le cadre de l’étude de la relation structure-activité d’analogues de ligands naturels de récepteurs nicotiniques et purinergiques. Ce travail se divise en deux parties.<p><p>Dans la première partie de cette thèse, nous avons réalisé la synthèse d’analogues de la 11-homosédinone, alcaloïde isolé de la plante Sedum acre, qui présente une activité agoniste sur différents récepteurs nicotiniques du système nerveux central. Les différents analogues ont été synthétisé par application de la méthoxylation anodique pour introduire succesivement deux substituants en postion 2 et 6 d’un noyau pipéridinique. Les analogues synthétisés se différencient par la nature du noyau aromatique, la présence d’un groupement méthyle sur l’atome d’azote de la pipéridine et l’oxydation du sustituant en position 2. Ce travail a notamment permis de montré l’importance du groupement N-méthyle vis-à-vis de l’activité des analogues. Nous avons également pu mettre en évidence que l’introduction d’un halogène sur le noyau aromatique diminuait l’activité de l’analogue sur le récepteur a7 tout en augmentant l’acitivité sur le récepteur a4b2 et que l’introduction d’un noyau furanique permettait d’augmenter la sélectivité vis-à-vis du récepteur a4b2 tandis que l’introduction sur le noyau aromatique d’un groupement nitro ou méthoxy conduit à une perte totale de l’activité.<p><p>Dans la seconde partie de cette thèse, nous avons réalisé la synthèse d’analogues de la dATP, afin d’évaluer leur effet agoniste sur le récepteur P2Y11, impliqué dans différents mécanismes de différentiation cellulaire, dont notamment celui de la maturation des cellules leucémiques HL60 en cellules de type neutrophile. Les analogues synthétisés se différencient de la dATP par la présence d’un groupement méthylène ou dichlorométhylène entre les phosphores b et g de la chaîne polyphosphate, ainsi que par l’estérification de l’alcool en position 3’ du sucre. Ce travail a pu confirmer que les analogues en série 2’-désoxy conduisent à de meilleures activités que ceux de la série 2’-OH. Nous avons également pu montrer que l’estérification de la position 3’ conduit à une diminution de l’activité agoniste, à l’exception du groupement a-naphtoyle qui conduit à une augmentation significative de l’activité sur P2Y11.<p><p> / Doctorat en sciences, Spécialisation chimie / info:eu-repo/semantics/nonPublished
423

Role of CPEB in Senescence and Inflammation: A Dissertation

Ivshina, Maria 28 July 2010 (has links)
Cytoplasmic polyadenylation element-binding protein (CPEB) is a sequence-specific RNA-binding protein that promotes polyadenylation-induced translation. While a CPEB knockout (KO) mouse is sterile but overtly normal, embryo fibroblasts derived from this mouse (MEFs) do not enter senescence in culture as do wild-type MEFs, but instead are immortal. Exogenous CPEB restores senescence in the KO MEFs and also induces precocious senescence in wild-type MEFs. CPEB cannot stimulate senescence in MEFs lacking the tumor suppressors p53, p19ARF, or p16INK4A; however, the mRNAs encoding these proteins are unlikely targets of CPEB since their expression is the same in wild-type and KO MEFs. Conversely, Ras cannot induce senescence in MEFs lacking CPEB, suggesting that it may lie upstream of CPEB. One target of CPEB regulation is myc mRNA, whose unregulated translation in the KO MEFs may cause them to bypass senescence. Thus, CPEB appears to act as a translational repressor protein to control myc translation and resulting cellular senescence. CPEB is a sequence-specific RNA binding protein that regulates cytoplasmic polyadenylation-induced translation. We report here that CPEB KO mice are hypersensitive to LPS-induced endotoxic shock, which correlates with elevated serum levels of the proinflammatory cytokines IL-6, IL-8 and IL-12. Peritoneal macrophages from the KO mice, as well as a CPEB-depleted macrophage cell line, not only secrete more IL-6 than control cells in response to LPS, but also have prolonged retention of NFϰB in the nucleus, which is responsible for elevated IL-6 transcription. The amount of nuclear NFϰB correlates with reduced levels of IϰBα, which is hyperphosphorylated and rapidly degraded. Collectively, these data suggest that CPEB deficiency enhances the inflammatory response via delayed resolution of NFϰB signaling.
424

Therapeutic Silencing of Mutant <em>Huntingtin</em> by Targeting Single Nucleotide Polymorphisms: A Dissertation

Pfister, Edith L. 06 July 2012 (has links)
Huntington’s disease (HD) is an autosomal dominant, progressive neurodegenerative disorder. Invariably fatal, HD is caused by expansion of the CAG repeat region in exon 1 of the Huntingtin gene which creates a toxic protein with an extended polyglutamine tract 1. Silencing mutant Huntingtin messenger RNA (mRNA) is a promising therapeutic approach 2-6. The ideal silencing strategy would reduce mutant Huntingtin while leaving the wild-type mRNA intact. Unfortunately, targeting the disease causing CAG repeat expansion is difficult and risks targeting other CAG repeat containing genes. We examined an alternative strategy, targeting single nucleotide polymorphisms (SNPs) in the Huntingtin mRNA. The feasibility of this approach hinges on the presence of a few common highly heterozygous SNPs which are amenable to SNP-specific targeting. In a population of HD patients from Europe and the United states, forty-eight percent were heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Seventy-five percent of patients are heterozygous at least one of three frequently heterozygous SNPs. Consequently, only five allele-specific siRNAs are required to treat three-quarters of the patients in the European and U.S. patient populations. We have designed and validated siRNAs targeting these SNPs. We also developed artificial microRNAs (miRNAs) targeting Huntingtin SNPs for delivery using recombinant adeno-associated viruses (rAAVs). Both U6 promoter driven and CMV promoter driven miRNAs can discriminate between matched and mismatched targets in cell culture but the U6 promoter driven miRNAs produce the mature miRNA at levels exceeding those of the vast majority of endogenous miRNAs. The U6 promoter driven miRNAs can produce a number of unwanted processing products, most likely due to a combination of overexpression and unintended export of the pri-miRNA from the nucleus. In contrast, CMV-promoter driven miRNAs produce predominantly a single species at levels comparable to endogenous miRNAs. Injection of recombinant self complementary AAV9 viruses carrying polymerase II driven Huntingtin SNP targeting miRNAs into the striatum results in expression of the mature miRNA sequence in the brain and has no significant effect on endogenous miRNAs. Matched, but not mismatched SNP-targeting miRNAs reduce inclusions in a knock-in mouse model of HD. These studies bring us closer to an allele-specific therapy for Huntington’s disease.
425

Identification of Factors Involved in 18S Nonfunctional Ribosomal RNA Decay and a Method for Detecting 8-oxoguanosine by RNA-Seq

Limoncelli, Kelly A. 18 December 2017 (has links)
The translation of mRNA into functional proteins is essential for all life. In eukaryotes, aberrant RNAs containing sequence features that stall or severely slow down ribosomes are subject to translation-dependent quality control. Targets include mRNAs encoding a strong secondary structure (No-Go Decay; NGD) or stretches of positively-charged amino acids (Peptide-dependent Translation Arrest/Ribosome Quality Control; PDTA/RQC), mRNAs lacking an in-frame stop codon (Non-Stop Decay; NSD), or defective 18S rRNAs (18S Nonfunctional rRNA Decay; 18S NRD). Previous work from our lab showed that the S. cerevisiae NGD factors DOM34 and HBS1, and PDTA/RQC factor ASC1, all participate in the kinetics of 18S NRD. Upon further investigation of 18S NRD, our research revealed the critical role of ribosomal protein S3 (RPS3), thus adding to the emerging evidence that the ribosome senses its own translational status. While aberrant mRNAs mentioned above can occur endogenously, damaging agents, such as oxidative stress or UV irradiation, can negatively affect the chemical integrity of RNA. Such lesions could lead to translation errors and ribosome stalling. However, current tools to monitor the fate of damaged RNA are quite limited and only provide a low-resolution picture. Therefore, we sought to develop a deep-sequencing method to detect damaged RNA, taking advantage of reverse transcriptase's ability to insert a mutation across a damaged site. Using oxidized RNA as a model damaged RNA, our preliminary data showed increased G>T mutations in oxidized RNA. This method provides the foundation for future work aimed at understanding how cells deal with damaged RNA.
426

HIV-1 Gene Expression: Transcriptional Regulation and RNA Interference Studies: a Dissertation

Chiu, Ya-Lin 10 January 2003 (has links)
Gene expression of human immunodeficiency virus type-1 (HIV-1), which causes Acquired Immunodeficiency Syndrome (AIDS), is regulated at the transcriptional level, where negative factors can block elongation that is overcome by HIV Tat protein and P-TEFb. P-TEFb, a positive elongation transcription factor with two subunits, CDK9 and Cyclin T1 (CycT1), catalyzes Tat-dependent phosphorylation of Ser-5 in the Pol II C-terminal domain (CTD), allowing production of longer mRNAs. Ser-5 phosphorylation enables the CTD to recruit mammalian mRNA capping enzyme (Mce1) and stimulate its guanylyltransferase activity. This dissertation demonstrates that stable binding of Mce1 and cap methyltransferase to template-engaged Pol II depends on CTD phosphorylation, but not on nascent RNA. Capping and methylation doesn't occur until nascent pre-mRNA become 19-22 nucleotides long. A second and novel pathway for recruiting and activating Mce1 involved direct physical interaction between the CTD, Tat and Mce1. Tat stimulated the guanylyltransferase and triphosphatase activities of Mce1, thereby enhancing the otherwise low efficiency of cotranscriptional capping of HIV mRNA. These findings imply that multiple mechanisms exist for coupling transcription elongation and mRNA processing at a checkpoint critical to HIV gene expression. To elucidate P-TEFb's function in human (HeLa) cells, RNA interference (RNAi) was used to degrade mRNA for hCycT1 or CDK9. Down-regulation of P-TEFb expression by RNAi can be achieved without causing major toxic or lethal effects and can control Tat transactivation and HIV replication in host cells. High-density oligonucleotide arrays were used to determine the effect of P-TEFb knockdown on global gene expression. Of 44,928 human genes analyzed, 25 were down-regulated and known or likely to be involved in cell proliferation and differentiation. These results provide new insight into P-TEFb function, its potent role in early embryonic development and strong evidence that P-TEFb is a new target for developing AIDS and cancer therapies. To fulfill the promise of RNAi for treating infectious and human genetic diseases, structural and functional mechanisms underlying RNAi in human cells were studied. The status of the 5' hydroxyl terminus of the antisense strand of short interfering RNA (siRNA) duplexes determined RNAi activity, while a 3' terminus block was tolerated in vivo. A perfect A-form helix in siRNA was not required for RNAi, but was required for antisense-target RNA duplexes. Strikingly, crosslinking siRNA duplexes with psoralen did not completely block RNAi, indicating that complete unwinding of the siRNA helix is not necessary for RNAi in vivo. These results suggest that RNA amplification by RNA-dependent RNA polymerase is not essential for RNAi in human cells.
427

Konstrukce modifikovaných DNA s vybranými reaktivními či chránícími skupinami / Construction of modified DNAs with selected reactive or protective groups

Vaníková, Zuzana January 2020 (has links)
This PhD thesis is focused on the synthesis of DNA modified with photocleavable 2- nitrobenzyl protecting groups in major groove and its applications in the regulation of gene expression in the level of transcription. In the first part of my thesis, the synthesis of photocaged 2'-deoxyribonucleosides triphosphates and their photolysis to unprotected 5-hydroxymethylated nucleotides is described. All prepared nucleoside triphosphates were good substrates for their enzymatic incorporation into DNA. Synthesized 5-(2-nitrobenzyloxy)methyl-2'-deoxyuridine-5'- monophosphate (dUNBMP) and DNA with one 5-(2-nitrobenzyloxy)methyl- modification in the sequence were used for the detailed kinetic studies of photocleavage reactions. In the second part of the thesis, the series of modified DNAs with specific sequences were prepared by primer extension (PEX) and/or polymerase chain reaction (PCR). A cleavage of prepared modified DNAs was studied by selected restriction endonucleases (REs). In all cases, the nitrobenzylated DNA fully resist the cleavage by REs. The deprotection/ photocleavage conditions for nitrobenzylated DNA were studied in the case of DNAs with positive restriction endonuclease digestion of hydroxymethylated DNA. The resulting photocleaved DNA was fully digested by REs, therefore 2-nitrobenzyl...
428

Understanding Small RNA Formation in Drosophila Melanogaster: A Dissertation

Cenik, Elif Sarinay 09 July 2012 (has links)
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs from premicroRNA. My thesis focuses on the functional characteristics of two Drosophila Dicers that makes them specific for their biological substrates. We found that RNA binding protein partners of Dicers and two small molecules, ATP and phosphate are key in regulating Drosophila Dicers’ specificity. Without any additional factor, recombinant Dicer-2 cleaves pre-miRNA, but its product is shorter than the authentic miRNA. However, the protein R2D2 and inorganic phosphate block pre-miRNA processing by Dicer-2. In contrast, Dicer-1 is inherently capable of processing the substrates of Dicer, long dsRNAs. Yet, partner protein of Dicer-1, Loqs-PB and ATP increase the efficiency of miRNA production from pre-miRNAs by Dicer-1, therefore enhance substrate specificity of Dicer-1. Our data highlight the role of ATP and regulatory dsRNA-binding partner proteins to achieve substrate specificity in Drosophila RNA silencing. Our study also sheds light onto the function of the helicase domain in Drosophila Dicers. Although Dicer-1 doesn’t hydrolyze ATP, ATP enhances miRNA production by increasing Dicer-1’s substrate specificity through lowering its KM. On the other hand, Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP, and ATP hydrolysis is required for Dicer-2 to process long dsRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, is processive; generating siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate. Piwi-dependent small RNAs, namely piRNAs, are a third class of small RNAs that are distinct from miRNAs and siRNAs. Their primary function is to repress transposons in the animal germline. piRNAs are Dicer-independent, and require Piwi family proteins for their biogenesis and function. Recently in addition to their presence in animal germlines, the presence and function of piRNA-like RNAs in the somatic tissues have been suggested (Yan et al. 2011; Morazzani et al. 2012; Rajasethupathy et al. 2012). We have investigated whether the piRNA-like reads in our many Drosophila head libraries come from the germline as a contaminant or are soma-specific. Most of the piRNA reads in our published head libraries show high similarity to germline piRNAs. However, piRNA-like reads from manually dissected heads are distinct from germline piRNAs, proving the presence of somatic piRNA-like small RNAs. We are currently asking the question whether these distinct piRNA-like reads in the heads are dependent on the Piwi family proteins, like the germline piRNAs.
429

Sequence and Target Specificity of the C. elegans Cell Fate Specification Factor POS-1: A Dissertation

Farley, Brian M. 09 August 2012 (has links)
In most metazoans, early embryogenesis is controlled by the translational regulation of maternally supplied mRNA. Sequence-specific RNA-binding proteins play an important role in regulating early embryogenesis, yet their specificities and regulatory targets are largely unknown. To understand how these RNA-binding proteins select their targets, my research focused on the C. elegans CCCH-type tandem zinc finger protein POS-1. Embryos lacking maternally supplied POS-1 die prior to gastrulation, and exhibit defects in the specification of pharyngeal, intestinal, and germline precursor cells. To identify the regulatory targets that contribute to the POS-1 mutant phenotype, we set out to determine the sequence specificity of POS-1 in vitro, and then use this information to identify regulatory targets in vivo. Using a candidate-based search, we identified a twelve-nucleotide fragment of the mex-3 3' untranslated region (3' UTR) to which POS-1 binds with high affinity. Using quantitative fluorescent electrophoretic mobility shift assays, I determined the affinity of the RNA-binding domain of POS-1 for a panel of single nucleotide mutations of this sequence, and then defined a consensus binding element based on this dataset. POS-1 recognizes the degenerate element UAU 2-3 RDN 1-3 G, where R is any purine (adenosine or guanine), and D is any base except cytosine. A bioinformatics analysis revealed the presence of this element in approximately 40% of C. elegans 3' UTRs, suggesting that POS-1 is capable of binding to and perhaps regulating many transcripts in vivo. POS-1 binding sites alone are not sufficient to pattern the expression of a reporter, suggesting that other factors may contribute to POS-1 specificity. To address the mechanism of POS-1-mediated translational regulation, I investigated the translational regulation of the C. elegans Notch homolog glp-1. Previous work demonstrated that glp-1 translation is repressed in the early embryo in a POS-1-dependent fashion, though it was not clear if this regulation was direct. The glp-1 3' UTR contains two POS-1 binding sites within five nucleotides of each other, and these sites are within a thirty nucleotide region of the 3' UTR required for proper spatiotemporal translation of glp-1. The POS-1 sites overlap with a negative regulatory element that is recognized by GLD-1, and a positive regulatory element recognized by an unknown factor. Both POS-1 and GLD-1 bind to an RNA containing these sites in vitro, and POS-1 competes with GLD-1 for binding. Both proteins are required for translational repression of a glp-1 3' UTR reporter in embryos. Furthermore, only one of the two POS-1 binding sites is required for repression, and the required site is wholly contained within a previously characterized positive regulatory element. Based on this, we propose that POS-1 does not regulate its targets by recruiting regulatory machinery, but instead by competing with factors that do. Thus, sites of POS-1 regulation are highly context dependent, which may contribute to POS-1 specificity.
430

Dissecting the Role of a lncRNA and Involvement of <em>Plasmodium</em> Infections in the Innate Immune Response: A Dissertation

Chan, Jennie 14 April 2015 (has links)
The innate immune system is a multicomponent response governed by intricate mechanisms of induction, regulation and resolution to elicit antimicrobial defenses. In recent years, the complexity of eukaryotic transcriptomes has become the subject of intense scrutiny and curiosity. It has been established, that RNA polymerase II (RNAPII) transcribes hundreds to thousands of long noncoding RNAs (lncRNAs), often in a stimulus and cell-type specific manner. However, the functional significance of these transcripts has been particularly controversial. While the number of identified lncRNAs is growing, our understanding of how lncRNAs themselves regulate other genes is quite limited. In chapter 2, a novel lncRNA is identified, more specifically, a natural antisense transcript, that mediates the transcription of the pro-inflammatory cytokine IL-1α. Through loss-of-function studies, I report the necessity of this transcript in mediating IL-1α mRNA expression by affecting RNAPII binding to the IL-1α promoter after toll-like receptor signaling. For the first time, I show that IL-1α is regulated at the transcriptional level. As a second independent component of this thesis, we explore the role of the innate immune response after infection by the malaria-causing parasite, Plasmodium berghei ANKA (PbA), and how innate immune components are both beneficial and detrimental to the host depending on when and where inflammation is triggered during infection. We attempt to identify the “malarial toxin” responsible for aberrations in the immune response that is detrimental for disease outcomes and the innate signaling pathways that are involved. Many pathogens induce pathological inflammatory conditions that lead to irreparable homeostatic imbalances and become fatal to the host. Here, type I Interferon signaling is required to dampen parasite load during liver-stage infections, but leads to host mobidity if these pathways are activated in the erythrocytic phase of infection. Together, this thesis provides new insights on how components of the innate immune system are regulated, and how dysregulation of immunity can potentially lead to adverse effects during active infections.

Page generated in 0.046 seconds