491 |
Dynamically Reconfigurable Optical Buffer and Multicast-Enabled Switch Fabric for Optical Packet SwitchingYeo, Yong-Kee 30 November 2006 (has links)
Optical packet switching (OPS) is one of the more promising solutions for meeting the diverse needs of broadband networking applications of the future. By virtue of its small data traffic granularity as well as its nanoseconds switching speed, OPS can be used to provide connection-oriented or connectionless services for different groups of users with very different networking requirements. The optical buffer and the switch fabric are two of the most important components in an OPS router. In this research, novel designs for the optical buffer and switch fabric are proposed and experimentally demonstrated. In particular, an optical buffer that is based on a folded-path delay-line tree architecture will be discussed. This buffer is the most compact non-recirculating optical delay line buffer to date, and it uses an array of high-speed ON-OFF optical reflectors to dynamically reconfigure its delay within several nanoseconds. A major part of this research is devoted to the design and performance optimization of these high-speed reflectors. Simulations and measurements are used to compare different reflector designs as well as to determine their optimal operating conditions. Another important component in the OPS router is the switch fabric, and it is used to perform space switching for the optical packets. Optical switch fabrics are used to overcome the limitations imposed by conventional electronic switch fabrics: high power consumption and dependency on the modulation format and bit-rate of the signals. Currently, only those fabrics that are based on the broadcast-and-select architecture can provide truly non-blocking multicast services to all input ports. However, a major drawback of these fabrics is that they are implemented using a large number of optical gates based on semiconductor optical amplifiers (SOA). This results in large component count and high energy consumption. In this research, a new multicast-capable switch fabric which does not require any SOA gates is proposed. This fabric relies on a passive all-optical gate that is based on the Four-wave mixing (FWM) wavelength conversion process in a highly-nonlinear fiber. By using this new switch architecture, a significant reduction in component count can be expected.
|
492 |
Radio over Fiber (RoF) for the future home area networksGuillory, Joffray, Guillory, Joffray 30 October 2012 (has links) (PDF)
The evolution of the Home Area Network (HAN) is lead by the proliferation of connected devices inside the home and the deployment of high broadband access network which now allows the delivery of services that can exceed 1Gbit/s. To ensure efficient in-house exchanges, the HAN has to move rapidly toward multi-Gigabit/s connections, in particular the wireless connectivity generally preferred by the customers. Current wireless systems have limited capacities, but new radio standards delivering data-rates up to 7Gbit/s are emerging. Nevertheless, as they address the unlicensed millimeter-wave band, from 57 to 66 GHz, their radio coverage is limited to a single room. Indeed, at such frequencies, the free-space losses are high and the waves do not cross the walls. This thesis proposes to solve this problem by means of the Radio over Fiber (RoF) technology. This consists in capturing the 60GHz radio signals emitted in one room, converting them into optical signals for transmission through optical fibers, and reemitting them in another room. Thus, several RoF transducers will be installed in the home and interconnected by a suitable optical infrastructure to create systems acting at the same time as repeaters and as distribution systems. From the viewpoint of the HAN market, such systems will be competitive only if they are low cost. As a consequence, this work focuses on direct modulation with direct detection (IM-DD) at Intermediate Frequency (IF). In other words, the 60GHz signal is down-converted at a lower frequency around 5GHz before the laser modulation and up-converted to 60GHz after the photodetection. Concerning the optical fiber, silica multimode fiber (MMF) is privileged as it allows the use of low cost and largely available optoelectronic devices working at 850nm.The thesis proposes different RoF architectures, from point-to-point interconnecting two rooms to multipoint-to-multipoint acting as logical buses. After an analog characterization of the optoelectronic components, the RoF link and the domestic cable, these architectures are designed, built and characterized step by step using OFDM modulation according to existing wireless 60GHz standards. Real-time transmissions between commercial devices have also been performed to validate these architectures. Moreover, advanced RoF infrastructures are proposed. First, the RoF systems can be easily improved if the access to their optical media is managed by the radio MAC layer. This approach is therefore studied showing its feasibility. Secondly, an optical system, seen by users as a premium product, has to support the legacy home services commonly used as well as the new ones that could emerge in the future. Thus, innovative multiservice and multiformat infrastructures conveying on a unique optical cable wired IP data, broadcast terrestrial or satellite television, the 60GHz wireless connectivity, and specific formats as HDMI signals are proposed and tested
|
493 |
Optical wireless communications with optical power and dynamic range constraintsYu, Zhenhua 22 May 2014 (has links)
Along with the rapidly increasing demand for wireless data while more and more crowded radio frequency (RF) spectrum, optical wireless communications (OWC) become a promising candidate to complement conventional RF communications, especially for indoor short and medium range data transmissions. Orthogonal frequency division multiplexing (OFDM) is considered for OWC due to its ability to boost data rates. However, the average emitted optical power and dynamic range of driving signals of LEDs are two major constraints in OWC. OFDM waveforms exhibits high upper and lower peak-to-average power ratios (PAPRs), which make OFDM signals optical power inefficient and easy to violate the dynamic range of LEDs, resulting clipping and nonlinear distortions. In this dissertation, we analyze and design optical power and dynamic range constrained OWC systems, for which OFDM is our major subject. We first derive distributions of upper PAPR and lower PAPR of OWC-OFDM signals. Then we analyze the clipped OFDM signals in term of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and achievable data rates under both optical power and dynamic range constraints. The next part of this dissertation is the OFDM system design for visible light communications (VLC) considering illumination requirement. We investigate the illumination-to-communication efficiency (ICE) in VLC-OFDM, and design the brightness control and flickering mitigation schemes for VLC-OFDM. In the end, to reduce the complexity of driving circuits of LEDs , we propose using delta-sigma modulators in VLC-OFDM systems to convert continuous magnitude OFDM symbols into two-level LED driver signals without loss of the communication theory advantages of OFDM.
|
494 |
On optical functionalities and high-capacity communication networksWare, Cédric 26 November 2013 (has links) (PDF)
The global communications network has become a pervasive and critical item of everyday life, spawning and enabling countless worldwide services that went from nonexistent to must-have in less than a decade. Its implementation makes considerable use of optical transmission systems, which are the physical medium of choice for most non-wireless links, being capable of high data rates over long distances. However, the potential of optics is still underexploited, and can help a smarter network meet the simultaneous challenges of ever-higher data rates, network switching, and the "last-mile" access network. <p> Very high data rates were achieved in optical transmissions in the late 1990s especially through wavelength-division multiplexing (WDM) over the C and later the L spectral bands. For some time, the way to increase data rates was forecast to be higher symbol rates per wavelength, for which optical-to-electronic (O-E) conversions are a speed bottleneck. This required all-optical functionalities, especially to process optical time-domain multiplexed signals. In that line, I contributed to ultrafast clock recovery using opto-electronic phase-locked loops. <p> However, the recent comeback of coherent optical communications points to easier ways to increase the data rate by pushing towards higher spectral efficiencies, closer to the optical channel's Shannon capacity in the presence of certain physical impairments. Notably, some of my recent results suggest that polarization-dependent loss can be handled close to the limit thanks to a combination of space-time codes and more conventional error-correcting codes. <p> Switching is another bottleneck: the Internet's great versatility results in part from its packet-switching paradigm, but current optical networks are essentially circuit-switched using wavelength granularity. Packet-switching functionality is implemented purely in electronics, incurring numerous energy-inefficient O-E conversions and ballooning energy costs. <p> My work on all-optical functionalities included an all-optical label-processing scheme for switching nodes, though this approach would be subject to scaling problems in practice. More recently, my concern has shifted to hybrid switching nodes using electronic buffers to supplement an optical switching matrix. My current studies show great improvements of their sustainable load compared to all-optical switches at a given packet-loss probability. <p> Access network is the last stronghold where optical transmissions are not quite dominant yet. The focus there is on cost effectiveness and resource sharing, especially in passive optical networks (PONs). In order to bring WDM to PONs, I contributed to a pulsed continuum optical source that could have provided optical channels to multiple users simultaneously. More recently, I also oversaw work on reflective semiconductor optical amplifiers designed for colorless optical network units. <p> Finally, the challenge goes on for a better match between network functionalities and the untapped potential of optics. My focus is currently shifting towards cross-layer optical networking, requiring novel network architectures to break free from the electronic-centric layered-network model, and finally meeting the energy consumption problem square-on.
|
495 |
Relay-Assisted Free-Space Optical CommunicationsSafari, Majid 04 January 2011 (has links)
The atmospheric lightwave propagation is considerably influenced by
the random variations in the refractive index of air pockets due to
turbulence. This undesired effect significantly degrades the
performance of free-space optical (FSO) communication systems.
Interestingly, the severity of such random degradations is highly
related to the range of atmospheric propagation. In this thesis, we
introduce relay-assisted FSO communications as a very promising
technique to combat the degradation effects of atmospheric
turbulence. Considering different configurations of the relays, we
quantify the outage behavior of the relay-assisted system and
identify the optimum relaying scheme. We further optimize the
performance of the relay-assisted FSO system subject to some power
constraints and provide optimal power control strategies for
different scenarios under consideration. Moreover, an application of
FSO relaying technique in quantum communications is investigated.
The results demonstrate impressive performance improvements for the
proposed relay-assisted FSO systems with respect to the conventional
direct transmission whether applied in a classical or a quantum communication channel.
|
496 |
Fixed-point realisation of erbium doped fibre amplifer control algorithms on FPGAWijaya, Shierly January 2009 (has links)
The realisation of signal processing algorithms in fixed-point offers substantial performance advantages over floating-point realisations. However, it is widely acknowledged that the task of realising algorithms in fixed-point is a challenging one with limited tool support. This thesis examines various aspects related to the translation of algorithms, given in infinite precision or floating-point, into fixed-point. In particular, this thesis reports on the implementation of a given algorithm, an EDFA (Erbium-Doped Fibre Amplifier) control algorithm, on a FPGA (Field Programmable Gate Array) using fixed-point arithmetic. An analytical approach is proposed that allows the automated realisation of algorithms in fixedpoint. The technique provides fixed-point parameters for a given floating-point model that satisfies a precision constraint imposed on the primary output of the algorithm to be realised. The development of a simulation framework based on this analysis allows fixed-point designs to be generated in a shorter time frame. Albeit being limited to digital algorithms that can be represented as a data flow graph (DFG), the approach developed in the thesis allows for a speed up in the design and development cycle, reduces the possibility of error and eases the overall effort involved in the process. It is shown in this thesis that a fixed-point realisation of an EDFA control algorithm using this technique produces results that satisfy the given constraints.
|
497 |
Adaptive polarization mode dispersion equalizers for coherent optical communications systems / Αυτορυθμιζόμενοι εξισωτές διασποράς τρόπων πόλωσης για σύμφωνα οπτικά τηλεπικοινωνιακά συστήματα υψηλής φασματικής απόδοσηςΜαντζούκης, Νικόλαος 01 November 2010 (has links)
Polarization mode dispersion (PMD) arises as a result of the birefringence in optical fibers, due to inherent asymmetries and deformities from external stresses. The spectral components of the input optical pulse propagate with different group velocities. Consequently, pulse duration increases leading to intersymbol interference between consequent symbols, leading to performance reduction of the coherent systems. In order to compensate for the PMD, we use adaptive linear PMD equalizers.
Due to the dynamic and random nature of PMD, it is crucial for a system designer to efficiently simulate the PMD-induced outage probabilities of 10-5. Because of this stringent requirement, it is computationally costly to use the conventional Monte Carlo methods. To overcome this hurdle, Importance Sampling methods, such as the multicanonical Monte Carlo method have been applied in the past in order to efficiently reduce the simulation time required to estimate the statistics of these rare events. The multicanonical Monte Carlo method does not require any prior knowledge of which rare events contribute significantly to the PMD-induced outages. In essence, multicanonical Monte Carlo simulations adaptively bias the input random variables with a priori unknown weights. The PMD emulation model consists of a concatenation of birefringent sections, simulated based on MMC.
The objective of this dissertation is to apply, for the first time, the multicanonical Monte Carlo method to accurately and efficiently evaluate the performance of adaptive, blind, feed-forward PMD equalizers employed in coherent polarization division multiplexed (PDM) quadrature phase-shift keying (QPSK) systems in all order PMD emulation model. In the exclusive presence of PMD, we demonstrated that the half-symbol-period-spaced adaptive electronic equalizers, based on the constant modulus algorithm (CMA) equalizers perform slightly better than the decision directed least mean square (DD-LMS) counterparts at links with larger PMD values, whereas the opposite holds true for the low PMD regime. Due to their distinguishable performance in different regimes of the PMD, they provided an even better performance when running DD-LMS after a first round of CMA-based equalization than using either one of the equalization algorithms stand alone. Finally, the joint presence of PMD and intermediate frequency offset or PMD and random differential phase carrier shifts slightly worsened the performance of the coherent PDM QPSK systems, independently of the equalizer. Although these random differential carrier phase shifts are typically omitted in similar PMD studies in intensity modulated/direct detection (IM/DD) systems, they should be taken into account in due to the phase sensitivity of the PDM QPSK coherent systems. / Οι οπτικές ίνες παρουσιάζουν διπλοθλαστικότητα, η οποία οφείλεται σε κατασκευαστικές ατέλειες των οπτικών ινών και σε εξωτερικούς παράγοντες. Η διπλοθλαστικότητα προκαλεί διασπορά μεταξύ των φασματικών συνιστωσών ενός διαμορφωμένου οπτικού σήματος. Κάθε φασματική συνιστώσα, ανάλογα με την πόλωσή της στην είσοδο της οπτικής ίνας, υφίσταται διαφορετική αλλαγή φάσης κατά τη διέλευσή της μέσα από την οπτική ίνα. Το φαινόμενο αυτό ονομάζεται διασπορά τρόπων πόλωσης. Η διασπορά τρόπων πόλωσης στην οπτική ίνα προκαλεί παραμόρφωση του οπτικού σήματος κι αλληλοπαρεμβολή συμβόλων στον οπτικό δέκτη, με αποτέλεσμα τη μείωση της απόδοσης ενός σύμφωνου οπτικού τηλεπικοινωνιακού συστήματος. Για την αντιμετώπιση του φαινομένου, χρησιμοποιούνται οι προσαρμοστικοί γραμμικοί εξισωτές διασποράς τρόπων πόλωσης.
Εξαιτίας της στατιστικής φύσης του φαινομένου, πιθανότητες διακοπής της λειτουργίας της τάξεως του 10-5 ενός σύμφωνου συστήματος, τετραδικής διαμόρφωσης φάσης με πολυπλεξία πόλωσης της τάξεως με εξισωτές διασποράς τρόπων πόλωσης, υπολογίστηκαν βάσει της πολυκανονικής Monte Carlo μεθόδου (MMC). Στην MMC μέθοδο. οι παράμετροι στην είσοδο του συστήματος κατευθύνονται, έτσι ώστε στην έξοδο, η (άγνωστη) συνάρτηση πυκνότητας πιθανότητας της παραμέτρου ελέγχου να υπολογίζεται με ακρίβεια ακόμα και στις ουρές της. Το πλεονέκτημα της ΜΜC, σε σχέση με τις μεθόδους δειγματοληψίας σημαντικότητας, είναι ότι δεν απαιτείται καμία γνώση για το ποιες περιοχές στην είσοδο πρέπει να δειγματοληφθούν, ώστε στην έξοδο να προκύψουν τα σπάνια εκείνα γεγονότα που μας ενδιαφέρουν. Με βάση την ΜΜC μέθοδο υλοποιήθηκε και το μοντέλο της ίνας, ως μια αλληλουχία διπλοθλαστικών πλακιδίων.
Σκοπός της διδακτορικής διατριβής, είναι η αξιολόγηση της απόδοσης του ενός σύμφωνου συστήματος με χρήση των εξισωτών, συναρτήσει της πιθανότητας διακοπής της λειτουργίας του συστήματος. Για την περίπτωση της αποκλειστικής παρουσίας της διασποράς τρόπων πόλωσης, ο εξισωτής ελαχίστου μέσου τετραγώνου (DD-LMS) έχει αποδοτικότερη λειτουργία, σε σχέση με τον εξισωτή σταθερής περιβάλλουσας (CMA), για χαμηλές τιμές της διασποράς τρόπων πόλωσης, ενώ ο εξισωτής CMA κυριαρχεί στις περιοχές με μεγαλύτερες τιμές της διασποράς τρόπων πόλωσης. Η βέλτιστη λειτουργία του σύμφωνου συστήματος σε μια ευρύτερη περιοχή τιμών της διασποράς τρόπων πόλωσης, επιτυγχάνεται με την χρήση ενός συνδυασμού των δύο εξισωτών CMA και LMS. Η αλληλεπίδραση της διασποράς τρόπων πόλωσης και της ενδιάμεσης συχνότητας επηρεάζει την απόδοση του σύμφωνου συστήματος, όπου ο εξισωτής CMA λειτουργεί αποδοτικότερα σε σχέση με τον εξισωτή DD-LMS, τόσο στις περιοχές χαμηλής όσο και υψηλής τιμής της διασποράς τρόπων πόλωσης. Επίσης, αν στο μοντέλο της ίνας, προσομοιώσουμε και τις τυχαίες διαφορικές ολισθήσεις της φέρουσας συχνότητας μεταξύ των πλακιδίων, λόγω της διπλοθλαστικότητας, τότε η επίδοση των εξισωτών ελαττώνεται. Επομένως, θα πρέπει να λαμβάνονται υπόψιν για την ορθότερη αξιολόγηση της απόδοσης του σύμφωνου συστήματος.
|
498 |
Caracterização e desempenho de emissores de baixo custo para aplicação em redes ópticas passivas / Characterization and performance of low cost emmitters for application in passive optical networksHenning, Luiz Fernando 31 March 2016 (has links)
CAPES / Este trabalho tem como eixo principal as redes PON (Passive Optical Network), pois, por não terem partes ativas entre a OLT (Optical Line Terminal) e as ONU (Optical Network Units), são a opção mais interessante atualmente para redução dos custos das comunicações ópticas. Foram analisadas as ONUs incolores (trabalham em qualquer comprimento de onda), e dentro deste tema foram feitas simulações e ensaios experimentais em fontes ópticas de baixo custo (todas com encapsulamento TO), de forma a demonstrar o desempenho delas dentro das redes PONs. Foram propostas duas novas ONUs: uma com auto realimentação interna para o sinal semente e outra para ser utilizada em uma configuração de RoF (Radio Over Fiber) que utiliza RSOAs de baixo custo e consegue transmitir canais em SCM até QAM1024. / This work has as a main axis the Passive Optical Networks (PON). It does not have active parts between the Optical Line Terminal (OLT) and Optical Network Units (ONUs) and it is currently the most interesting option for reducing optical communication costs. Colorless ONUs , those that work at any wavelength, were analyzed and simulations and experimental tests in low-cost optical sources (TO encapsulation s) were made in order to demonstrate the performance of these PON equipments . Two new ONUs were proposed: one with internal selfseed feedback and another one in a Radio Over Fiber (RoF) configuration which uses low cost RSOAs and can transmit SCM channels to 1024QAM formats.
|
499 |
[en] CHARACTERISATION OF ALLOPTICAL WAVELENGTH CONVERSION BY CROSS-GAIN MODULATION IN SEMICONDUCTOR OPTICAL AMPLIFIERS / [pt] CARACTERIZAÇÃO DA CONVERSÃO DE COMPRIMENTO DE ONDA POR MODULAÇÃO DE GANHO CRUZADO EM AMPLIFICADORES ÓPTICOS SEMICONDUTORESRAFAEL DE OLIVEIRA RIBEIRO 21 March 2006 (has links)
[pt] A conversão de comprimento de onda de sinais por meio de
técnicas totalmente
ópticas é um assunto inovador e de extrema necessidade
para as redes com
roteamento de comprimento de onda; a técnica de conversão
de comprimentos
de onda por modulação de ganho cruzado é uma das mais
simples, em princípio,
que atinge este objetivo. Duas modalidades são
apresentadas neste trabalho:
a clássica, também conhecida por pump & probe, e uma nova,
a de modulação
de ganho cruzado do espectro da ASE em um SOA. A técnica
pump e
probe é apresentada, assim como um experimento baseado
nesta. A técnica de
modulação de ganho cruzado da ASE é explorada como
alternativa à técnicas
de conversão de comprimento de onda que necessitam de
outra fonte de luz,
para a qual o sinal deve ser convertido. Na modulação de
ganho cruzado da
ASE, o sinal é convertido de luz coerente para incoerente;
e, uma vez modulado
o espectro da ASE do SOA, este é filtrado no comprimento
de onda que se
deseja obter a conversão. Assim, este conversor pode ser
sintonizável, já que
não é um parâmetro de entrada que define o comprimento de
onda convertido,
e sim um filtro passa-faixa ao fim do dispositivo. Para se
avaliar os tempos
de resposta da técnica, a conversão é feita utilizando-se
pulsos elétricos ultracurtos
(50 ps), o que não havia sido feito até então. / [en] Wavelength conversion of optical signals by all-optical
techniques is an innovative
and necessary technology for wavelength routed networks in
the near
future; the cross-gain modulation method is one of the
simplest, in form, to attain
this goal. Two categories of the main technique are
presented: the classic,
also known as pump and probe, and a novel one, named cross-
gain modulation
of the ASE spectrum of a SOA. The cross-gain modulation of
the ASE
spectrum is explored here as an alternative to previous
all-optical wavelength
conversion techniques that require another light source,
to which the incoming
signal is to be converted; the signal is converted from
coherent to incoherent
light; and, once modulated throughout the SOA`s ASE
spectrum, the signal
is then filtered at the central wavelength it is desired
to be converted. Thus,
this particular wavelength converter can be tunable, in
the sense that it is
reconfigurable, since a band pass filter located at the
end of the device selects
what wavelength the signal will be converted to. In order
to assess the response
times of the technique, the conversion is made for ultra
short electrical pulses
(50 ps), a feature unknown until now.
|
500 |
Análise de dispositivos com materiais magnetoópticos para aplicações em sistemas de comunicações ópticas / not availableEvandro Assis Costa Gonçalves 21 September 2001 (has links)
As redes ópticas de comunicação têm possibilitado, cada vez mais, o oferecimento de serviços do tipo faixa larga. A rede de comunicação totalmente óptica está se tornando a meta tecnológica mais ambiciosa. Grandes esforços têm sido concentrados no desenvolvimento e aperfeiçoamento de materiais e dispositivos não-recíprocos, como isoladores e circuladores constituem uma importante classe de dispositivos ópticos. Os isoladores são utilizados em sistemas ópticos para prevenir a reflexão de luz em lasers e amplificadores. Os circuladores são empregados em esquemas de derivação de sinais que utilizam multiplexação em comprimento de onda (WDM). O funcionamento destes dispositivos é baseado nas propriedades de materiais magnetoópticos. As metas desta dissertação são apresentar as principais características dos materiais magnetoópticos, explorando as características não-recíprocas dos modos TM. Guias planares e tridimensionais são analisados neste trabalho. Para tanto, são obtidas as expressões das componentes dos campos e as equações características dos modos de interesse em estruturas planares por meio da técnica de matriz de transferência (TMT). A análise de propagação de onda em guias planares com materiais magnetoópticos é feita por meio de simulação numérica empregando o método de propagação de feixe (BPM) baseado em diferenças finitas (FD) e o esquema de Crank-Nicholson (CN) na discretização da solução da equação de onda. A condição de fronteira transparente (TBC) é incorporada ao algoritmo FD-BPM com a finalidade de se evitar reflexões de ondas eletromagnéticas para dentro da janela computacional. O método do índice efetivo é empregado na análise de guias de onda tridimensionais do tipo rib. / Optical communication networks have allowed a continuous increase of broadband services offer. The all-optical communication networks are becoming the most ambitious technological goal. Great efforts have been concentrated on the materiaIs and devices development and improvement to make it possible. Nonreciprocal devices, such as isolators and circulators constitute an important class of optical devices. Isolators are used in optical systems to avoid reflection of light in lasers and amplifiers. Circulators are used in signal derivation schemes that use wavelength division multiplexing (WDM). The operation of these devices is based on the properties of magnetooptic materiaIs. The purposes of this dissertation are to present the main features of the magnetooptic materiaIs as well as to analyze the eletromagnetic wave propagation in magnetooptic waveguides, exploring nonreciprocal features of TM modes. Planar and three-dimensional waveguides are analysed in this present study. Therefore expressions of electromagnetic field components and characteristic equations of the modes of interest in planar structures are obtained by using transfer matrix technique (TMT). The wave propagation analysis in planar magnetooptic waveguides is realized by using the finite-difference beam propagation method (FD-BPM) and Crank-Nicholson scheme (CN) applied to wave equation solution discretization. In order to avoid electromagnetic wave reflection into computational window, the transparent boundary condition (TBC) is incorporated to the FD-BPM formalism. The effective index method (EIM) is used in the analysis of three-dimensional rib magnetooptic waveguides.
|
Page generated in 0.2378 seconds