• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 43
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Understanding the Role of Nrg1 Signaling Upon Brain Damage: Novel Models of Cortical Regeneration

González Manteiga, Ana 27 November 2023 (has links)
[ES] El daño cerebral es la mayor causa de discapacidad en la etapa adulta, particularmente afectando a la población anciana. Independientemente de la causa, los diferentes tipos de daño cerebral comparten eventos fisiopatológicos similares. Hasta ahora, la mayoría de los estudios se enfocaron en estudiar las respuestas inmediatas tras la lesión, mientras que los mecanismos que subyacen bajo los procesos de plasticidad y regeneración cortical aún son desconocidos. Neuregulina 1 (Nrg1) es una proteína esencial en el desarrollo de los circuitos corticales que se ha asociado a diferentes trastornos psiquiátricos, como la esquizofrenia. En las últimas décadas, varios trabajos proponen a Nrg1 como un factor neuroprotector emergente en el ámbito de lesión. No obstante, la mayoría de las investigaciones se centran en estudiar la respuesta temprana de la forma soluble de Nrg1 tras el daño, mediada por la activación de los receptores ErbB, la cual no recapitula totalmente la compleja señalización de Nrg1. De este modo, nuestro laboratorio ha demostrado previamente que la señalización intracelular de Nrg1 se activa en situaciones de hipoxia, promoviendo la supervivencia neuronal tras ictus. El principal objetivo de esta tesis es estudiar el papel de la señalización de Nrg1 en la regeneración y plasticidad cortical tras daño cerebral. Para ello, hemos desarrollado nuevos modelos para 1) ofrecer una metodología que permita estudiar la regeneración axonal in vitro e in vivo y 2) específicamente estudiar el papel de la señalización intracelular de Nrg1 en el ámbito de daño cortical. Primero, desarrollamos un nuevo modelo in vitro de lesión axonal en cultivos de neuronas corticales, utilizando técnicas de electroporación para marcar un número limitado de neuronas, combinado con una posterior lesión física basada en una transección mecánica de los axones. En este modelo, también se realizaron estudios de ganancia y pérdida de función para comprender el papel de Nrg1 en el crecimiento axonal. Nuestros resultados mostraron que Nrg1, y específicamente la activación de su vía intracelular, potencia el crecimiento axonal tras daño. Posteriormente, diseñamos una metodología novedosa en ratones para estudiar la regeneración cortical, combinando técnicas de trazado de conexiones cortico-corticales con una lesión focal y mecánica en la corteza primaria motora. Se realizó una extensa caracterización funcional empleando diversas pruebas comportamentales específicas para detectar déficits motores en lesiones unilaterales como la ofrecida en este modelo. Gracias al procesamiento del tejido cerebral en series flotantes, se combinaron diferentes tinciones para realizar reconstrucciones 3D del cerebro y, así, ofrecer un estudio completo incluyendo medidas volumétricas y un análisis de diferentes poblaciones celulares y estructuras subcelulares. Como ejemplo, se investigó la correlación entre la eliminación de redes perineuronales y la activación de células microgliales en la zona adyacente a la lesión. Esta metodología de lesión cortical in vivo se utilizó en innovadores modelos genéticos de ratón en esta tesis para entender el papel de Nrg1 tras daño cortical. Así, se eliminó la expresión del gen de Nrg1 en ratonas jóvenes y maduras previamente a la lesión, observando que la ausencia de Nrg1 promueve la respuesta neuroinflamatoria y una preservación axonal limitada, conllevando una menor recuperación motora espontánea tras la lesión. Finalmente, para ofrecer una visión mecanicista del papel de la señalización intracelular de Nrg1, su dominio intracelular se expresó específicamente en neuronas corticales, observando que la activación de esta vía de señalización reduce la respuesta inflamatoria tras lesión cortical. En conclusión, estos resultados señalan que Nrg1, y específicamente la activación de su vía intracelular, podría ser una diana molecular prometedora en el contexto de neuroprotección, regeneración y recuperación cortical tras daño cerebral. / [CA] El dany cerebral és la major causa de discapacitat en l'etapa adulta, particularment en la població anciana. Independentment de la causa, els diferents tipus de dany cerebral comparteixen esdeveniments fisiopatològics similars. Fins ara, la majoria dels estudis es van enfocar a estudiar les respostes immediates després de la lesió, mentre que els mecanismes que subjauen sota els processos de plasticitat i regeneració cortical encara són desconeguts. Neuregulina 1 (Nrg1) és una proteïna essencial en el desenvolupament dels circuits corticals que s'ha associat a diferents trastorns psiquiàtrics, com l'esquizofrènia. En les últimes dècades, diversos treballs proposen a Nrg1 com un factor neuroprotector emergent en l'àmbit de lesió. No obstant això, la majoria de les investigacions se centren en estudiar la resposta primerenca de la forma soluble de Nrg1 després del mal, mediada per l'activació dels receptors ErbB, la qual no recapitula totalment la complexa senyalització de Nrg1. D'aquesta manera, el nostre laboratori ha demostrat prèviament que la senyalització intracel·lular de Nrg1 s'activa en situacions d'hipòxia, promovent la supervivència neuronal després de l'ictus. El principal objectiu d'aquesta tesi és estudiar el paper de la senyalització de Nrg1 en la regeneració i plasticitat cortical després de dany cerebral. Per a això, hem desenvolupat nous models per a 1) oferir una metodologia que permeta estudiar la regeneració axonal in vitro i in vivo i 2) específicament estudiar el paper de la senyalització intracel·lular de *Nrg1 en l'àmbit de mal cortical. Primer, desenvolupem un nou model in vitro de lesió axonal en cultius de neurones corticals, utilitzant tècniques de electroporació per a marcar un nombre limitat de neurones, combinat amb una posterior lesió física basada en una secció mecànica dels axons. En aquest model, també es van realitzar estudis de guany i pèrdua de funció per a comprendre el paper de Nrg1 en el creixement axonal. Aquests resultats van mostrar que Nrg1, i específicament l'activació de la seua via intracel·lular, potència el creixement axonal després de mal. Posteriorment, dissenyem una metodologia nova en ratolins per a estudiar la regeneració cortical, combinant tècniques de traçat de connexions cortico-corticals amb una lesió focal i mecànica en l'escorça primària motora. Es va realitzar una extensa caracterització funcional emprant diverses proves comportamentals específiques per a detectar dèficits motors en lesions unilaterals com l'oferida en aquest model. Gràcies al processament del teixit cerebral en sèries flotants, es van combinar diferents tincions per a realitzar reconstruccions 3D del cervell i, així, oferir un estudi complet incloent mesures volumètriques i una anàlisi de diferents poblacions cel·lulars i estructures subcel·lulars. Com a exemple, es va investigar la correlació entre l'eliminació de xarxes perineuronals i l'activació de cèl·lules microglials en la zona adjacent a la lesió. Aquesta metodologia de lesió cortical in vivo es va utilitzar en innovadors models genètics de ratolí per a entendre el paper de Nrg1 després de mal cortical. Es va eliminar l'expressió del gen de Nrg1 en ratolins joves i madurs prèviament a la lesió, observant que l'absència de Nrg1 promou la resposta neuroinflamatoria i una preservació axonal limitada, el que comporta una menor recuperació motora espontània després de la lesió. Finalment, per a oferir una visió mecanicista del paper de la senyalització intracel·lular de Nrg1, el seu domini intracel·lular es va expressar específicament en neurones corticals, observant que l'activació d'aquesta via de senyalització redueix la resposta inflamatòria després de lesió cortical. En conclusió, aquests resultats assenyalen que la senyalització de Nrg1, i específicament l'activació de la seua via intracel·lular, podria ser una diana molecular prometedora en el context de neuroprotecció, regeneració i recuperació cortical després de dany cerebral. / [EN] Brain damage is the leading cause of disability in adults, particularly in the elderly population. Regardless of the cause, different types of brain injury share similar physiopathological events. Most studies to date have focused on the immediate post-injury response, whereas less is known about cortical regeneration and plasticity after brain injury. Neuregulin 1 (Nrg1) is essential for the development of cortical circuits and has been implicated in several psychiatric disorders, such as schizophrenia. In the last decades, several works proposed Nrg1 signaling as an emergent modulator of neuroprotection upon damage. However, most research has focused on the early response of Nrg1 diffusible isoforms mediated by ErbB receptor activation after injury, which does not fully recapitulate the complexity of Nrg1 signaling. In this context, we have previously shown that Nrg1 intracellular signaling is activated under hypoxic conditions and promotes neuronal survival after cortical stroke. The overall goal of this dissertation is to investigate the role of Nrg1 signaling in cortical regeneration and plasticity after cortical damage. To achieve this goal, we developed novel, refined models to 1) provide new methodological approaches to study axonal regeneration in vitro and in vivo and 2) specifically target Nrg1 signaling and particularly investigate the role of Nrg1 intracellular pathway upon cortical injury. First, we developed a novel in vitro model of axonal injury in cortical neuron cultures. Specifically, we performed sparse labeling of the cultures by electroporation techniques and induced physical injury by mechanical transection of the axons. In this model, we also performed gain- and loss-of-function approaches to investigate the role of Nrg1 in axonal outgrowth. Our results showed that Nrg1, and specifically the activation of its intracellular signaling, potentiates axonal outgrowth upon injury. Second, we developed a novel methodology in mice that combines cortico-cortical projection tracing with focal mechanically controlled cortical damage (CCD) to study cortical regeneration. We performed extensive functional characterization of the model and provided meaningful behavioral tasks to detect motor impairment in unilateral focal injuries. Since tissue processing is performed in serial floating sections, we combined different immunolabeling and 3D brain reconstruction to evaluate stereological measurements and analysis of axonal projections and different cell populations. As a biological result, we showed a correlation between perineuronal nets (PNNs) disruption and microglial activation in the perilesional region. Later, we applied the CCD methodology in novel genetic mouse models to better understand the role of Nrg1 signaling in vivo after cortical injury. We induced acute Nrg1 deletion prior to injury in young and aged mice and observed that Nrg1 deletion promoted neuroinflammatory response and limited axonal preservation and spontaneous motor recovery after cortical injury. Finally, we specifically expressed Nrg1-ICD to provide a mechanistic perspective and observed that activation of this intracellular pathway decreased the neuroinflammatory response. Collectively, our results shed light on Nrg1 signaling, and specifically the activation of its intracellular pathway, as a promising molecular target in neuroprotection, cortical regeneration, and recovery after brain injury. / González Manteiga, A. (2023). Understanding the Role of Nrg1 Signaling Upon Brain Damage: Novel Models of Cortical Regeneration [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/200224
72

Le système MMP/TIMP dans la croissance neuritique et la motilité des cellules souches de la muqueuse olfactive

Ould-Yahoui, Adlane 20 May 2011 (has links)
Les métalloproteases matricielles (MMPs) appartiennent à une famille d'endopéptidases dépendantes du zinc, présentent sous forme secrétée ou membranaire (MT-MMP) et qui jouent un rôle fondamental dans la signalisation cellulaire. L'activité des MMPs est régulée par leur inhibiteurs endogènes, les inhibiteurs tissulaires des MMPs (TIMPs). Le système MMP/TIMP régule les interactions cellule-cellule et cellule-matrice extra cellulaire et module la motilité cellulaire par clivage protéolytique des composants de la matrice extra cellulaire aussi bien lors de processus physiologiques que dans des situations pathologiques.Dans un premier temps, nous avons mis en évidence le rôle de TIMP-1 dans la modulation de la croissance neuritique et la morphologie neuronale, via l'inhibition de MMP-2 et non de MMP-9. souches de la muqueuse olfactive (OE-MSCs). Nous montrons dans cette étude que les gélatinases MMP-2 et MMP-9 ainsi que la MMP membranaire MT1-MMP, sont impliquées dans la migration des OE-MSCs. Nous montrons également que les gélatinases sont probablement impliquées dans les propriétés neurotrophiques des OE-MSCs et des cellules engainantes olfactives.L'ensemble de ces résultats apporte de nouveaux éléments fondamentaux, dans la compréhension du rôle du système MMP/TIMP dans les processus post-lésionnels qui ont lieu au sein du système nerveux central. / The matrix metalloproteinases (MMPs) belong to a growing family of Zn2+-dependent endopeptidases, secreted or membrane-bound (MT-MMP), which play a fundamental role in the cell signalling. The activity of the MMPs is regulated by their endogenous inhibitors, the tissue inhibitors of MMPs (TIMPs). The MMP / TIMP system regulates the cell-cell and cell-extracellular matrix interactions and modulates the cellular motility through the cleavage of protein components of the extracellular matrix, as well during physiological and pathological conditions.Our results suggest that TIMP-1 is implicated in the modulation of the neurite outgrowth and morphology of cortical neurons through the inhibition at least in part, of MMP-2 and not MMP-9. Afterward, we study of the system MMP / TIMP in the migration of the stem cells of olfactory ectomesenchymal stem cells (OE-MSCs). We show that gelatinases MMP-2 and MMP-9 as well as MT1-MMP, are involved in OE-MSCs migration. We also show that gelatinases are probably involved in neurotrophic properties of the OE-MSCs and olfactory ensheathing cells.Altogether, these results provide new evidences on the role of MMP/TIMP system in central nervous system post-lesional processes.
73

Efeitos biológicos e avaliação dose-resposta das partículas de exaustão do diesel sobre o desenvolvimento embrionário inicial de camundongos / Biological effects and dose-response assessment of diesel exhaust particles on in vitro early embryo development in mice

Januário, Daniela Aparecida Nicolosi Foltran 12 March 2010 (has links)
Experimentos anteriores realizados em nosso laboratório indicam que o sucesso gestacional é afetado pela poluição atmosférica. O presente estudo teve como objetivo avaliar os efeitos biológicos associados a uma curva dose resposta das partículas de exaustão do diesel (PED) sobre o desenvolvimento embrionário inicial e o potencial de implantação, utilizando-se como modelo a fertilização in vitro e o cultivo embrionário de camundongos. No Experimento 1, encontrou-se um efeito negativo dose-dependente sobre o desenvolvimento embrionário inicial, o processo de eclosão, a alocação das células e a morfologia da massa celular interna (MCI) dos blastocistos. A análise post-hoc revelou que o desenvolvimento precoce do embrião não foi afetado pelas concentrações de 0,2 µg/cm2 ou 2 µg/cm2, mas foi significativamente afetado pela concentração de 20 µg/cm2 de PED. O processo de eclosão foi prejudicado pelas concentrações de 2 µg/cm2 e 20 µg/cm2. A alocação das células da MCI e a relação entre as células da MCI e do trofectoderma foram significativamente afetadas por todas as concentrações. Adicionalmente, observou-se um efeito negativo sobre a morfologia da MCI para as concentrações de 2 µg/cm2 e 20 µg/cm2. O Experimento 2, apesar de não mostrar efeito significativo sobre o potencial de implantação, evidenciado pela capacidade de adesão dos blastocistos e crescimento trofoblástico, revelou que a morfologia da MCI no dia 8 de cultivo, as taxas de viabilidade e de apoptose celular e a expressão de Oct4 e Cdx2 foram significativamente afetadas. O teste HSD-Tukey demonstrou que a presença de PED (0,2 µg/cm2 e 2 µg/cm2) durante o desenvolvimento embrionário aumentou significativamente a taxa de células em apoptose dos embriões tanto no dia 5 quanto no dia 8 de cultivo e, embora a proporção de células viáveis no dia 8 tenha sido prejudicada por ambas as concentrações, apenas a exposição a 2 µg/cm2 de PED diminuiu a viabilidade celular no dia 5. Por outro lado, tanto a concentração de 0,2 µg/cm2 como a de 2 µg/cm2 tiveram um efeito negativo significativo sobre a qualidade da MCI no dia 8 e a taxa de expressão de Oct4 nos blastocistos e aumentaram a porcentagem de células desses blastocistos expressando Cdx2, adicionalmente, a razão Oct4/Cdx2 dos embriões expostos a 0,2 µg/cm2 e 2 µg/cm2 foi significativamente menor. Frente a esses resultados, presumi-se que as PED poderiam estar envolvidas nos mecanismos que levariam à diminuição do sucesso reprodutivo observado em camundongos expostos à poluição atmosférica ambiental / Previous experiments conducted in our laboratory demonstrate that successful pregnancy is affected by air pollution. The aim of this study was to evaluate the biological effects associated with a dose-response curve of the diesel exhaust particles (DEP) on early embryonic development and implantation potential, using mice in vitro fertilization and culture embryo as model. In Experiment 1, we found a negative dose-dependent effect on the embryonic development, hatching process, cell allocation and morphology of inner cell mass (ICM) of blastocysts. A post-hoc analysis revealed that the early development of the embryo was not affected by concentrations of 0.2 g/cm2 or 2g/cm2, but was significantly affected by the concentration of 20 g/cm2 of DEP. The hatching process was impaired by concentrations of 2 g/cm2 and 20 g/cm2. Cell allocation of ICM and the ratio between cells of ICM and trophectoderm were significantly affected by all concentrations. Addicionaly, we observed a negative effect on ICM morphology was observed for the 2 µg/cm2 and the 20 µg/cm2 concentrations. Experiment 2, despite showing no significant effect on implantation potential, as evidenced by the adhesion ability and trophoblast outgrowth, revealed that ICM morphology on day 8 of culture, rates of cell viability and apoptosis, and expression of Oct4 and Cdx2 were significantly affected. The Tukey HSD test showed that presence of DEP (0.2 g/cm2 and 2 g/cm2) during embryonic development increased significantly the rate of apoptotic cells in embryos as on day 5 as on day 8 of culture, although the proportion of viable cells on day 8 was impaired by both concentrations, only exposure to 2 g/cm2 PED decreased cell viability on day 5. On the other hand, both the concentration of 0.2 g/cm2 such as 2 g/cm2 had a significant negative effect on the quality of ICM on the day 8 and the rate of expression of Oct4 on blastocysts, and increased the percentage of cells from these embryos expressing Cdx2, also, Oct4/Cdx2 ratio were significantly lower in the blastocysts derived from embryos exposed to 0.2 g/cm2 and 2 g/cm2¬ concentrations. Given these results, the suggestion is that DEP could be involved in the mechanisms that lead to decreased reproductive success observed in mice exposed to environmental pollution
74

Experimental Studies of BMP Signalling in Neuronal Cells

Althini, Susanna January 2003 (has links)
<p>The developing nervous system depends largely on extracellular cues to shape its complex network of neurons. Classically, neurotrophins are known to be important mediators in this process. More recently, Bone Morphogenetic Proteins (BMPs), belonging to the Transforming Growth Factor beta (TGFβ) superfamily of secreted cytokines, have been shown to exert a wide range of effects, such as cellular growth, differentiation, survival and apoptosis, both in the developing and adult nervous system. They signal via serine/threonine kinase receptor essentially to the Smad pathway, which carries the signal to the nucleus where the transcription of target genes is regulated.</p><p>This thesis investigates the functions of BMPs in the nervous system, using a set of different models. Firstly, a targeted deletion of GDF10 (BMP3b) in the mouse was established to evaluate the role of this growth/differentiation factor in the hippocampal formation, a brain area known to be involved in memory processing. Other members of the TGFβ superfamily likely compensate for the lack of GDF10, since no detectable alterations in hippocampal function or gene transcription profile have been found. Secondly, a mouse model was set up, with the aim to study impaired BMP-signalling in dopaminergic neurons. The tyrosine hydroxylase (TH) locus was used to drive the expression of dominant negative BMP receptors by means of bicistronic mRNAs. TH is the rate-limiting enzyme in the biosynthesis of catecholamine and the mice described, show a graded decrease of TH-activity resulting in severe to mild dopamine deficiency. The contribution of the dominant negative BMP receptors to the phenotype is however secondary to the apparent TH hypomorphism. The final theme of this thesis is the potentiating effects of BMPs on neurotrophin-induced neurite outgrowth as studied in explanted ganglia from chick embryos and in the rat phaeochromocytoma cell line PC12. A number of pharmacological inhibitors of intracellular signalling kinases were applied to the cultures in order to reveal the contribution of different pathways to the enhanced neurite outgrowth. We made the unexpected finding that inhibition of MEK signalling mimicked the potentiating effects of BMP stimulation in the chick system. The underlying mechanisms for the synergistic effects, however, are still an enigma.</p>
75

Experimental Studies of BMP Signalling in Neuronal Cells

Althini, Susanna January 2003 (has links)
The developing nervous system depends largely on extracellular cues to shape its complex network of neurons. Classically, neurotrophins are known to be important mediators in this process. More recently, Bone Morphogenetic Proteins (BMPs), belonging to the Transforming Growth Factor beta (TGFβ) superfamily of secreted cytokines, have been shown to exert a wide range of effects, such as cellular growth, differentiation, survival and apoptosis, both in the developing and adult nervous system. They signal via serine/threonine kinase receptor essentially to the Smad pathway, which carries the signal to the nucleus where the transcription of target genes is regulated. This thesis investigates the functions of BMPs in the nervous system, using a set of different models. Firstly, a targeted deletion of GDF10 (BMP3b) in the mouse was established to evaluate the role of this growth/differentiation factor in the hippocampal formation, a brain area known to be involved in memory processing. Other members of the TGFβ superfamily likely compensate for the lack of GDF10, since no detectable alterations in hippocampal function or gene transcription profile have been found. Secondly, a mouse model was set up, with the aim to study impaired BMP-signalling in dopaminergic neurons. The tyrosine hydroxylase (TH) locus was used to drive the expression of dominant negative BMP receptors by means of bicistronic mRNAs. TH is the rate-limiting enzyme in the biosynthesis of catecholamine and the mice described, show a graded decrease of TH-activity resulting in severe to mild dopamine deficiency. The contribution of the dominant negative BMP receptors to the phenotype is however secondary to the apparent TH hypomorphism. The final theme of this thesis is the potentiating effects of BMPs on neurotrophin-induced neurite outgrowth as studied in explanted ganglia from chick embryos and in the rat phaeochromocytoma cell line PC12. A number of pharmacological inhibitors of intracellular signalling kinases were applied to the cultures in order to reveal the contribution of different pathways to the enhanced neurite outgrowth. We made the unexpected finding that inhibition of MEK signalling mimicked the potentiating effects of BMP stimulation in the chick system. The underlying mechanisms for the synergistic effects, however, are still an enigma.
76

Functional Studies of SNAP-25 using a knock-out and rescue approach

Delgado Martínez, Ignacio 18 October 2006 (has links)
No description available.
77

Apical Ectodermal Ridge (AER) activity and limb outgrowth during vertebrate development11

Viegas Tomás, Ana Raquel 11 January 2011 (has links)
Limb outgrowth is controlled by a specialized group of cells called the apical ectodermal ridge (AER), a thickening of the limb epithelium, at its distal tip. This specialized thickening of ectodermal cells is responsible for maintaining the underlying mesenchymal cells in an undifferentiated and proliferative state, and its structure is preserved through a fine-tuned balance between proliferation and apoptosis. This equilibrium is genetically controlled but little is known about the molecules involved in this process. Several authors have been shown that both fibroblast growth factor (FGF) and Erk pathway activation are crucial for AER function. Recently, FLRT3, a transmembrane protein able to interact with FGF receptors, has been implicated in the triggering of ERK activity by FGFs. In this thesis, we show that flrt3 expression is restricted to the AER, co-localizing its expression with fgf8 and pERK activity. Loss-of-function studies demonstrate that silencing of flrt3 affects the integrity of the AER and, subsequently, its proper function during limb bud outgrowth. Our data also indicate that flrt3 expression is not regulated by FGF activity in the AER, whereas ectopic WNT3A is able to induce flrt3 expression. Overall, our findings confirm flrt3 as a key player during chicken limb development, being necessary but not sufficient for proper AER formation and maintenance under the control of BMP and WNT signalling. During limb bud development, AER structure is maintained through a fine-tuned balance between proliferation and programmed cell death and this equilibrium is genetically controlled, although little is known about the molecules involved in that process. In this thesis we present evidences involving oct4, required to establish and maintain the pluripotent cell population necessary for embryogenesis in mouse and human, in the control of the proliferative balance within the AER cells. Overexpression of otc4 in the limb ectoderm disrupts the ratio apoptosis/proliferation and, moreover, oct4 expression is under the control of wnt-canonical pathway. We also describe a special localization and behaviour of proliferating cells in the AER in response to oct4 activity. We, therefore, describe a role for oct4 as a factor able to maintain a niche of cells that is responsible for the renewal of the AER. / El crecimiento del esbozo de la extremidad está controlado por un grupo especializado de células denominado Cresta Ectodérmica Apical (CEA), un engrosamiento del epitelio del miembro en su borde más distal. Este engrosamiento es responsable del mantenimiento de las células del mesodermo distal en un estado indiferenciado y proliferativo. Diferentes estudios muestran que la actividad de los factores de crecimiento fibroblástico (FCF) y de la vía Erk son cruciales para la correcta funcionalidad de la CEA. Recientemente se ha implicado a FLRT3, una proteína transmembranal capaz de interaccionar con los receptores de los FCF, en la activación de la vía Erk por los mismos. En esta tesis describimos cómo la expresión de flrt3 se restringe a la CEA, colocalizándose su expresión con fgf8 y la actividad de la vía Erk. Los experimentos de pérdida de función demuestran que la inhibición de flrt3 afecta la integridad de la CEA y, consecuentemente, a su función durante el desarrollo del esbozo del miembro. Nuestros datos también indican que la expresión de flrt3 no está regulada a través de los FCF en la CEA, sin embargo, la activación ectópica de WNT3A es capaz de inducir la expresión de flrt3. En conjunto, nuestros resultados demuestran que flrt3 es una molécula clave durante el desarrollo de las extremidades de pollo, siendo necesaria, pero no suficiente, para la correcta formación y mantenimiento de la CEA bajo el control de la señalización a través de BMP y WNT. Durante el desarrollo de las extremidades, la estructura de la CEA se mantiene a través de un fino control del balance entre la proliferación y apoptosis. Este equilibrio se encuentra genéticamente controlado aunque se sabe muy poco acerca de las moléculas involucradas en este proceso. En esta tesis presentamos evidencias en las que oct4, molécula necesaria para establecer y mantener la población de células pluripotentes necesarias durante la embriogénesis en ratón y humanos, controla la tasa de proliferación en las células de la CEA. La expresión ectópica de oct4 en el ectodermo del esbozo de la extremidad perturba la razón entre la apoptosis y la proliferación y, además, su expresión está controlada por la actividad de la vía canónica de los Wnt. También describimos en este trabajo la localización y comportamiento especiales de las células de la CEA en proliferación como respuesta a la actividad de oct4. Por consiguiente, podemos inferir que el rol de oct4 será el de un factor necesario para mantener un nicho celular responsable por la renovación de la CEA.
78

Efeitos biológicos e avaliação dose-resposta das partículas de exaustão do diesel sobre o desenvolvimento embrionário inicial de camundongos / Biological effects and dose-response assessment of diesel exhaust particles on in vitro early embryo development in mice

Daniela Aparecida Nicolosi Foltran Januário 12 March 2010 (has links)
Experimentos anteriores realizados em nosso laboratório indicam que o sucesso gestacional é afetado pela poluição atmosférica. O presente estudo teve como objetivo avaliar os efeitos biológicos associados a uma curva dose resposta das partículas de exaustão do diesel (PED) sobre o desenvolvimento embrionário inicial e o potencial de implantação, utilizando-se como modelo a fertilização in vitro e o cultivo embrionário de camundongos. No Experimento 1, encontrou-se um efeito negativo dose-dependente sobre o desenvolvimento embrionário inicial, o processo de eclosão, a alocação das células e a morfologia da massa celular interna (MCI) dos blastocistos. A análise post-hoc revelou que o desenvolvimento precoce do embrião não foi afetado pelas concentrações de 0,2 µg/cm2 ou 2 µg/cm2, mas foi significativamente afetado pela concentração de 20 µg/cm2 de PED. O processo de eclosão foi prejudicado pelas concentrações de 2 µg/cm2 e 20 µg/cm2. A alocação das células da MCI e a relação entre as células da MCI e do trofectoderma foram significativamente afetadas por todas as concentrações. Adicionalmente, observou-se um efeito negativo sobre a morfologia da MCI para as concentrações de 2 µg/cm2 e 20 µg/cm2. O Experimento 2, apesar de não mostrar efeito significativo sobre o potencial de implantação, evidenciado pela capacidade de adesão dos blastocistos e crescimento trofoblástico, revelou que a morfologia da MCI no dia 8 de cultivo, as taxas de viabilidade e de apoptose celular e a expressão de Oct4 e Cdx2 foram significativamente afetadas. O teste HSD-Tukey demonstrou que a presença de PED (0,2 µg/cm2 e 2 µg/cm2) durante o desenvolvimento embrionário aumentou significativamente a taxa de células em apoptose dos embriões tanto no dia 5 quanto no dia 8 de cultivo e, embora a proporção de células viáveis no dia 8 tenha sido prejudicada por ambas as concentrações, apenas a exposição a 2 µg/cm2 de PED diminuiu a viabilidade celular no dia 5. Por outro lado, tanto a concentração de 0,2 µg/cm2 como a de 2 µg/cm2 tiveram um efeito negativo significativo sobre a qualidade da MCI no dia 8 e a taxa de expressão de Oct4 nos blastocistos e aumentaram a porcentagem de células desses blastocistos expressando Cdx2, adicionalmente, a razão Oct4/Cdx2 dos embriões expostos a 0,2 µg/cm2 e 2 µg/cm2 foi significativamente menor. Frente a esses resultados, presumi-se que as PED poderiam estar envolvidas nos mecanismos que levariam à diminuição do sucesso reprodutivo observado em camundongos expostos à poluição atmosférica ambiental / Previous experiments conducted in our laboratory demonstrate that successful pregnancy is affected by air pollution. The aim of this study was to evaluate the biological effects associated with a dose-response curve of the diesel exhaust particles (DEP) on early embryonic development and implantation potential, using mice in vitro fertilization and culture embryo as model. In Experiment 1, we found a negative dose-dependent effect on the embryonic development, hatching process, cell allocation and morphology of inner cell mass (ICM) of blastocysts. A post-hoc analysis revealed that the early development of the embryo was not affected by concentrations of 0.2 g/cm2 or 2g/cm2, but was significantly affected by the concentration of 20 g/cm2 of DEP. The hatching process was impaired by concentrations of 2 g/cm2 and 20 g/cm2. Cell allocation of ICM and the ratio between cells of ICM and trophectoderm were significantly affected by all concentrations. Addicionaly, we observed a negative effect on ICM morphology was observed for the 2 µg/cm2 and the 20 µg/cm2 concentrations. Experiment 2, despite showing no significant effect on implantation potential, as evidenced by the adhesion ability and trophoblast outgrowth, revealed that ICM morphology on day 8 of culture, rates of cell viability and apoptosis, and expression of Oct4 and Cdx2 were significantly affected. The Tukey HSD test showed that presence of DEP (0.2 g/cm2 and 2 g/cm2) during embryonic development increased significantly the rate of apoptotic cells in embryos as on day 5 as on day 8 of culture, although the proportion of viable cells on day 8 was impaired by both concentrations, only exposure to 2 g/cm2 PED decreased cell viability on day 5. On the other hand, both the concentration of 0.2 g/cm2 such as 2 g/cm2 had a significant negative effect on the quality of ICM on the day 8 and the rate of expression of Oct4 on blastocysts, and increased the percentage of cells from these embryos expressing Cdx2, also, Oct4/Cdx2 ratio were significantly lower in the blastocysts derived from embryos exposed to 0.2 g/cm2 and 2 g/cm2¬ concentrations. Given these results, the suggestion is that DEP could be involved in the mechanisms that lead to decreased reproductive success observed in mice exposed to environmental pollution
79

Nrg1 Signaling in the Development of Cortical Circuits: Molecular Basis of Schizophrenia

Rodríguez Prieto, Ángela 18 November 2024 (has links)
[ES] La esquizofrenia (SC) es un trastorno del neurodesarrollo que afecta los procesos cognitivos y el comportamiento social. A diferencia de otras neuropatologías, los cerebros de los pacientes con SC no muestran características histológicas evidentes y los mecanismos moleculares subyacentes a la enfermedad siguen siendo desconocidos, lo que dificulta mucho su prevención y tratamiento eficaz. Los endofenotipos más consistentes en la SC incluyen la reducción del neuropilo, la conectividad funcional deteriorada entre las áreas corticales y cambios específicos en las conexiones sinápticas. El cuerpo calloso (CC) es el haz más grande de fibras nerviosas cortico-corticales, conectando ambos hemisferios cerebrales, y su desarrollo es un proceso complejo crucial para la formación adecuada de los circuitos corticales. Numerosa evidencia convergente apoya la hipótesis de que el CC se encuentra hipoconectado en pacientes con SC. Está bien establecido que la SC tiene un fuerte componente genético. Un gen clave implicado en el riesgo de SC es neuregulina 1 (NRG1), controlando varios aspectos del desarrollo neuronal. Estudios previos se han centrado principalmente en la señalización de Nrg1 en las interneuronas inhibitorias, descuidando su papel en las neuronas excitatorias. Para comprender el papel de Nrg1 en los circuitos corticales, en este trabajo estudiamos el papel de Nrg1 en el desarrollo de los axones del cuerpo calloso y específicamente, su función celular autónoma en las neuronas excitatorias. Para este objetivo quisimos, 1) evaluar la participación de la Nrg1 en el desarrollo de las neuronas de proyección callosa; 2) investigar el efecto autónomo de Nrg1 en el desarrollo de las neuritas; 3) estudiar los mecanismos moleculares subyacentes al papel de Nrg1 en el desarrollo neuronal; 4) explorar el potencial de Nrg1 en la reprogramación de astrocitos a neuronas, como un nuevo posible enfoque terapéutico después de una lesión cerebral. Para ello, primero desarrollamos un modelo in vivo de pérdida de función para determinar el papel de Nrg1 en el desarrollo de las proyecciones callosas.Descubrimos que la eliminación de Nrg1 en el modelo de ratón condicional impedía el desarrollo de axones callosos in vivo. A nivel mecanístico, encontramos que la señalización intracelular de Nrg1 es tanto necesaria como suficiente para promover el desarrollo axonal en las neuronas corticales in vivo. En segundo lugar, para determinar específicamente el papel de Nrg1 en el desarrollo axonal de las neuronas excitatorias, empleamos un modelo in vitro con un enfoque más reduccionista. Realizamos cultivos primarios de neuronas corticales. En este modelo, llevamos a cabo experimentos de ganancia y pérdida de función para investigar específicamente el efecto autónomo celular de Nrg1 sobre el desarrollo de dendritas y axones. Nuestros experimentos con cultivos primarios de neuronas confirmaron que la señalización intracelular de Nrg1 es necesaria y suficiente para promover el crecimiento axonal in vitro. En tercer lugar, estudiamos los mecanismos moleculares subyacentes al papel de Nrg1 en el desarrollo neuronal. Descubrimos mediante Western blot e inmunofluorescencia que la expresión de la proteína GAP43 está altamente disminuida en neuronas knockout para Nrg1. Además, observamos que disminución del desarrollo axonal en neuronas knockout para Nrg1 es parcialmente rescatado al sobreexpresar la proteína GAP43. Estos resultados sugieren que la señalización a través de GAP43 podría ser uno de los mecanismos involucrados en el papel de Nrg1 en el crecimiento axonal. En conjunto, nuestro estudio indica un papel crucial para la señalización intracelular de Nrg1 en el desarrollo de las conexiones cortico-corticales que conectan ambos hemisferios cerebrales. Nuestros resultados sugieren que la disfunción de Nrg1 en las neuronas excitatorias puede contribuir a la hipoconectividad asociada a la SC y las alteraciones del desarrollo neurológico. / [CA] L'esquizofrènia (SC) és un trastorn del neurodesenvolupament que afecta els processos cognitius i el comportament social. A diferència d'altres neuropatologies, els cervells dels pacients amb SC no mostren característiques histològiques evidents i els mecanismes moleculars subjacents a la malaltia continuen sent desconeguts, la qual cosa dificulta molt la seua prevenció i tractament eficaç. Els endofenotipus més consistents en la SC inclouen la reducció del neuropil, la connectivitat funcional deteriorada entre les àrees corticals i els canvis específics en les connexions sinàptiques. El cos callós (CC) és el feix més gran de fibres nervioses cortico-corticals, connecta tots dos hemisferis cerebrals, i el seu desenvolupament és un procés complex crucial per a la formació adequada dels circuits corticals. Nombrosa evidència convergent dona suport a la hipòtesi que el CC es troba hipoconnectat en pacients amb SC. Està ben establit que la SC té un fort component genètic. Un gen clau implicat en el risc de SC és neuregulina 1 (NRG1) que controla diversos aspectes del desenvolupament neuronal. Estudis previs s'han centrat principalment en la senyalització de Nrg1 en les interneurones inhibitòries, descurant el seu paper en les neurones excitatòries. Per a comprendre el paper de Nrg1 en els circuits corticals, en este treball estudiem el paper de Nrg1 en el desenvolupament dels axons del cos callós i específicament, la seua funció cel·lular autònoma en les neurones excitatòries. Per a este objectiu, 1) avaluem la participació de Nrg1 en el desenvolupament de les neurones de projecció callosa; 2) investiguem l'efecte autònom de Nrg1 en el desenvolupament de les neurites; 3) estudiem els mecanismes moleculars subjacents al paper de Nrg1 en el desenvolupament neuronal; 4) explorem el potencial de Nrg1 en la reprogramació d'astròcits a neurones, com un nou possible enfocament terapèutic després d'una lesió cerebral. Per això, emprem ratolins knockout nounats per a Nrg1 i realitzem un rastreig neuronal de les projeccions calloses, així com també rastregem estes projeccions en ratolins wild-type mitjançant la tècnica d'electroporació in utero. Descobrim que l'eliminació de Nrg1 en el model de ratolí condicional impedia el desenvolupament d'axons callosos in vivo. A nivell mecanístic, trobem que la senyalització intracel·lular de Nrg1 era suficient per a promoure el desenvolupament axonal en les neurones corticals in vivo. En segon lloc, per a determinar específicament el paper de Nrg1 en el desenvolupament axonal de les neurones excitatòries, emprem cultius primaris de neurones corticals. En este model, duem a terme experiments de guany i pèrdua de funció per a investigar específicament l'efecte autònom cel·lular de Nrg1 sobre el desenvolupament de dendrites i axons. Els nostres experiments amb cultius primaris de neurones van mostrar que la senyalització intracel·lular de Nrg1 és necessària i suficient per a promoure el creixement axonal in vitro. En tercer lloc, estudiem els mecanismes moleculars subjacents al paper de Nrg1 en el desenvolupament neuronal. Descobrim que l'expressió de la proteïna GAP43 està altament disminuïda en neurones knockout per a Nrg1. A més, observem que la disminució del desenvolupament axonal en neurones knockout per a Nrg1 és parcialment rescatat al sobreexpresar la proteïna GAP43. Estos resultats suggerixen que la senyalització a través de GAP43 podria ser un dels mecanismes involucrats en el paper de Nrg1 en el creixement axonal. En conjunt, el nostre estudi indica un paper crucial per a la senyalització intracellular de Nrg1 en el desenvolupament de les connexions cortico-corticals que connecten tots dos hemisferis cerebrals. Els nostres resultats assenyalen que la disfunció de Nrg1 en les neurones excitatòries pot contribuir a la hipoconnectivitat associada a la SC i a les alteracions del desenvolupament neurològic. / [EN] Schizophrenia (SZ) is a neurodevelopmental disorder that affects cognitive processes and social behavior, impacts approximately 1% of the population but presents a major socio-economic impact. Unlike other neuropathologies, the brains of SZ patients do not display obvious histological hallmarks and their molecular mechanisms remain unknown, making it very difficult to prevent and treat effectively. The most consistent endophenotypes in SZ include reduced neuropil, impaired functional connectivity between cortical areas and specific changes in synaptic connections. Therefore, SZ is a pathology based on abnormal cortical neuronal connectivity. The corpus callosum (CC), connecting the brain's hemispheres, is the largest bundle of cortico-cortical nerve fibers and its development is a complex process crucial for proper cortical circuitry formation. Converging evidence supports the hypothesis that the CC is hypoconnected in SZ patients. While the developmental etiology of SZ remains largely unresolved, it is well established that SZ has a strong genetic component. A key gene implicated in SZ risk is neuregulin 1 (NRG1), which controls several aspects of neuronal development. Prior research has primarily focused on Nrg1 signaling in inhibitory interneurons, neglecting its role in excitatory neurons. To understand the function of Nrg1 signaling in the development of cortical circuits, we studied the Nrg1's role in the development of callosal axons and specifically, the cell autonomous function in the excitatory neurons. To this aim, we sought to 1) evaluate the Nrg1's involvement in the development of callosal projecting neurons; 2) investigate the Nrg1's cell autonomous effect on neurites outgrowth; 3) study the molecular mechanisms underlying Nrg1's role in neuron development; 4) explore the Nrg1's potential in reprogramming astrocytes to neurons, as a novel therapeutic approach following brain injury. First, we developed an in vivo loss-of-function model to determine the role of Nrg1 in the development of callosal projections. We employed newborn Nrg1 knockout mice and performed neuronal tracing of the callosal projections, as well as we traced those projections in wild type mice by in utero electroporation. We found that the deletion of Nrg1 in a conditional mouse model impaired the development of callosal axons in vivo. On a mechanistic level, we found that the intracellular signaling of Nrg1 was sufficient to promote axonal development in cortical neurons in vivo. Second, to specifically determine the role of Nrg1 in axonal development of excitatory neurons, we employed a suitable in vitro model with a more reductionist approach. We performed primary cultures of cortical neurons. Using transfection by electroporation, we achieved sparse labeling and obtained internal controls. In this model, we carried out gain- and loss-of-function approaches to investigate specifically the Nrg1's cell autonomous effect on dendrites and axonal development. Our single-cell experiments in primary cultures showed that Nrg1 is cell-autonomously required and sufficient to promote axonal outgrowth in vitro. Third, we studied the molecular mechanisms underlying Nrg1's role in neuron development. We found by Western blot and immunofluorescence that the GAP43 protein expression is impaired in Nrg1 knockout neurons. Additionally, we observed that decreased axonal development in Nrg1 knockout neurons was rescued by overexpressing GAP43 protein. These results suggest that signaling through GAP43 may be one of the mechanisms involved in the role of Nrg1 in axonal growth. In conclusion, our study indicates a crucial role for Nrg1 intracellular signaling in the development of long-range cortico-cortical connections between brain hemispheres. It indicates that Nrg1 dysfunction in excitatory neurons may contribute to SZ-associated hypoconnectivity and neurodevelopmental alterations, providing new insights into the role of Nrg1 in the etiology of SZ. / Rodríguez Prieto, Á. (2024). Nrg1 Signaling in the Development of Cortical Circuits: Molecular Basis of Schizophrenia [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/212464
80

Axonale Zielfindung im Hippocampus während der Entwicklung und nach Läsion / Analyse membran-assoziierter Faktoren für die Schichtenspezifität aussprossender Fasern

Savaskan, Nicolai E. 10 June 2002 (has links)
Die vorliegende Arbeit behandelte den Einfluss von membran-assoziierten Faktoren im Hippocampus auf das axonale Wachstum, zum einen während der Entwicklung des entorhino-hippocampalen Systems und zum anderen nach Deafferenzierung des adulten Hippocampus. Mit Hilfe des Streifenassays und des Längenauswachsassays wurden zuerst die maturationsabhängigen Eigenschaften von membran-assoziierten Faktoren im Hippocampus getestet. Es zeigte sich, dass entorhinale Axone zwischen ihrem normotypischen Zielgebiet und Kontrollregionen diskrimieren können und bevorzugt auf Membranen ihres Zielgebiets wachsen. Im Folgenden wurden dann Axonen hippocampale Membranen unterschiedlicher Entwicklungsstadien im Streifenassay angeboten. In diesem experimentellen Ansatz wuchsen entorhinale Axone präferenziell auf jenen hippocampalen Membranen, die aus dem Entwicklungsstadium stammen, in den die entorhinalen Fasern in vivo in den Hippocampus einwachsen. Diese Experimente ergaben, dass das in vivo zeitlich genau regulierte Einwachsen entorhinaler Fasern in den Hippocampus von membran-assoziierten Faktoren determiniert ist und ein Zeitfenster für das Vorhandensein dieser Faktoren im Hippocampus existiert. Eines der wesentlichen Charakteristika der Maturation des zentralen Nervensystem ist die Bildung von Myelin und die Myelinisierung von Fasertrakten. Immunozytochemische Analysen mit Myelin-spezifischen Markern ergaben, dass dieses maturationsabhängige Auswachsverhalten zeitlich gut mit der Myelinisierung dieser Hirnregion korreliert. Eine Reihe von in vivo und in vitro Experimenten verschiedener Arbeitsgruppen demonstrierten, dass Myelin starke auswachsinhibitorische Eigenschaften hat, die sogar den Kollaps von Wachstumskolben induzieren können. In Längenauswachsassays zeigte sich, dass Myelin einen starken inhibitorischen Effekt auf das Längenwachstum von entorhinalen Axonen hat. Mit physikalischen Separationstechniken und unter Verwendung des funktionellen Antikörpers gegen inhibitorische Myelinproteine (IN-1) konnte dieser Effekt neutralisiert werden und das neuronale Längenwachstum war wieder vergleichbar zur Kontrollsituation. Untersuchungen im Streifenassay ergaben zusätzlich, dass das wachstumsinhibitorische Myelin und seine Komponenten keine axonalen Lenkungseigenschaften hatte und die gerichtete Zielfindung axonalen Auswachsens nicht beeinflusst. In weiteren Experimenten wurden die membran-assoziierten Faktoren im deafferenzierten Hippocampus untersucht. Dabei zeigte sich, dass nach einer Läsion wachstumsfördernde Faktoren in hippocampalen Membranen vorliegen. Zusätzlich liegen in einem engen Zeitfenster axonale Lenkungsmoleküle vor mit vergleichbarer Attraktivität für entorhinale Axone, wie sie aus entsprechenden Entwicklungsstadien bekannt sind. Die Experimente lassen den Schluss zu, dass im deafferenzierten Hippocampus Faktoren läsionsinduziert werden, und dass diese Faktoren membran-assoziiert sind. Es wird seit langem angenommen, dass das ZNS von adulten Vertebraten in seinem zellulären Zustand determiniert ist und zu keinen grösseren plastischen Veränderungen fähig ist. Gerade nach einer Schädigung von adultem ZNS ist die Regenerationsfähigkeit im Unterschied zu jungen, postnatalen ZNS sehr eingeschränkt. Die beschränkte Regenerationsfähigkeit des adulten ZNS ist wesentlich determiniert durch die Präsenz des auswachsinhibitorischen Myelins. Nichtsdestotrotz gibt es kompensatorisches Sprouting im Hippocampus, die verlorengegangene synaptische Kontakte ersetzen. Die Identifizierung der Faktoren, die das schichten-spezifische Einwachsen aussprossender Axone kontrollieren, trägt wesentlich zum Verständnis dieses Phänomens bei. Weiterhin wird die Aufklärung der zugrundeliegenden molekularen Faktoren für die spezifische Zielerkennung und deren Charakterisierung uns helfen, das Potential und die Limitation der Regeneration im ZNS besser zu verstehen und die Möglichkeit eröffnen, einmal verlorengegangene neuronale Verbindungen durch therapeutische Intervention wieder spezifisch aufzubauen. / In this study, the impact of membrane-associated factors on axonal outgrowth during development and following lesion was examined. We studied the maturation-dependent features of membrane-associated molecules in the hippocampus with the stripe assay for guidance activity and with the outgrowth assay for outgrowth-supporting activity. We could show that entorhinal axons discriminate between their proper target area, the hippocampus, and control regions which do not receive synaptic connections from the entorhinal cortex, and preferred to grow on hippocampal membranes. Further, we examined guidance preferences of entorhinal neurites on hippocampal membranes in different developmental stages. The choice behavior of entorhinal neurites for hippocampal membranes temporally correlates with the ingrowth of the perforant path into the hippocampus and with the stabilization of this brain area in vivo, and further indicate the transient presence of membrane-associated guidance cues in the hippocampus. One of the characteristics of maturational processes in the central nervous system is the developmentally regulated myelination of fiber tracts. Comparison of the stripe assay data with immunohistochemical analysis for MBP and MAG as representative myelin markers revealed a correlation between the changes in axonal choice behavior and increasing myelination. It is known that myelin itself is a strong axonal outgrowth inhibitor and that myelin can also induce growth cone collapse. In outgrowth assays, we could show that myelin has a strong outgrowth inhibitory influence on entorhinal axons which can be neutralized by the monoclonal antibody IN-1. However, in the stripe assay, myelin did not influence the choice behavior of outgrowing axons and this indicates that myelin does not govern information for directed growth. Furthermore, stripe assays were performed with membranes obtained from deafferented hippocampi at various lesion stages. In these experiments, we could show that outgrowth-promoting factors are present in the lesioned hippocampus. Moreover, data from the stripe assay revealed the timely restricted presence of membrane-bound guidance factors which are equally as attractive as neonatal hippocampal membranes. These experiments indicate the lesion-induced expression of outgrowth-promoting factors in the hippocampus, which correlates temporally with the sprouting reaction in vivo. It is suggested that the central nervous system of adult vertebrates is determined in its cellular condition and not capable of structural changes. This is most evident following lesion of adult brain, where the ability for regeneration is highly restricted in comparison to young, postnatal neural tissue. This restricted ability for regeneration in the adult brain is essentially determined by the presence of outgrowth-inhibitory myelin. However, a compensatory sprouting response exists in the adult hippocampus following lesion, which leads to a layer-specific replacement of lost synaptic contacts. The identification of these factors will lead to a deeper understanding of layer-specific axonal sprouting and synaptic replacement. Further, the identification and characterization of the underlying factors will help us to understand the potential and limitations of regeneration in the central nervous system.

Page generated in 0.1549 seconds