• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 348
  • 42
  • 20
  • 13
  • 10
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 541
  • 541
  • 253
  • 210
  • 173
  • 134
  • 113
  • 111
  • 108
  • 89
  • 87
  • 80
  • 75
  • 74
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Information fusion for scene understanding / Fusion d'informations pour la compréhesion de scènes

Xu, Philippe 28 November 2014 (has links)
La compréhension d'image est un problème majeur de la robotique moderne, la vision par ordinateur et l'apprentissage automatique. En particulier, dans le cas des systèmes avancés d'aide à la conduite, la compréhension de scènes routières est très importante. Afin de pouvoir reconnaître le grand nombre d’objets pouvant être présents dans la scène, plusieurs capteurs et algorithmes de classification doivent être utilisés. Afin de pouvoir profiter au mieux des méthodes existantes, nous traitons le problème de la compréhension de scènes comme un problème de fusion d'informations. La combinaison d'une grande variété de modules de détection, qui peuvent traiter des classes d'objets différentes et utiliser des représentations distinctes, est faites au niveau d'une image. Nous considérons la compréhension d'image à deux niveaux : la détection d'objets et la segmentation sémantique. La théorie des fonctions de croyance est utilisée afin de modéliser et combiner les sorties de ces modules de détection. Nous mettons l'accent sur la nécessité d'avoir un cadre de fusion suffisamment flexible afin de pouvoir inclure facilement de nouvelles classes d'objets, de nouveaux capteurs et de nouveaux algorithmes de détection d'objets. Dans cette thèse, nous proposons une méthode générale permettant de transformer les sorties d’algorithmes d'apprentissage automatique en fonctions de croyance. Nous étudions, ensuite, la combinaison de détecteurs de piétons en utilisant les données Caltech Pedestrian Detection Benchmark. Enfin, les données du KITTI Vision Benchmark Suite sont utilisées pour valider notre approche dans le cadre d'une fusion multimodale d'informations pour de la segmentation sémantique. / Image understanding is a key issue in modern robotics, computer vison and machine learning. In particular, driving scene understanding is very important in the context of advanced driver assistance systems for intelligent vehicles. In order to recognize the large number of objects that may be found on the road, several sensors and decision algorithms are necessary. To make the most of existing state-of-the-art methods, we address the issue of scene understanding from an information fusion point of view. The combination of many diverse detection modules, which may deal with distinct classes of objects and different data representations, is handled by reasoning in the image space. We consider image understanding at two levels : object detection ans semantic segmentation. The theory of belief functions is used to model and combine the outputs of these detection modules. We emphazise the need of a fusion framework flexible enough to easily include new classes, new sensors and new object detection algorithms. In this thesis, we propose a general method to model the outputs of classical machine learning techniques as belief functions. Next, we apply our framework to the combination of pedestrian detectors using the Caltech Pedestrain Detection Benchmark. The KITTI Vision Benchmark Suite is then used to validate our approach in a semantic segmentation context using multi-modal information
352

Geometrical and contextual scene analysis for object detection and tracking in intelligent vehicles / Analyse de scène contextuelle et géométrique pour la détection et le suivi d'objets dans les véhicules intelligents

Wang, Bihao 08 July 2015 (has links)
Pour les véhicules intelligents autonomes ou semi-autonomes, la perception constitue la première tâche fondamentale à accomplir avant la décision et l’action. Grâce à l’analyse des données vidéo, Lidar et radar, elle fournit une représentation spécifique de l’environnement et de son état, à travers l’extraction de propriétés clés issues des données des capteurs. Comparé à d’autres modalités de perception telles que le GPS, les capteurs inertiels ou les capteurs de distance (Lidar, radar, ultrasons), les caméras offrent la plus grande quantité d’informations. Grâce à leur polyvalence, les caméras permettent aux systèmes intelligents d’extraire à la fois des informations contextuelles de haut niveau et de reconstruire des informations géométriques de la scène observée et ce, à haute vitesse et à faible coût. De plus, la technologie de détection passive des caméras permet une faible consommation d’énergie et facilite leur miniaturisation. L’utilisation des caméras n’est toutefois pas triviale et pose un certain nombre de questions théoriques liées à la façon dont ce capteur perçoit son environnement. Dans cette thèse, nous proposons un système de détection d’objets mobiles basé seule- ment sur l’analyse d’images. En effet, dans les environnements observés par un véhicule intelligent, les objets en mouvement représentent des obstacles avec un risque de collision élevé, et ils doivent être détectés de manière fiable et robuste. Nous abordons le problème de la détection d’objets mobiles à partir de l’extraction du contexte local reposant sur une segmentation de la route. Après transformation de l’image couleur en une image invariante à l’illumination, les ombres peuvent alors être supprimées réduisant ainsi leur influence négative sur la détection d’obstacles. Ainsi, à partir d’une sélection automatique de pixels appartenant à la route, une région d’intérêt où les objets en mouvement peuvent apparaître avec un risque de collision élevé, est extraite. Dans cette zone, les pixels appartenant à des objets mobiles sont ensuite identifiés à l’aide d’une approche plan+parallaxe. À cette fin, les pixels potentiellement mobiles et liés à l’effet de parallaxe sont détectés par une méthode de soustraction du fond de l’image; puis trois contraintes géométriques différentes: la contrainte épipolaire, la contrainte de cohérence structurelle et le tenseur trifocal, sont appliquées à ces pixels pour filtrer ceux issus de l’effet de parallaxe. Des équations de vraisemblance sont aussi proposées afin de combiner les différents contraintes d’une manière complémentaire et efficace. Lorsque la stéréovision est disponible, la segmentation de la route et la détection d’obstacles peuvent être affinées en utilisant une segmentation spécifique de la carte de disparité. De plus, dans ce cas, un algorithme de suivi robuste combinant les informations de l’image et la profondeur des pixels a été proposé. Ainsi, si l’une des deux caméras ne fonctionne plus, le système peut donc revenir dans un mode de fonctionnement monoculaire ce qui constitue une propriété importante pour la fiabilité et l’intégrité du système de perception. Les différents algorithmes proposés ont été testés sur des bases de données d’images publiques en réalisant une évaluation par rapport aux approches de l’état de l’art et en se comparant à des données de vérité terrain. Les résultats obtenus sont prometteurs et montrent que les méthodes proposées sont efficaces et robustes pour différents scénarios routiers et les détections s’avèrent fiables notamment dans des situations ambiguës. / For autonomous or semi-autonomous intelligent vehicles, perception constitutes the first fundamental task to be performed before decision and action/control. Through the analysis of video, Lidar and radar data, it provides a specific representation of the environment and of its state, by extracting key properties from sensor data with time integration of sensor information. Compared to other perception modalities such as GPS, inertial or range sensors (Lidar, radar, ultrasonic), the cameras offer the greatest amount of information. Thanks to their versatility, cameras allow intelligent systems to achieve both high-level contextual and low-level geometrical information about the observed scene, and this is at high speed and low cost. Furthermore, the passive sensing technology of cameras enables low energy consumption and facilitates small size system integration. The use of cameras is however, not trivial and poses a number of theoretical issues related to how this sensor perceives its environmen. In this thesis, we propose a vision-only system for moving object detection. Indeed,within natural and constrained environments observed by an intelligent vehicle, moving objects represent high risk collision obstacles, and have to be handled robustly. We approach the problem of detecting moving objects by first extracting the local contextusing a color-based road segmentation. After transforming the color image into illuminant invariant image, shadows as well as their negative influence on the detection process can be removed. Hence, according to the feature automatically selected onthe road, a region of interest (ROI), where the moving objects can appear with a high collision risk, is extracted. Within this area, the moving pixels are then identified usin ga plane+parallax approach. To this end, the potential moving and parallax pixels a redetected using a background subtraction method; then three different geometrical constraints : the epipolar constraint, the structural consistency constraint and the trifocaltensor are applied to such potential pixels to filter out parallax ones. Likelihood equations are also introduced to combine the constraints in a complementary and effectiveway. When stereo vision is available, the road segmentation and on-road obstacles detection can be refined by means of the disparity map with geometrical cues. Moreover, in this case, a robust tracking algorithm combining image and depth information has been proposed. If one of the two cameras fails, the system can therefore come back to a monocular operation mode, which is an important feature for perception system reliability and integrity. The different proposed algorithms have been tested on public images data set with anevaluation against state-of-the-art approaches and ground-truth data. The obtained results are promising and show that the proposed methods are effective and robust on the different traffic scenarios and can achieve reliable detections in ambiguous situations.
353

Object Detection in Dynamic Background / Détection d’objets dans un fond dynamique

Ali, Imtiaz 05 March 2012 (has links)
La détection et la reconnaissance d’objets dans des vidéos numériques est l’un des principaux challenges dans de nombreuses applications de vidéo surveillance. Dans le cadre de cette thèse, nous nous sommes attaqué au problème difficile de la segmentation d’objets dans des vidéos dont le fond est en mouvement permanent. Il s’agit de situations qui se produisent par exemple lorsque l’on filme des cours d’eau, ou le ciel,ou encore une scène contenant de la fumée, de la pluie, etc. Il s’agit d’un sujet assez peu étudié dans la littérature car très souvent les scènes traitées sont plutôt statiques et seules quelques parties bougent, telles que les feuillages par exemple, ou les seuls mouvements sont des changements de luminosité. La principale difficulté dans le cadre des scènes dont le fond est en mouvement est de différencier le mouvement de l’objet du mouvement du fond qui peuvent parfois être très similaires. En effet, par exemple, un objet dans une rivière peut se déplacer à la même allure que l’eau. Les algorithmes de la littérature extrayant des champs de déplacement échouent alors et ceux basés sur des modélisations de fond génèrent de très nombreuses erreurs. C’est donc dans ce cadre compliqué que nous avons tenté d’apporter des solutions.La segmentation d’objets pouvant se baser sur différents critères : couleur, texture,forme, mouvement, nous avons proposé différentes méthodes prenant en compte un ou plusieurs de ces critères.Dans un premier temps, nous avons travaillé dans un contexte bien précis qui était celui de la détection des bois morts dans des rivières. Ce problème nous a été apporté par des géographes avec qui nous avons collaboré dans le cadre du projet DADEC (Détection Automatique de Débris pour l’Aide à l’Etude des Crues). Dans ce cadre, nous avons proposé deux méthodes l’une dite " naïve " basée sur la couleur des objets à détecter et sur leur mouvement et l’autre, basée sur une approche probabiliste mettant en oeuvre une modélisation de la couleur de l’objet et également basée sur leur déplacement. Nous avons proposé une méthode pour le comptage des bois morts en utilisant les résultats des segmentations.Dans un deuxième temps, supposant la connaissance a priori du mouvement des objets,dans un contexte quelconque, nous avons proposé un modèle de mouvement de l’objet et avons montré que la prise en compte de cet a priori de mouvement permettait d’améliorer nettement les résultats des segmentations obtenus par les principaux algorithmes de modélisation de fond que l’on trouve dans la littérature.Enfin, dans un troisième temps, en s’inspirant de méthodes utilisées pour caractériser des textures 2D, nous avons proposé un modèle de fond basé sur une approche fréquentielle.Plus précisément, le modèle prend en compte non seulement le voisinage spatial d’un pixel mais également le voisinage temporel de ce dernier. Nous avons appliqué la transformée de Fourier locale au voisinage spatiotemporel d’un pixel pour construire un modèle de fond.Nous avons appliqué nos méthodes sur plusieurs vidéos, notamment les vidéos du projet DADEC, les vidéos de la base DynTex, des vidéos synthétiques et des vidéos que nous avons faites. / Moving object detection is one of the main challenges in many video monitoring applications.In this thesis, we address the difficult problem that consists in object segmentation when background moves permanently. Such situations occur when the background contains water flow, smoke or flames, snowfall, rainfall etc. Object detection in moving background was not studied much in the literature so far. Video backgrounds studied in the literature are often composed of static scenes or only contain a small portion of moving regions (for example, fluttering leaves or brightness changes). The main difficulty when we study such situations is to differentiate the objects movements and the background movements that may be almost similar. For example, an object in river moves at the same speed as water. Therefore, motion-based techniques of the literature, relying on displacements vectors in the scene, may fail to discriminate objects from the background, thus generating a lot of false detections. In this complex context, we propose some solutions for object detection.Object segmentation can be based on different criteria including color, texture, shape and motion. We propose various methods taking into account one or more of these criteria.We first work on the specific context of wood detection in rivers. It is a part of DADEC project (Détection Automatique de Débris pour l’Aide à l’Etude des Crues) in collaboration with geographers. We propose two approaches for wood detection: a naïve method and the probabilistic image model. The naïve approach is based on binary decisions based on object color and motion, whereas the probabilistic image model uses wood intensity distribution with pixel motion. Such detection methods are used fortracking and counting pieces of wood in rivers.Secondly, we consider a context in which we suppose a priori knowledge about objectmotion is available. Hence, we propose to model and incorporate this knowledge into the detection process. We show that combining this prior motion knowledge with classical background model improves object detection rate.Finally, drawing our inspiration from methods used for 2D texture representation, we propose to model moving backgrounds using a frequency-based approach. More precisely, the model takes into account the spatial neighborhoods of pixels but also their temporal neighborhoods. We apply local Fourier transform on the obtained regions in order to extract spatiotemporal color patterns.We apply our methods on multiple videos, including river videos under DADEC project, image sequences from the DynTex video database, several synthetic videos andsome of our own made videos. We compare our object detection results with the existing methods for real and synthetic videos quantitatively as well as qualitatively
354

Classification d'images et localisation d'objets par des méthodes de type noyau de Fisher / Fisher kernel based models for image classification and object localization

Cinbis, Ramazan Gokberk 22 July 2014 (has links)
Dans cette thèse, nous proposons des modèles et des méthodes dédiés à des taches de compréhension de l'image. En particulier, nous nous penchons sur des approches de type noyau de Fisher pour la classification d'images et la localisation d'objets. Nos études se répartissent en trois chapitres. En premier lieu, nous proposons de nouveaux descripteurs d'images construits sur des modèles non-iid de l'image. Notre point de départ est l'observation que les régions locales d'une image sont souvent supposées indépendentes et identiquement distribuées (iid) dans les modèles de type sacs-de-mots (SdM). Nous introduisons des modèles non-iid en traitant les paramètres du SdM comme des variables latentes, ce qui rend interdépendantes toutes les régions locales. En utilisant le noyau de Fisher, nous encodons une image par le gradient de sa log-vraisemblance par rapport aux hyper-paramètres du modèle. Notre représentation implique naturellement une invariance à certaines transformations, ce qui explique pourquoi de telles approches ont été courronnées de succès. En utilisant l'inférence variationnelle, nous étendons le modèle de base pour inclure un mélange de gaussiennes sur les descripteurs locaux, et un modèle latent de sujets pour capturer la structure co-occurente des mots visuels. Dans un second temps, nous présentons un système de détection d'objet reposant sur la représentation haute-dimension d'images par le vecteur de Fisher. Pour des raisons de complexité en temps et en espace, nous utilisons une méthode récente à base de segmentation pour engendrer des hypothèses de détection indépendantes des classes, ainsi que des techniques de compression. Notre principale contribution est une méthode pour produire des masques de segmentation potentiels, afin de supprimer le bruit du descripteur dû à l'arrière plan. Nous montrons que repondérer les descripteurs locaux de l'image en fonction de ces masques améliore significativement la performance en détection. Troisièmement, nous proposons une approche semi-supervisée pour la localisation d'objets. L'entrainement supervisé usuel de détecteurs d'objets nécessite l'annotation de boites englobantes des instances de ces objets. Ce processus coûteux est évité en apprentissage semi-supervisé, lequel ne nécessite que des étiquettes binaires indiquant la présence ou l'absence des objets. Nous suivons une approche d'apprentissage à instance multiple en alterne itérativement entre entrainer un détecteur et inférer les positions des objets. Notre contribution principale est une procédure multi-état d'apprentissage à instance multiple, qui évite à l'apprentissage de se focaliser prématurément sur des positions d'objets erronnées. Nous montrons que cette procédure est particulièrement importante lorsque des représentations haute-dimensions comme le vecteur de Fisher sont utilisées. Pour finir, nous présentons dans l'appendice de cette thèse notre travail sur l'identification de personnes dans des vidéos télévision non-contrôlées. Nous montrons qu'une distance adaptée au casting peut être apprise sans étiqueter d'exemple d'apprentissage, mais en utilisant des paires de visages au sein d'un même chemin et sur plusieurs chemins se chevauchant temporellement. Nous montrons que la métrique apprise améliore l'identification de chemins de visages, la reconnaissance et les performances en regroupement. / In this dissertation, we propose models and methods targeting image understanding tasks. In particular, we focus on Fisher kernel based approaches for the image classification and object localization problems. We group our studies into the following three main chapters. First, we propose novel image descriptors based on non-i.i.d. image models. Our starting point is the observation that local image regions are implicitly assumed to be identically and independently distributed (i.i.d.) in the bag-of-words (BoW) model. We introduce non-i.i.d. models by treating the parameters of the BoW model as latent variables, which renders all local regions dependent. Using the Fisher kernel framework we encode an image by the gradient of the data log-likelihood with respect to model hyper-parameters. Our representation naturally involves discounting transformations, providing an explanation of why such transformations have proven successful. Using variational inference we extend the basic model to include Gaussian mixtures over local descriptors, and latent topic models to capture the co-occurrence structure of visual words. Second, we present an object detection system based on the high-dimensional Fisher vectors image representation. For computational and storage efficiency, we use a recent segmentation-based method to generate class-independent object detection hypotheses, in combination with data compression techniques. Our main contribution is a method to produce tentative object segmentation masks to suppress background clutter in the features. We show that re-weighting the local image features based on these masks improve object detection performance significantly. Third, we propose a weakly supervised object localization approach. Standard supervised training of object detectors requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning, which requires only binary class labels that indicate the absence/presence of object instances. We follow a multiple-instance learning approach that iteratively trains the detector and infers the object locations. Our main contribution is a multi-fold multiple instance learning procedure, which prevents training from prematurely locking onto erroneous object locations. We show that this procedure is particularly important when high-dimensional representations, such as the Fisher vectors, are used. Finally, in the appendix of the thesis, we present our work on person identification in uncontrolled TV videos. We show that cast-specific distance metrics can be learned without labeling any training examples by utilizing face pairs within tracks and across temporally-overlapping tracks. We show that the obtained metrics improve face-track identification, recognition and clustering performances.
355

Automated object detection during video production

Machado, Tiago 04 September 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-07T12:28:40Z No. of bitstreams: 1 tiagomachado.pdf: 31043362 bytes, checksum: 9a351916809d0428a7cfe66da526a87c (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-07T13:32:52Z (GMT) No. of bitstreams: 1 tiagomachado.pdf: 31043362 bytes, checksum: 9a351916809d0428a7cfe66da526a87c (MD5) / Made available in DSpace on 2017-06-07T13:32:52Z (GMT). No. of bitstreams: 1 tiagomachado.pdf: 31043362 bytes, checksum: 9a351916809d0428a7cfe66da526a87c (MD5) Previous issue date: 2015-09-04 / Recentemente, tem crescido a preocupação das emissoras de TV em como adaptar seus fluxos de trabalho de modo a produzir e entregar conteúdo interativo de qualidade no ambiente de TV Digital. Devido às mudanças e custos necessários para a implantação da nova tecnologia, as emissoras acabam por não explorar plenamente as possibilidades de interatividade. Assim, para que o usuário tenha acesso a uma experiência avançada e agradável, é necessário otimizar a produção de conteúdo interativo e diminuir seus custos. Para isto, novas soluções capazes de prover uma maior automação na produção de conteúdo interativo devem ser investigadas. Neste contexto, este trabalho propõe um sistema para detecção de objetos durante a produção de cenas de vídeo, capaz de capturar objetos e associar a captura a metadados relacionados durante filmagens, em estúdio de gravação ou mesmo em eventos ao vivo. A informação capturada é entregue de forma estruturada, na chamada linha do tempo de objetos, a qual pode ser manipulada durante todos os estágios de edição do vídeo, bem como na criação de conteúdo interativo. / Recently, TV Broadcasters have been concerned on how to adapt their workflow in order to produce and deliver high quality interactive content in the Digital TV environment. Due to the changes and costs needed for the deployment of this new technology, broadcasters do not fully explore the possibilities of interactivity. Therefore, in order to provide users an enhanced and pleasing user experience, they are required to optimize the production of interactive content and lower its costs. For this reason, new solutions able to provide a higher level of automation for interactive content production must be investigated. In this context, this work proposes an object detection method able to capture objects and related metadata during video shooting in a recording studio or even on a live event. Captured information is delivered in a structured manner, the so-called object timeline, which may be handled throughout the stages of video editing as well as during the creation of interactive content.
356

Visual Tracking / Visuell följning

Danelljan, Martin January 2013 (has links)
Visual tracking is a classical computer vision problem with many important applications in areas such as robotics, surveillance and driver assistance. The task is to follow a target in an image sequence. The target can be any object of interest, for example a human, a car or a football. Humans perform accurate visual tracking with little effort, while it remains a difficult computer vision problem. It imposes major challenges, such as appearance changes, occlusions and background clutter. Visual tracking is thus an open research topic, but significant progress has been made in the last few years. The first part of this thesis explores generic tracking, where nothing is known about the target except for its initial location in the sequence. A specific family of generic trackers that exploit the FFT for faster tracking-by-detection is studied. Among these, the CSK tracker have recently shown obtain competitive performance at extraordinary low computational costs. Three contributions are made to this type of trackers. Firstly, a new method for learning the target appearance is proposed and shown to outperform the original method. Secondly, different color descriptors are investigated for the tracking purpose. Evaluations show that the best descriptor greatly improves the tracking performance. Thirdly, an adaptive dimensionality reduction technique is proposed, which adaptively chooses the most important feature combinations to use. This technique significantly reduces the computational cost of the tracking task. Extensive evaluations show that the proposed tracker outperform state-of-the-art methods in literature, while operating at several times higher frame rate. In the second part of this thesis, the proposed generic tracking method is applied to human tracking in surveillance applications. A causal framework is constructed, that automatically detects and tracks humans in the scene. The system fuses information from generic tracking and state-of-the-art object detection in a Bayesian filtering framework. In addition, the system incorporates the identification and tracking of specific human parts to achieve better robustness and performance. Tracking results are demonstrated on a real-world benchmark sequence.
357

Object detection and pose estimation of randomly organized objects for a robotic bin picking system

Skalski, Tomasz, Zaborowski, Witold January 2013 (has links)
Today modern industry systems are almost fully automated. The high requirements regarding speed, flexibility, precision and reliability makes it in some cases very difficult to create. One of the most willingly researched solution to solve many processes without human influence is bin-picking. Bin picking is a very complex process which integrates devices such as: robotic grasping arm, vision system, collision avoidance algorithms and many others. This paper describes the creation of a vision system - the most important part of the whole bin-picking system. Authors propose a model-based solution for estimating a best pick-up candidate position and orientation. In this method database is created from 3D CAD model, compared with processed image from the 3D scanner. Paper widely describes database creation from 3D STL model, Sick IVP 3D scanner configuration and creation of the comparing algorithm based on autocorrelation function and morphological operators. The results shows that proposed solution is universal, time efficient, robust and gives opportunities for further work. / +4915782529118
358

General Object Detection Using Superpixel Preprocessing

Wälivaara, Marcus January 2017 (has links)
The objective of this master’s thesis work is to evaluate the potential benefit of a superpixel preprocessing step for general object detection in a traffic environment. The various effects of different superpixel parameters on object detection performance, as well as the benefit of including depth information when generating the superpixels are investigated. In this work, three superpixel algorithms are implemented and compared, including a proposal for an improved version of the popular Spectral Linear Iterative Clustering superpixel algorithm (SLIC). The proposed improved algorithm utilises a coarse-to-fine approach which outperforms the original SLIC for high-resolution images. An object detection algorithm is also implemented and evaluated. The algorithm makes use of depth information obtained by a stereo camera to extract superpixels corresponding to foreground objects in the image. Hierarchical clustering is then applied, with the segments formed by the clustered superpixels indicating potential objects in the input image. The object detection algorithm managed to detect on average 58% of the objects present in the chosen dataset. It performed especially well for detecting pedestrians or other objects close to the car. Altering the density distribution of the superpixels in the image yielded an increase in detection rate, and could be achieved both with or without utilising depth information. It was also shown that the use of superpixels greatly reduces the amount of computations needed for the algorithm, indicating that a real-time implementation is feasible.
359

Feature extraction and selection for background modeling and foreground detection / Extraction et sélection de caractéristiques pour la détection d’objets mobiles dans des vidéos

Pacheco Do Espirito Silva, Caroline 10 May 2017 (has links)
Dans ce manuscrit de thèse, nous présentons un descripteur robuste pour la soustraction d’arrière-plan qui est capable de décrire la texture à partir d’une séquence d’images. Ce descripteur est moins sensible aux bruits et produit un histogramme court, tout en préservant la robustesse aux changements d’éclairage. Un autre descripteur pour la reconnaissance dynamique des textures est également proposé. Le descripteur permet d’extraire non seulement des informations de couleur, mais aussi des informations plus détaillées provenant des séquences vidéo. Enfin, nous présentons une approche de sélection de caractéristiques basée sur le principe d'apprentissage par ensemble qui est capable de sélectionner les caractéristiques appropriées pour chaque pixel afin de distinguer les objets de premier plan de l’arrière plan. En outre, notre proposition utilise un mécanisme pour mettre à jour l’importance relative de chaque caractéristique au cours du temps. De plus, une approche heuristique est utilisée pour réduire la complexité de la maintenance du modèle d’arrière-plan et aussi sa robustesse. Par contre, cette méthode nécessite un grand nombre de caractéristiques pour avoir une bonne précision. De plus, chaque classificateur de base apprend un ensemble de caractéristiques au lieu de chaque caractéristique individuellement. Pour compenser ces limitations, nous avons amélioré cette approche en proposant une nouvelle méthodologie pour sélectionner des caractéristiques basées sur le principe du « wagging ». Nous avons également adopté une approche basée sur le concept de « superpixel » au lieu de traiter chaque pixel individuellement. Cela augmente non seulement l’efficacité en termes de temps de calcul et de consommation de mémoire, mais aussi la qualité de la détection des objets mobiles. / In this thesis, we present a robust descriptor for background subtraction which is able to describe texture from an image sequence. The descriptor is less sensitive to noisy pixels and produces a short histogram, while preserving robustness to illumination changes. Moreover, a descriptor for dynamic texture recognition is also proposed. This descriptor extracts not only color information, but also a more detailed information from video sequences. Finally, we present an ensemble for feature selection approach that is able to select suitable features for each pixel to distinguish the foreground objects from the background ones. Our proposal uses a mechanism to update the relative importance of each feature over time. For this purpose, a heuristic approach is used to reduce the complexity of the background model maintenance while maintaining the robustness of the background model. However, this method only reaches the highest accuracy when the number of features is huge. In addition, each base classifier learns a feature set instead of individual features. To overcome these limitations, we extended our previous approach by proposing a new methodology for selecting features based on wagging. We also adopted a superpixel-based approach instead of a pixel-level approach. This does not only increases the efficiency in terms of time and memory consumption, but also can improves the segmentation performance of moving objects.
360

Robust low-rank and sparse decomposition for moving object detection : from matrices to tensors / Détection d’objets mobiles dans des vidéos par décomposition en rang faible et parcimonieuse : de matrices à tenseurs

Cordolino Sobral, Andrews 11 May 2017 (has links)
Dans ce manuscrit de thèse, nous introduisons les avancées récentes sur la décomposition en matrices (et tenseurs) de rang faible et parcimonieuse ainsi que les contributions pour faire face aux principaux problèmes dans ce domaine. Nous présentons d’abord un aperçu des méthodes matricielles et tensorielles les plus récentes ainsi que ses applications sur la modélisation d’arrière-plan et la segmentation du premier plan. Ensuite, nous abordons le problème de l’initialisation du modèle de fond comme un processus de reconstruction à partir de données manquantes ou corrompues. Une nouvelle méthodologie est présentée montrant un potentiel intéressant pour l’initialisation de la modélisation du fond dans le cadre de VSI. Par la suite, nous proposons une version « double contrainte » de l’ACP robuste pour améliorer la détection de premier plan en milieu marin dans des applications de vidéo-surveillance automatisées. Nous avons aussi développé deux algorithmes incrémentaux basés sur tenseurs afin d’effectuer une séparation entre le fond et le premier plan à partir de données multidimensionnelles. Ces deux travaux abordent le problème de la décomposition de rang faible et parcimonieuse sur des tenseurs. A la fin, nous présentons un travail particulier réalisé en conjonction avec le Centre de Vision Informatique (CVC) de l’Université Autonome de Barcelone (UAB). / This thesis introduces the recent advances on decomposition into low-rank plus sparse matrices and tensors, as well as the main contributions to face the principal issues in moving object detection. First, we present an overview of the state-of-the-art methods for low-rank and sparse decomposition, as well as their application to background modeling and foreground segmentation tasks. Next, we address the problem of background model initialization as a reconstruction process from missing/corrupted data. A novel methodology is presented showing an attractive potential for background modeling initialization in video surveillance. Subsequently, we propose a double-constrained version of robust principal component analysis to improve the foreground detection in maritime environments for automated video-surveillance applications. The algorithm makes use of double constraints extracted from spatial saliency maps to enhance object foreground detection in dynamic scenes. We also developed two incremental tensor-based algorithms in order to perform background/foreground separation from multidimensional streaming data. These works address the problem of low-rank and sparse decomposition on tensors. Finally, we present a particular work realized in conjunction with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB).

Page generated in 0.0926 seconds