• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 293
  • 76
  • 66
  • 14
  • 13
  • 9
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 531
  • 77
  • 66
  • 64
  • 62
  • 52
  • 46
  • 44
  • 43
  • 42
  • 38
  • 33
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Tissue-Selective Activation and Toxicity of Substituted Dichlorobenzenes : Studies on the Mechanism of Cell Death in the Olfactory Mucosa

Franzén, Anna January 2005 (has links)
<p>The nasal passages are constantly exposed to both air- and bloodborne foreign compounds. In particular, the olfactory mucosa is demonstrated to be susceptible to a variety of drugs and chemicals. In this thesis, mechanisms involved in tissue-selective toxicity in the olfactory mucosa of rodents have been investigated using the olfactory toxicant 2,6-dichlorophenyl methylsulphone (2,6-diClPh-MeSO<sub>2</sub>) as a model compound. Comparative studies were performed with the non-toxic 2,5-dichlorophenyl methylsulphone (2,5-diClPh-MeSO<sub>2</sub>) and the reasons for the strikingly different toxicity were investigated. </p><p>A strong bioactivation and protein adduction of 2,6-diClPh-MeSO<sub>2</sub> in olfactory microsomes and S9-fractions of rodents was demonstrated. In contrast, no significant metabolic activation of 2,5-diClPh-MeSO<sub>2</sub> was observed and the bioactivation in the liver for both chlorinated isomers was negligible. <i>In vitro</i> studies with recombinant yeast cell microsomes expressing mouse cytochrome P450 2A5 (CYP2A5) demonstrated a metabolic activation of 2,6-diClPh-MeSO<sub>2</sub>. The 2,6-diClPh-MeSO<sub>2</sub>-induced lesions and CYP2A5 expression preferentially occurred in Bowman’s glands and sustentacular cells of the olfactory mucosa. A significant depletion of glutathione (GSH) in the olfactory mucosa was demonstrated <i>in vivo</i>, while no changes were observed in the liver. There was a rapid induction of the endoplasmic reticulum (ER)-specific chaperone Grp78, activation of the ER-specific caspase-12 and the downstream caspase-3 in the Bowman’s glands. Electron microscopy revealed swelling of ER and mitochondria and a lost integrity of the Bowman’s glands. </p><p>Based on these results, the proposed mechanism for 2,6-diClPh-MeSO<sub>2</sub>-induced toxicity in the olfactory mucosa is bioactivation by CYP2A5 into a reactive intermediate causing protein adduction and GSH-depletion. This is initiating a sequence of downstream events of ER-stress, changes in ion homeostasis, ultrastructural organelle disruption and apoptotic signalling. In spite of the initial apoptotic signals, the terminal phase of apoptosis seemed to be blocked and necrotic features occurred. The predominant expression of CYP2A5 in the olfactory mucosa is proposed to play a key role for the tissue- and cell-specific toxicity induced by 2,6-diClPh-MeSO<sub>2</sub>.</p>
412

Mechanisms of cabbage seedpod weevil, Ceutorhynchus obstrictus, resistance associated with novel germplasm derived from Sinapis alba x Brassica napus

Tansey, James 11 1900 (has links)
The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), is an important pest of brassicaceous oilseed crops, especially canola (Brassica napus L. and Brassica rapa L.) in North America and Europe. Application of foliar insecticide is the only method currently employed to control C. obstrictus populations; because this approach is environmentally unsustainable, alternatives including host plant resistance have been explored. White mustard, Sinapis alba L., is resistant to C. obstrictus and was chosen as a potential source of resistance for B. napus oilseed. Interspecific crosses of S. alba x B. napus have produced several lines that are resistant to C. obstrictus feeding and oviposition and yield fewer, lighter-weight weevil larvae that take longer to develop. I investigated potential mechanisms of this resistance, including assessing differences in visual and olfactory cues among resistant and susceptible genotypes, and antixenosis and antibiosis. Determining effects of visual cues associated with host plant resistance required investigation of weevil vision. Deployment strategies for resistant germplasm were assessed to evaluate incorporation of susceptible refugia to promote long-term durability of resistance traits. Results reported in Chapter 2 indicate that the C. obstrictus visual system is apparently trichromatic and incorporates receptors with response maxima near 350, 450, and 550 nm. Modelling indicated that UV light alone reduced weevil responses but the interaction of yellow and UV light increased responses at a threshold reflectance level of UV. Results reported in Chapter 3 indicated that differences in yellow and UV reflectance among host plant flowers influence host selection in C. obstrictus. Results described in Chapter 4 determine differential attraction to the odours of S. alba and B. napus and among resistant and susceptible accessions. Inferences of the identities of glucosinolates found in varying amounts among susceptible and resistant genotypes suggested that 2-phenylethyl glucosinolate influenced attractiveness. Results described in Chapter 5 indicate differences in adult feeding and oviposition preferences among resistant and susceptible genotypes. Oocyte development, larval biomass and larval development time varied among weevils feeding on resistant and susceptible genotypes. Based on results of Chapter 4, 1-methoxy-3-indolylmethyl glucosinolate was implicated as contributing to antixenosis and antibiosis resistance. Results reported in Chapter 6 describe effects of mixed plots of resistant and susceptible genotypes on weevil spatial distribution and oviposition. These results are consistent with associational resistance and attributed to reduced apparency of susceptible plants in mixtures and antixenosis resistance associated with resistant germplasm. / Plant Science
413

Tubulin in vitro, in vivo and in silico

Mershin, Andreas 17 February 2005 (has links)
Tubulin, microtubules and associated proteins were studied theoretically, computationally and experimentally in vitro and in vivo in order to elucidate the possible role these play in cellular information processing and storage. Use of the electric dipole moment of tubulin as the basis for binary switches (biobits) in nanofabricated circuits was explored with surface plasmon resonance, refractometry and dielectric spectroscopy. The effects of burdening the microtubular cytoskeleton of olfactory associative memory neurons with excess microtubule associated protein TAU in Drosophila fruitflies were determined. To investigate whether tubulin may be used as the substrate for quantum computation as a bioqubit, suggestions for experimental detection of quantum coherence and entanglement among tubulin electric dipole moment states were developed.
414

Tissue-Selective Activation and Toxicity of Substituted Dichlorobenzenes : Studies on the Mechanism of Cell Death in the Olfactory Mucosa

Franzén, Anna January 2005 (has links)
The nasal passages are constantly exposed to both air- and bloodborne foreign compounds. In particular, the olfactory mucosa is demonstrated to be susceptible to a variety of drugs and chemicals. In this thesis, mechanisms involved in tissue-selective toxicity in the olfactory mucosa of rodents have been investigated using the olfactory toxicant 2,6-dichlorophenyl methylsulphone (2,6-diClPh-MeSO2) as a model compound. Comparative studies were performed with the non-toxic 2,5-dichlorophenyl methylsulphone (2,5-diClPh-MeSO2) and the reasons for the strikingly different toxicity were investigated. A strong bioactivation and protein adduction of 2,6-diClPh-MeSO2 in olfactory microsomes and S9-fractions of rodents was demonstrated. In contrast, no significant metabolic activation of 2,5-diClPh-MeSO2 was observed and the bioactivation in the liver for both chlorinated isomers was negligible. In vitro studies with recombinant yeast cell microsomes expressing mouse cytochrome P450 2A5 (CYP2A5) demonstrated a metabolic activation of 2,6-diClPh-MeSO2. The 2,6-diClPh-MeSO2-induced lesions and CYP2A5 expression preferentially occurred in Bowman’s glands and sustentacular cells of the olfactory mucosa. A significant depletion of glutathione (GSH) in the olfactory mucosa was demonstrated in vivo, while no changes were observed in the liver. There was a rapid induction of the endoplasmic reticulum (ER)-specific chaperone Grp78, activation of the ER-specific caspase-12 and the downstream caspase-3 in the Bowman’s glands. Electron microscopy revealed swelling of ER and mitochondria and a lost integrity of the Bowman’s glands. Based on these results, the proposed mechanism for 2,6-diClPh-MeSO2-induced toxicity in the olfactory mucosa is bioactivation by CYP2A5 into a reactive intermediate causing protein adduction and GSH-depletion. This is initiating a sequence of downstream events of ER-stress, changes in ion homeostasis, ultrastructural organelle disruption and apoptotic signalling. In spite of the initial apoptotic signals, the terminal phase of apoptosis seemed to be blocked and necrotic features occurred. The predominant expression of CYP2A5 in the olfactory mucosa is proposed to play a key role for the tissue- and cell-specific toxicity induced by 2,6-diClPh-MeSO2.
415

Efectos de los déficits olfatorios sobre las acciones antigonadotróficas de la glándula pineal

Mediavilla Aguado, María Dolores 31 May 1984 (has links)
No description available.
416

Tubulin in vitro, in vivo and in silico

Mershin, Andreas 17 February 2005 (has links)
Tubulin, microtubules and associated proteins were studied theoretically, computationally and experimentally in vitro and in vivo in order to elucidate the possible role these play in cellular information processing and storage. Use of the electric dipole moment of tubulin as the basis for binary switches (biobits) in nanofabricated circuits was explored with surface plasmon resonance, refractometry and dielectric spectroscopy. The effects of burdening the microtubular cytoskeleton of olfactory associative memory neurons with excess microtubule associated protein TAU in Drosophila fruitflies were determined. To investigate whether tubulin may be used as the substrate for quantum computation as a bioqubit, suggestions for experimental detection of quantum coherence and entanglement among tubulin electric dipole moment states were developed.
417

Arkeologihund : En studie i experimentell arkeologi om möjligheten att använda hund som arkeologisk prospekteringsmetod för att lokalisera humanosteologiskt material. / Archaeology dog : an experimental archaeology study on the possibility of using a dog as an archaeological prospection method to locate human bones.

Vallulv, Sophie January 2015 (has links)
In today’s archaeology there’s a growing need for non-invasive prospection methods. However there’s a methodological gap and what’s missing is a method for locating human bones. In this study a specially trained German shepherd is put through scientific tests determining how good the dog is at telling the different between the scent of human and animal bones. The dog is also tested in an outdoor environment to simulate an actual archaeological site. The tests in this study show that the dog can distinguish between the smell of human and animal bones with an accuracy of 94,2 % and that he can detect human bones in the field. Further tests need to be conducted to calibrate the method.
418

Odor Modulation of Electrical and [Ca<sup>2+</sup>]i Activities in Neurons of the Olfactory Bulb

Lin, Bei-Jung 03 May 2006 (has links)
No description available.
419

Changements dans le circuit de la récompense suite à la bulbectomie olfactive : une nouvelle approche pour étudier des antidépresseurs

Romeas, Thomas 01 1900 (has links)
La dépression est une maladie chronique, récurrente et potentiellement mortelle qui affecte plus de 20 % de la population à travers le monde. Les mécanismes sous-jacents de la dépression demeurent incompris et la pharmacothérapie actuelle, largement basée sur l’hypothèse monoaminergique, fait preuve d’une efficacité sous optimale et d’une latence thérapeutique élevée. Par conséquent, la recherche est amenée à élaborer de nouveaux traitements pharmacologiques. Pour détecter leur action, il est avant tout nécessaire de développer des outils expérimentaux adéquats. Dans cette optique, notre but a été de mesurer l’anhédonie, un symptôme cardinal de la dépression, chez le rat de laboratoire. L’anhédonie a été définie comme une réduction de la récompense et a été mesurée avec le test de consommation de sucrose et la technique d’autostimulation intracérébrale. En vue d’induire l’anhédonie, nous avons effectué une bulbectomie olfactive, une procédure qui entraîne divers changements biochimiques, cellulaires et comportementaux similaires à ceux de l’état dépressif et qui peuvent être renversés par un traitement antidépresseur chronique. Nos résultats montrent que la bulbectomie olfactive produit également l’anhédonie, reflétée par une réduction durable de la consommation de sucrose et par une réduction de l’efficacité de l’amphétamine dans le test d’autostimulation intracérébrale. Ces effets ont été présents jusqu’à trois à quatre semaines suivant la chirurgie. La bulbectomie olfactive a aussi été associée à une augmentation de l’élément de réponse liant l’AMPc dans le striatum, un index moléculaire associé à l’anhédonie. Ces découvertes suggèrent que l’anhédonie peut être produite et étudiée de façon fiable dans le modèle de bulbectomie olfactive et que le circuit de récompense pourrait constituer une cible cohérente pour de nouvelles drogues en vue du traitement de la dépression. / Depression is a chronic, recurrent and potentially deadly disorder that affects over 20 % of the population worldwide. The mechanisms underlying depression are still not understood and current pharmacotherapy, based largely on monoaminergic hypotheses, is plagued by suboptimal efficacy and delayed therapeutic latency. This has lead to a search for novel pharmacological treatments. To achieve this, it is first necessary to develop adequate experimental tools. With this in mind, we aimed to measure anhedonia, a cardinal symptom of depression, in laboratory rats. We defined anhedonia as a reduction in reward, and measured it with the sucrose intake test and in the intracranial self-stimulation paradigm. In order to induce anhedonia, we surgically removed the olfactory bulbs, a procedure that results in a host of behavioral, cellular and biochemical changes that are qualitatively similar to those observed in clinical depression. These changes are long-lasting and reversed by chronic antidepressant treatment, validating olfactory bulbectomy as an animal model of depression. Our results show that olfactory bulbectomy also produces anhedonia, reflected by a stable and long-lasting reduction in sucrose intake as well as a reduction in the rewarding effectiveness of amphetamine in the self-stimulation paradigm. These effects were present even after three to four weeks post-surgery. Olfactory bulbectomy was also associated with increased striatal cAMP response element binding, a molecular index associated with depressive-like behaviour. These findings suggest that anhedonia can be reliably produced and studied within the olfactory bulbectomy model and that reward circuitry may comprise a logical target for novel drugs to treat depression.
420

Mechanisms of cabbage seedpod weevil, Ceutorhynchus obstrictus, resistance associated with novel germplasm derived from Sinapis alba x Brassica napus

Tansey, James Unknown Date
No description available.

Page generated in 0.027 seconds