• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • Tagged with
  • 19
  • 19
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On multilayered system dynamics and waves in anisotropic poroelastic media

Parra Martinez, Juan Pablo January 2016 (has links)
The mechanical and acoustic anisotropy of media is a governing factor in the behaviour of multilayered systems including such media. The understanding of the mechanisms conditioning the dynamic behaviour of multilayered systems is of paramount importance. In particular, the intrinsic anisotropy of poroelastic media presents a potential for the optimal design of systems for multifunctional performances. Indeed, these multilayered systems are bound by stiffness, thermal and acoustic performance constraints in simultaneously. A plane wave method is presented to study the influence of material orientation in the dynamic behaviour of multilayered systems composed of anisotropic poroelastic media. The method is applied to a system composed of an anisotropic open-celled melamine foam core in between two metal sheets. This particular multilayered configuration allows to shed light on phenomena intrinsic to layers composed of anisotropic poroelastic materials, such as the frequency shift of the fundamental resonance of the panel, or the compression-shear coupling effects taking place in the poroelastic core layers. The latter phenomena is of particular importance, as it is evidenced on the unconventional polarisation of waves in anisotropic poroelastic media. Finally, the method is adapted to the optimisation of multilayered systems for acoustic performance. the design variables are consequently the core material orientations with respect to the global coordinate system. The solutions to the optimisation problem are analysed in terms of dynamic behaviour, thus allowing to correlate acoustic performance of the overall structure, and the response of each individual layer. / <p>QC 20161110</p>
12

Fourier-based reconstruction of ultrafast sectorial images in ultrasound / Reconstruction dans le domaine de Fourier des images sectorielles ultrarapides par ultrasons

Zhang, Miaomiao 16 December 2016 (has links)
L'échocardiographie est une modalité d'imagerie sûre, non-invasive, qui est utilisée pour évaluer la fonction et l'anatomie cardiaque en routine clinique. Mais la cadence maximale d’imagerie atteinte est limitée en raison de la vitesse limitée du son. Afin d’augmenter la fréquence d'image, l'utilisation d’ondes planes ou d’ondes divergentes en transmissinon a été proposée afin de réduire le nombre de tirs nécessaires à la reconstruction d'une image. L'objectif de cette thèse consiste à développer un procédé d'imagerie par ultrasons ultra-rapide en échocardiographie 2/3D basé sur une insonification par ondes divergentes et réalisant une reconstruction dans le domaine de Fourier. Les contributions principales obtenues au cours de la thèse sont décrites ci-dessous. La première contribution de cette thèse concerne un schéma de transmission dichotomique pour l'acquisition linéaire en analysant mathématiquement la pression générée. Nous avons ensuite montré que ce système de transmission peut améliorer la qualité des images reconstruites pour une cadence constante en utilisant les algorithmes de reconstruction conventionnels. La qualité des images reconstruites a été évaluée en termes de résolution et de contraste au moyen de simulations et acquisitions expérimentales réalisées sur des fantômes. La deuxième contribution concerne le développement d'une nouvelle méthode d'imagerie 2D en ondes plane opérant dans le domaine de Fourier et basée sur le théorème de la coupe centrale. Les résultats que nous avons obtenus montrent que l'approche proposée fournit des résultats très proches de ceux fournit par les méthodes classiques en termes de résolution latérale et contraste de l'image. La troisième contribution concerne le développement d'une transformation spatiale explicite permettant d'étendre les méthodes 2D opérant dans le domaine de Fourier d'une acquisition en géométrie linéaire avec des ondes planes à la géométrie sectorielle avec des ondes divergente en transmission. Les résultats que nous avons obtenus à partir de simulations et d'acquisitions expérimentales in vivo montrent que l'application de cette extension à la méthode de Lu permet d'obtenir la même qualité d’image que la méthode spatiale de Papadacci basée sur des ondes divergentes, mais avec une complexité de calcul plus faible. Finalement, la formulation proposée en 2D pour les méthodes ultra-rapides opérant dans le domaine de Fourier ont été étendues en 3D. L'approche proposée donne des résultats compétitifs associés à une complexité de calcul beaucoup plus faible par rapport à la technique de retard et somme conventionnelle. / Three-dimensional echocardiography is one of the most widely used modality in real time heart imaging thanks to its noninvasive and low cost. However, the real-time property is limited because of the limited speed of sound. To increase the frame rate, plane wave and diverging wave in transmission have been proposed to drastically reduce the number of transmissions to reconstruct one image. In this thesis, starting with the 2D plane wave imaging methods, the reconstruction of 2D/3D echocardiographic sequences in Fourier domain using diverging waves is addressed. The main contributions are as follows: The first contribution concerns the study of the influence of transmission scheme in the context of 2D plane wave imaging. A dichotomous transmission scheme was proposed. Results show that the proposed scheme allows the improvement of the quality of the reconstructed B-mode images at a constant frame rate. Then we proposed an alternative Fourier-based plane wave imaging method (i.e. Ultrasound Fourier Slice Beamforming). The proposed method was assessed using numerical simulations and experiments. Results revealed that the method produces very competitive image quality compared to the state-of-the-art methods. The third contribution concerns the extension of Fourier-based plane wave imaging methods to sectorial imaging in 2D. We derived an explicit spatial transformation which allows the extension of the current Fourier-based plane wave imaging techniques to the reconstruction of sectorial scan using diverging waves. Results obtained from simulations and experiments show that the derived methods produce competitive results with lower computational complexity when compared to the conventional delay and sum (DAS) technique. Finally, the 2D Fourier-based diverging wave imaging methods are extended to 3D. Numerical simulations were performed to evaluate the proposed method. Results show that the proposed approach provides competitive scores in terms of image quality compared to the DAS technique, but with a much lower computational complexity.
13

Development and validation of innovative ultrasound flow imaging methods / Développement et validation de nouvelles méthodes d'imagerie du flux par ultrasons

Lenge, Matteo 17 March 2015 (has links)
L'échographie est largement utilisée pour l'imagerie du flux sanguin pour ses nombreux avantages tels que son inocuité, son cout réduit, sa facilité d'utilisation et ses performances. Cette thèse a pour objectif de proposer de nouvelles méthodes ultrasonores d'imagerie du flux sanguin. Après une étude bibliographique, plusieurs approches ont été étudiées en détail jusqu'à leur implémentation sur l'échographe de recherche ULA-OP développé au sein du laboratoire et ont été validées en laboratoire et en clinique. La transmission d'ondes planes a été proposée pour améliorer la technique d'imagerie utilisant les oscillations transverses. Des champs de pression ultrasonores présentant des oscillations transverses sont générés dans de larges régions et exploités pour l'estimation vectorielle du flux sanguin à une haute cadence d'imagerie. Des cartes du flux sanguin sont obtenues grâce à une technique s'appuyant sur la transmission d'ondes planes couplées à un nouvel algorithme d'estimation de la vitesse dans le domaine fréquentiel. Les méthodes vectorielles implémentées en temps réel dans le ULA-OP ont été comparées à la méthode Doppler classique lors d'une étude clinique. Les résultats ont montré le bénéfice des méthodes vectorielles en termes de précision et de répétabilité. La nouvelle méthode proposée a démontré sa grande précision ainsi que son gain en termes de temps de calcul aussi bien en simulations qu'en acquisitions en laboratoire ou lors d'essais in vivo. Une solution logicielle temps réel implémentée sur une carte GPU a été proposée et testée afin de réduire encore le temps de calcul et permettre l'emploi de la méthode en clinique / Ultrasound is widely used for blood flow imaging because of the considerable advantages for the clinician, in terms of performance, costs, portability, and ease of use, and for the patient, in terms of safety and rapid checkup. The undesired limitations of conventional methods (1-D estimations and low frame-rate) are widely overtaken by new vector approaches that offer detailed descriptions of the flow for a more accurate diagnosis of cardiovascular system diseases. This PhD project concerns the development of novel methods for blood flow imaging. After studying the state-of-the-art in the field, a few approaches have been examined in depth up to their experimental validation, both in technical and clinical environments, on a powerful ultrasound research platform (ULA-OP). Real-time novel vector methods implemented on ULA-OP were compared to standard Doppler methods in a clinical study. The results attest the benefits of the vector methods in terms of accuracy and repeatability. Plane-wave transmissions were exploited to improve the transverse oscillation imaging method. Double oscillating fields were produced in large regions and exploited for the vectorial description of blood flow at high frame rates. Blood flow maps were obtained by plane waves coupled to a novel velocity estimation algorithm operating in the frequency domain. The new method was demonstrated capable of high accuracy and reduced computational load by simulations and experiments (also in vivo). The investigation of blood flow inside the common carotid artery has revealed the hemodynamic details with unprecedented quality. A software solution implemented on a graphic processing unit (GPU) board was suggested and tested to reduce the computational time and support the clinical employment of the method
14

Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondes élastiques en régime transitoire

Fauqueux, Sandrine 06 February 2003 (has links) (PDF)
Nous nous intéressons à la propagation d'ondes en milieu élastique non-borné. Nous développons une nouvelle formulation mixte H(div)-L2 du système de l'élastodynamique linéaire et lui appliquons la "méthode des éléments finis mixtes spectraux". Cette nouvelle méthode permet, par un choix judicieux d'espaces d'approximation et une condensation de masse, d'obtenir un schéma explicite de stockage réduit, en donnant la même solution que la méthode des éléments finis spectraux. Nous introduisons ensuite des couches absorbantes parfaitement adaptées pour modéliser les milieux non-bornés. Des phénomènes d'instabilité sont révélés et analysés pour certains matériaux élastiques 2D. La méthode numérique obtenue est validée et testée sur des modèles réalistes en acoustique et élastique. Une analyse par ondes planes donne des résultats de dispersion numérique et montre la supériorité des maillages adaptés aux vitesses du milieu. Enfin, une extension au couplage fluide-structure 2D est mise en place.
15

Analyse et synthèse de champs sonores

Guillaume, Mathieu 11 1900 (has links) (PDF)
Cette thèse a pour objectif de reproduire au mieux un champ sonore enregistré par une antenne de microphones au moyen d'un réseau de sources secondaires. Pour y parvenir, nous avons dans un premier temps réalisé une étude approfondie des représentations harmoniques et intégrales des champs sonores. Dans un deuxième temps, nous avons mis au point des algorithmes qui utilisent la représentation du champ sonore en ondes planes pour effectuer l'analyse et la synthèse.L'algorithme d'analyse proposé est un algorithme de formation de voies donnant une solution analytique au problème de la minimisation du repliement. Le problème de l'optimisation de la géométrie de l'antenne est aussi abordé. L'algorithme utilisé pour la synthèse est un algorithme flexible pour l'égalisation dans un contexte multicanal, qui permet de réduire les artefacts des méthodes traditionnelles, tels que le pré-écho et le post-écho. Finalement, l'efficacité de ces algorithmes d'analyse et de synthèse est démontrée par des simulations et validée par des manipulations.
16

Algorithmique hiérarchique parallèle haute performance pour les problèmes à N-corps

Fortin, Pierre 27 November 2006 (has links) (PDF)
Cette thèse porte sur la méthode dite « méthode multipôle rapide » qui résout hiérarchiquement le problème à N-corps avec une complexité linéaire pour n'importe quelle précision. Dans le cadre de l'équation de Laplace, nous souhaitons pouvoir traiter efficacement toutes les distributions de particules rencontrées en astrophysique et en dynamique moléculaire.<br /> Nous étudions tout d'abord deux expressions distinctes du principal opérateur (« multipôle-to-local ») ainsi que les bornes d'erreur associées. Pour ces deux expressions, nous présentons une formulation matricielle dont l'implémentation avec des routines BLAS (Basic Linear Algebra Subprograms) permet d'améliorer fortement l'efficacité de calcul. Dans la gamme de précisions qui nous intéresse, cette approche se révèle plus performante que les améliorations existantes (FFT, rotations et ondes planes), pour des distributions uniformes ou non.<br /> Outre une nouvelle structure de données pour l'octree sous-jacent et des contributions algorithmiques à la version adaptative, nous avons aussi efficacement parallélisé notre méthode en mémoire partagée et en mémoire distribuée. Enfin, des comparaisons avec des codes dédiés justifient l'intérêt de notre code pour des simulations en astrophysique.
17

Back-propagation beamformer design with transverse oscillations for motion estimation in echocardiography / Formation de voie par rétro-propagation pour l'estimation du mouvement en échocardiographie

Guo, Xinxin 12 September 2014 (has links)
L'échographie est aujourd'hui l'une des modalités les plus populaires de diagnostic médical. Il permet d'observer, en temps réel, le mouvement des organes qui facilite le diagnostic des pathologies pour des médecins. L'échocardiographie [1, 2], l'imagerie du flux sanguin [3, 4] et l’élastographie [5-7] sont les domaines préférés de l'estimation de mouvement en utilisant l'échographie (en raison de son haut frame-rate).En conséquence, les images avec meilleurs qualités sont nécessaires. . En imagerie cardiaque, le système classique d'imagerie est limité dans la direction transversale (la direction perpendiculaire à celle de propagation). Travaillant sur la formation des images, ce problème peut être résolu en modifiant la façon de formateur de voie afin d'introduire des oscillations transversales (OTs) dans la fonction d’étalement du point (PSF). La technique d’oscillation transversale a montré son potentiel d'améliorer la précision de l'estimation de mouvement local dans la direction transversale (la direction perpendiculaire à celle de propagation). La classique OT en géométrie linéaire, basée sur l'approximation de Fraunhofer, relie la PSF et la fonction de pondération par la transformée de Fourier. Motivé par l'adaptation des OTs en échocardiographie, nous proposons une technique spécifique basée sur la rétro-propagation afin de construire des OTs en géométrie sectorielle. La performance de la méthode de rétro-propagation proposée a été étudiée progressivement, comparée avec la méthode de la transformée de Fourier, par exemple, l'évaluation de la qualité de la PSF quantifié, dans l'estimation de mouvement cardiaque en simulation, et en étude la qualité des PSF visuellement expérimentale. Les résultats quantifiés montrent les OT-images sont mieux contrôlés par la méthode proposée que par le formateur de voie conventionnelle. Une autre méthode, basée sur la décomposition d'onde plane et un principe différent de rétro-propagation, a été présentée. Cette méthode mieux prend en compte la propriété 2D de PSF, en décomposant la PSF dans un ensemble d'ondes planes directionnelle, les rétro-propage à la sonde, en utilisant les résultats de superposition comme excitations, un PSF simulée et conforme fortement au PSF théorique est acquis. En adaptant cette méthode à la géométrie sectorielle, la qualité de la PSF obtenue en face et sur la côté de la sonde est meilleure en utilisant la décomposition en ondes planes à celle de la transformée de Fourier, le travail supplémentaire sera adressé à adapter la décomposition en ondes planes à imagerie sectorielle et l’estimation du mouvement. / Echography is nowadays one of the most popular medical diagnosis modalities. It enables real-time observation the motion of moving organs which facilitates the diagnosis of pathologies for physician. Echocardiography [1, 2], blood flow imaging [3, 4] and elastography [5-7] are the favorite domains of motion estimation in using of echography (e.g., due to its high frame-rate capacity). Thus the requirements for imaging with high quality are on the primary place. In cardiac imaging, the conventional imaging system is somehow limited in the transverse direction (the direction perpendicular to the beam axis). Working on the image formation, this problem can be addressed by modifying the beamforming scheme in order to introduce transverse oscillations (TOs) in the system point spread function (PSF). Transverse oscillation techniques have shown their potential for improving the accuracy of local motion estimation in the transverse direction (i.e., the direction perpendicular to the beam axis). The conventional design of TOs in linear geometry, which is based on the Fraunhofer approximation, relates PSF and apodization function through a Fourier transform. Motivated by the adaptation of TOs in echocardiography, we propose a specific beamforming approach based on back-propagation in order to build TOs in sectorial geometry. The performance of the proposed back-propagation method has been studied gradually, in comparison with the Fourier transform, such as in evaluation of the quality of PSF, in estimation of simulated cardiac motion and in experiments study, etc. The quantified results demonstrate the proposed method leads to better controlled TOs images than the conventional beamforming. Another method based on plane wave decomposition and a different back-propagation principle has been presented. This method is better taking into account the 2D property of PSF, by decomposing the PSF into a set of plane waves directionally, back-propagating them to the probe, by using the superposition results as excitations, a simulated PSF with high accordance to the theoretical one is acquired. By adapting this method to sectorial geometry, the quality of PSF obtained in front of probe is better using the plane wave decomposition method than that of Fourier relation, but it is limited for the scanning on the side of probe, so the further work will be addressed to adapting the plane wave decomposition method to the complete sectorial imaging.
18

Development of the partition of unity finite element method for the numerical simulation of interior sound field / Développement de la partition de l'unité méthode des éléments finis pour la simulation numérique de champ sonore intérieur

Yang, Mingming 29 June 2016 (has links)
Dans ce travail, nous avons introduit le concept sous-jacent de PUFEM et la formulation de base lié à l'équation de Helmholtz dans un domaine borné. Le processus d'enrichissement de l'onde plane de variables PUFEM a été montré et expliqué en détail. L'idée principale est d'inclure une connaissance a priori sur le comportement local de la solution dans l'espace des éléments finis en utilisant un ensemble de fonctions d'onde qui sont des solutions aux équations aux dérivées partielles. Dans cette étude, l'utilisation des ondes planes se propageant dans différentes directions a été favorisée car elle conduit à des algorithmes de calcul efficaces. En outre, nous avons montré que le nombre de directions d'ondes planes dépend de la taille de l'élément PUFEM et la fréquence des ondes à la fois en 2D et 3D. Les approches de sélection de ces ondes planes sont également illustrés. Pour les problèmes 3D, nous avons étudié deux systèmes de distribution des directions d'ondes planes qui sont la méthode du cube discrétisé et la méthode de la force de Coulomb. Il a été montré que celle-ci permet d'obtenir des directions d'onde espacées de façon uniforme et permet d'obtenir un nombre arbitraire d'ondes planes attachées à chaque noeud de l'élément de PUFEM, ce qui rend le procédé plus souple.Dans le chapitre 3, nous avons étudié la simulation numérique des ondes se propageant dans deux dimensions en utilisant PUFEM. La principale priorité de ce chapitre est de venir avec un schéma d'intégration exacte (EIS), résultant en un algorithme d'intégration rapide pour le calcul de matrices de coefficients de système avec une grande précision. L'élément 2D PUFEM a ensuite été utilisé pour résoudre un problème de transmission acoustique impliquant des matériaux poreux. Les résultats ont été vérifiés et validés par la comparaison avec des solutions analytiques. Les comparaisons entre le régime exact d'intégration (EIS) et en quadrature de Gauss ont montré le gain substantiel offert par l'EIE en termes de temps CPU.Une 3D exacte Schéma d'intégration a été présenté dans le chapitre 4, afin d'accélérer et de calculer avec précision (jusqu'à la précision de la machine) des intégrales très oscillatoires découlant des coefficients de la matrice de PUFEM associés à l'équation 3D Helmholtz. Grâce à des tests de convergence, un critère de sélection du nombre d'ondes planes a été proposé. Il a été montré que ce nombre ne pousse que quadratiquement avec la fréquence qui donne lieu à une réduction drastique du nombre total de degrés de libertés par rapport au FEM classique. Le procédé a été vérifié pour deux exemples numériques. Dans les deux cas, le procédé est représenté à converger vers la solution exacte. Pour le problème de la cavité avec une source de monopôle située à l'intérieur, nous avons testé deux modèles numériques pour évaluer leur performance relative. Dans ce scénario, où la solution exacte est singulière, le nombre de directions d'onde doit être choisie suffisamment élevée pour faire en sorte que les résultats ont convergé.Dans le dernier chapitre, nous avons étudié les performances numériques du PUFEM pour résoudre des champs sonores intérieurs 3D et des problèmes de transmission d'ondes dans lequel des matériaux absorbants sont présents. Dans le cas particulier d'un matériau réagissant localement modélisé par une impédance de surface. Un des critères d'estimation d'erreur numérique est proposé en considérant simplement une impédance purement imaginaire qui est connu pour produire des solutions à valeur réelle. Sur la base de cette estimation d'erreur, il a été démontré que le PUFEM peut parvenir à des solutions précises tout en conservant un coût de calcul très faible, et seulement environ 2 degrés de liberté par longueur d'onde ont été jugées suffisantes. Nous avons également étendu la PUFEM pour résoudre les problèmes de transmission des ondes entre l'air et un matériau poreux modélisé comme un fluide homogène équivalent. / In this work, we have introduced the underlying concept of PUFEM and the basic formulation related to the Helmholtz equation in a bounded domain. The plane wave enrichment process of PUFEM variables was shown and explained in detail. The main idea is to include a priori knowledge about the local behavior of the solution into the finite element space by using a set of wave functions that are solutions to the partial differential equations. In this study, the use of plane waves propagating in various directions was favored as it leads to efficient computing algorithms. In addition, we showed that the number of plane wave directions depends on the size of the PUFEM element and the wave frequency both in 2D and 3D. The selection approaches for these plane waves were also illustrated. For 3D problems, we have investigated two distribution schemes of plane wave directions which are the discretized cube method and the Coulomb force method. It has been shown that the latter allows to get uniformly spaced wave directions and enables us to acquire an arbitrary number of plane waves attached to each node of the PUFEM element, making the method more flexible.In Chapter 3, we investigated the numerical simulation of propagating waves in two dimensions using PUFEM. The main priority of this chapter is to come up with an Exact Integration Scheme (EIS), resulting in a fast integration algorithm for computing system coefficient matrices with high accuracy. The 2D PUFEM element was then employed to solve an acoustic transmission problem involving porous materials. Results have been verified and validated through the comparison with analytical solutions. Comparisons between the Exact Integration Scheme (EIS) and Gaussian quadrature showed the substantial gain offered by the EIS in terms of CPU time.A 3D Exact Integration Scheme was presented in Chapter 4, in order to accelerate and compute accurately (up to machine precision) of highly oscillatory integrals arising from the PUFEM matrix coefficients associated with the 3D Helmholtz equation. Through convergence tests, a criteria for selecting the number of plane waves was proposed. It was shown that this number only grows quadratically with the frequency thus giving rise to a drastic reduction in the total number of degrees of freedoms in comparison to classical FEM. The method has been verified for two numerical examples. In both cases, the method is shown to converge to the exact solution. For the cavity problem with a monopole source located inside, we tested two numerical models to assess their relative performance. In this scenario where the exact solution is singular, the number of wave directions has to be chosen sufficiently high to ensure that results have converged. In the last Chapter, we have investigated the numerical performances of the PUFEM for solving 3D interior sound fields and wave transmission problems in which absorbing materials are present. For the specific case of a locally reacting material modeled by a surface impedance. A numerical error estimation criteria is proposed by simply considering a purely imaginary impedance which is known to produce real-valued solutions. Based on this error estimate, it has been shown that the PUFEM can achieve accurate solutions while maintaining a very low computational cost, and only around 2 degrees of freedom per wavelength were found to be sufficient. We also extended the PUFEM for solving wave transmission problems between the air and a porous material modeled as an equivalent homogeneous fluid. A simple 1D problem was tested (standing wave tube) and the PUFEM solutions were found to be around 1% error which is sufficient for engineering purposes.
19

Characterization of carotid artery plaques using noninvasive vascular ultrasound elastography

Li, Hongliang 09 1900 (has links)
L'athérosclérose est une maladie vasculaire complexe qui affecte la paroi des artères (par l'épaississement) et les lumières (par la formation de plaques). La rupture d'une plaque de l'artère carotide peut également provoquer un accident vasculaire cérébral ischémique et des complications. Bien que plusieurs modalités d'imagerie médicale soient actuellement utilisées pour évaluer la stabilité d'une plaque, elles présentent des limitations telles que l'irradiation, les propriétés invasives, une faible disponibilité clinique et un coût élevé. L'échographie est une méthode d'imagerie sûre qui permet une analyse en temps réel pour l'évaluation des tissus biologiques. Il est intéressant et prometteur d’appliquer une échographie vasculaire pour le dépistage et le diagnostic précoces des plaques d’artère carotide. Cependant, les ultrasons vasculaires actuels identifient uniquement la morphologie d'une plaque en termes de luminosité d'écho ou l’impact de cette plaque sur les caractéristiques de l’écoulement sanguin, ce qui peut ne pas être suffisant pour diagnostiquer l’importance de la plaque. La technique d’élastographie vasculaire non-intrusive (« noninvasive vascular elastography (NIVE) ») a montré le potentiel de détermination de la stabilité d'une plaque. NIVE peut déterminer le champ de déformation de la paroi vasculaire en mouvement d’une artère carotide provoqué par la pulsation cardiaque naturelle. En raison des différences de module de Young entre les différents tissus des vaisseaux, différents composants d’une plaque devraient présenter différentes déformations, caractérisant ainsi la stabilité de la plaque. Actuellement, les performances et l’efficacité numérique sous-optimales limitent l’acceptation clinique de NIVE en tant que méthode rapide et efficace pour le diagnostic précoce des plaques vulnérables. Par conséquent, il est nécessaire de développer NIVE en tant qu’outil d’imagerie non invasif, rapide et économique afin de mieux caractériser la vulnérabilité liée à la plaque. La procédure à suivre pour effectuer l’analyse NIVE consiste en des étapes de formation et de post-traitement d’images. Cette thèse vise à améliorer systématiquement la précision de ces deux aspects de NIVE afin de faciliter la prédiction de la vulnérabilité de la plaque carotidienne. Le premier effort de cette thèse a été dédié à la formation d'images (Chapitre 5). L'imagerie par oscillations transversales a été introduite dans NIVE. Les performances de l’imagerie par oscillations transversales couplées à deux estimateurs de contrainte fondés sur un modèle de déformation fine, soit l’ « affine phase-based estimator (APBE) » et le « Lagrangian speckle model estimator (LSME) », ont été évaluées. Pour toutes les études de simulation et in vitro de ce travail, le LSME sans imagerie par oscillation transversale a surperformé par rapport à l'APBE avec imagerie par oscillations transversales. Néanmoins, des estimations de contrainte principales comparables ou meilleures pourraient être obtenues avec le LSME en utilisant une imagerie par oscillations transversales dans le cas de structures tissulaires complexes et hétérogènes. Lors de l'acquisition de signaux ultrasonores pour la formation d'images, des mouvements hors du plan perpendiculaire au plan de balayage bidimensionnel (2-D) existent. Le deuxième objectif de cette thèse était d'évaluer l'influence des mouvements hors plan sur les performances du NIVE 2-D (Chapitre 6). À cette fin, nous avons conçu un dispositif expérimental in vitro permettant de simuler des mouvements hors plan de 1 mm, 2 mm et 3 mm. Les résultats in vitro ont montré plus d'artefacts d'estimation de contrainte pour le LSME avec des amplitudes croissantes de mouvements hors du plan principal de l’image. Malgré tout, nous avons néanmoins obtenu des estimations de déformations robustes avec un mouvement hors plan de 2.0 mm (coefficients de corrélation supérieurs à 0.85). Pour un jeu de données cliniques de 18 participants présentant une sténose de l'artère carotide, nous avons proposé d'utiliser deux jeux de données d'analyses sur la même plaque carotidienne, soit des images transversales et longitudinales, afin de déduire les mouvements hors plan (qui se sont avérés de 0.25 mm à 1.04 mm). Les résultats cliniques ont montré que les estimations de déformations restaient reproductibles pour toutes les amplitudes de mouvement, puisque les coefficients de corrélation inter-images étaient supérieurs à 0.70 et que les corrélations croisées normalisées entre les images radiofréquences étaient supérieures à 0.93, ce qui a permis de démontrer une plus grande confiance lors de l'analyse de jeu de données cliniques de plaques carotides à l'aide du LSME. Enfin, en ce qui concerne le post-traitement des images, les algorithmes NIVE doivent estimer les déformations des parois des vaisseaux à partir d’images reconstituées dans le but d’identifier les tissus mous et durs. Ainsi, le dernier objectif de cette thèse était de développer un algorithme d'estimation de contrainte avec une résolution de la taille d’un pixel ainsi qu'une efficacité de calcul élevée pour l'amélioration de la précision de NIVE (Chapitre 7). Nous avons proposé un estimateur de déformation de modèle fragmenté (SMSE) avec lequel le champ de déformation dense est paramétré avec des descriptions de transformées en cosinus discret, générant ainsi des composantes de déformations affines (déformations axiales et latérales et en cisaillement) sans opération mathématique de dérivées. En comparant avec le LSME, le SMSE a réduit les erreurs d'estimation lors des tests de simulations, ainsi que pour les mesures in vitro et in vivo. De plus, la faible mise en oeuvre de la méthode SMSE réduit de 4 à 25 fois le temps de traitement par rapport à la méthode LSME pour les simulations, les études in vitro et in vivo, ce qui pourrait permettre une implémentation possible de NIVE en temps réel. / Atherosclerosis is a complex vascular disease that affects artery walls (by thickening) and lumens (by plaque formation). The rupture of a carotid artery plaque may also induce ischemic stroke and complications. Despite the use of several medical imaging modalities to evaluate the stability of a plaque, they present limitations such as irradiation, invasive property, low clinical availability and high cost. Ultrasound is a safe imaging method with a real time capability for assessment of biological tissues. It is clinically used for early screening and diagnosis of carotid artery plaques. However, current vascular ultrasound technologies only identify the morphology of a plaque in terms of echo brightness or the impact of the vessel narrowing on flow properties, which may not be sufficient for optimum diagnosis. Noninvasive vascular elastography (NIVE) has been shown of interest for determining the stability of a plaque. Specifically, NIVE can determine the strain field of the moving vessel wall of a carotid artery caused by the natural cardiac pulsation. Due to Young’s modulus differences among different vessel tissues, different components of a plaque can be detected as they present different strains thereby potentially helping in characterizing the plaque stability. Currently, sub-optimum performance and computational efficiency limit the clinical acceptance of NIVE as a fast and efficient method for the early diagnosis of vulnerable plaques. Therefore, there is a need to further develop NIVE as a non-invasive, fast and low computational cost imaging tool to better characterize the plaque vulnerability. The procedure to perform NIVE analysis consists in image formation and image post-processing steps. This thesis aimed to systematically improve the accuracy of these two aspects of NIVE to facilitate predicting carotid plaque vulnerability. The first effort of this thesis has been targeted on improving the image formation (Chapter 5). Transverse oscillation beamforming was introduced into NIVE. The performance of transverse oscillation imaging coupled with two model-based strain estimators, the affine phase-based estimator (APBE) and the Lagrangian speckle model estimator (LSME), were evaluated. For all simulations and in vitro studies, the LSME without transverse oscillation imaging outperformed the APBE with transverse oscillation imaging. Nonetheless, comparable or better principal strain estimates could be obtained with the LSME using transverse oscillation imaging in the case of complex and heterogeneous tissue structures. During the acquisition of ultrasound signals for image formation, out-of-plane motions which are perpendicular to the two-dimensional (2-D) scan plane are existing. The second objective of this thesis was to evaluate the influence of out-of-plane motions on the performance of 2-D NIVE (Chapter 6). For this purpose, we designed an in vitro experimental setup to simulate out-of-plane motions of 1 mm, 2 mm and 3 mm. The in vitro results showed more strain estimation artifacts for the LSME with increasing magnitudes of out-of-plane motions. Even so, robust strain estimations were nevertheless obtained with 2.0 mm out-of-plane motion (correlation coefficients higher than 0.85). For a clinical dataset of 18 participants with carotid artery stenosis, we proposed to use two datasets of scans on the same carotid plaque, one cross-sectional and the other in a longitudinal view, to deduce the out-of-plane motions (estimated to be ranging from 0.25 mm to 1.04 mm). Clinical results showed that strain estimations remained reproducible for all motion magnitudes since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations between radiofrequency images were above 0.93, which indicated that confident motion estimations can be obtained when analyzing clinical dataset of carotid plaques using the LSME. Finally, regarding the image post-processing component of NIVE algorithms to estimate strains of vessel walls from reconstructed images with the objective of identifying soft and hard tissues, we developed a strain estimation method with a pixel-wise resolution as well as a high computation efficiency for improving NIVE (Chapter 7). We proposed a sparse model strain estimator (SMSE) for which the dense strain field is parameterized with Discrete Cosine Transform descriptions, thereby deriving affine strain components (axial and lateral strains and shears) without mathematical derivative operations. Compared with the LSME, the SMSE reduced estimation errors in simulations, in vitro and in vivo tests. Moreover, the sparse implementation of the SMSE reduced the processing time by a factor of 4 to 25 compared with the LSME based on simulations, in vitro and in vivo results, which is suggesting a possible implementation of NIVE in real time.

Page generated in 0.1566 seconds