• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 55
  • 28
  • 16
  • 16
  • 16
  • 13
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Multiscale visualization approaches for Volunteered Geographic Information and Location-based Social Media

Gröbe, Mathias 04 September 2023 (has links)
Today, “zoomable” maps are a state-of-the-art way to explore the world, available to anyone with Internet access. However, the process of creating this visualization has been rather loosely investigated and documented. Nevertheless, with an increasing amount of available data, interactive maps have become a more integral approach to visualizing and exploring big datasets and user-generated data. OpenStreetMap and online platforms such as Twitter and Flickr offer application programming interfaces (APIs) with geographic information. They are well-known examples of this visualization challenge and are often used as examples. In addition, an increasing number of public administrations collect open data and publish their data sets, which makes the task of visualization even more relevant. This dissertation deals with the visualization of user-generated geodata as a multiscale map. The basics of today’s multiscale maps—their history, technologies, and possibilities—are explored and abstracted. This work introduces two new multiscale-focused visualization approaches for point data from volunteered geographic information (VGI) and location-based social media (LBSM). One contribution of this effort is a visualization methodology for spatially referenced information in the form of point geometries, using nominally scaled data from social media such as Twitter or Flickr. Typical for this data is a high number of social media posts in different categories—a post on social media corresponds to a point in a specific category. Due to the sheer quantity and similar characteristics, the posts appear generic rather than unique. This type of dataset can be explored using the new method of micro diagrams to visualize the dataset on multiple scales and resolutions. The data is aggregated into small grid cells, and the numerical proportion is shown with small diagrams, which can visually merge into heterogenous areas through colors depicting a specific category. The diagram sizes allow the user to estimate the overall number of aggregated points in a grid cell. A different visualization approach is proposed for more unique points, considered points of interest (POI), based on the selection method. The goal is to identify more locally relevant points from the data set, considered more important compared to other points in the neighborhood, which are then compared by numerical attribute. The method, derived from topographic isolation and called discrete isolation, is the distance from one point to the next with a higher attribute value. By using this measure, the most essential points can be easily selected by choosing a minimum distance and producing a homogenous spatial of the selected points within the chosen dataset. The two newly developed approaches are applied to multiscale mapping by constructing example workflows that produce multiscale maps. The publicly available multiscale mapping workflows OpenMapTiles and OpenStreetMap Carto, using OpenStreetMap data, are systematically explored and analyzed. The result is a general workflow for multiscale map production and a short overview of the toolchain software. In particular, the generalization approaches in the example projects are discussed and these are classified into cartographic theories on the basis of literature. The workflow is demonstrated by building a raster tile service for the micro diagrams and a vector tile service for the discrete isolation, able to be used with just a web browser. In conclusion, these new approaches for point data using VGI and LBSM allow better qualitative visualization of geodata. While analyzing vast global datasets is challenging, exploring and analyzing hidden data patterns is fruitful. Creating this degree of visualization and producing maps on multiple scales is a complicated task. The workflows and tools provided in this thesis will make map production on a worldwide scale easier.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection visualization discussion .................................. 47 4 Selection of POIs for visualization 50 4.1 Approaches for point selection .......................................................... 50 4.2 Methods for point selection ................................................................ 51 4.2.1 Label grid approach .................................................................... 52 4.2.2 Functional importance approach .............................................. 53 4.2.3 Discrete isolation approach ....................................................... 54 4.3 Functional evaluation of selection methods .................................... 56 4.3.1 Runtime comparison .................................................................... 56 4.3.2 Use cases for discrete isolation ................................................ 57 4.4 Discussion of the selection approaches .......................................... 61 4.4.1 A critical view of the use cases ................................................. 61 4.4.2 Comparing the approaches ........................................................ 62 4.4.3 Conclusion ..................................................................................... 64 5 Creating multiscale maps 65 5.1 Examples of multiscale map production .......................................... 65 5.1.1 OpenStreetMap Infrastructure ................................................... 66 5.1.2 OpenStreetMap Carto ................................................................. 67 5.1.3 OpenMapTiles ............................................................................... 73 5.2 Methods of multiscale map production ............................................ 80 5.2.1 OpenStreetMap tools ................................................................... 80 5.2.2 Geoprocessing .............................................................................. 80 5.2.3 Database ........................................................................................ 80 5.2.4 Creating tiles ................................................................................. 82 5.2.5 Caching .......................................................................................... 82 5.2.6 Styling tiles .................................................................................... 82 5.2.7 Viewing tiles ................................................................................... 83 5.2.8 The stackless approach to tile creation ................................... 83 5.3 Example workflows for creating multiscale maps ........................... 84 5.3.1 Raster tiles: OGC services and micro diagrams .................... 84 5.3.2 Vector tiles: Slippy map and vector tiles ................................. 87 5.4 Discussion of approaches and workflows ....................................... 90 5.4.1 Map production as a rendering pipeline .................................. 90 5.4.2 Comparison of OpenStreetMap Carto and OpenMapTiles .. 92 5.4.3 Discussion of the implementations ........................................... 93 5.4.4 Generalization in map production workflows .......................... 95 5.4.5 Conclusions ................................................................................. 101 6 Discussion 103 6.1 Development for web mapping ........................................................ 103 6.1.1 The role of standards in map production .............................. 103 6.1.2 Technological development ..................................................... 103 6.2 New data, new mapping techniques? ............................................. 104 7 Conclusion 106 7.1 Visualization of point collections ..................................................... 106 7.2 Visualization of points of interest ................................................... 107 7.3 Production of multiscale maps ........................................................ 107 7.4 Synthesis of the research questions .............................................. 108 7.5 Contributions ....................................................................................... 109 7.6 Limitations ............................................................................................ 110 7.7 Outlook ................................................................................................. 111 8 References 113 9 Appendix 130 9.1 Zoom levels and Scale ...................................................................... 130 9.3 Full information about selected UGC papers ................................ 131 9.4 Timeline of mapping technologies .................................................. 133 9.5 Timeline of map providers ................................................................ 133 9.6 Code snippets from own map production workflows .................. 134 9.6.1 Vector tiles workflow ................................................................. 134 9.6.2 Raster tiles workflow.................................................................. 137 / Heute sind zoombare Karten Alltag für jeden Internetznutzer. Die Erstellung interaktiv zoombarer Karten ist allerdings wenig erforscht, was einen deutlichen Gegensatz zu ihrer aktuellen Bedeutung und Nutzungshäufigkeit darstellt. Die Forschung in diesem Bereich ist also umso notwendiger. Steigende Datenmengen und größere Regionen, die von Karten abgedeckt werden sollen, unterstreichen den Forschungsbedarf umso mehr. Beispiele für stetig wachsende Datenmengen sind Geodatenquellen wie OpenStreetMap aber auch freie amtliche Geodatensätze (OpenData), aber auch die zunehmende Zahl georeferenzierter Inhalte auf Internetplatformen wie Twitter oder Flickr zu nennen. Das Thema dieser Arbeit ist die Visualisierung eben dieser nutzergenerierten Geodaten mittels zoombarer Karten. Dafür wird die Entwicklung der zugrundeliegenden Technologien über die letzten zwei Jahr-zehnte und die damit verbundene Möglichkeiten vorgestellt. Weitere Beiträge sind zwei neue Visualisierungsmethoden, die sich besonders für die Darstellung von Punktdaten aus raumbezogenen nutzergenerierten Daten und georeferenzierte Daten aus Sozialen Netzwerken eignen. Ein Beitrag dieser Arbeit ist eine neue Visualisierungsmethode für raumbezogene Informationen in Form von Punktgeometrien mit nominal skalierten Daten aus Sozialen Medien, wie beispielsweise Twitter oder Flickr. Typisch für diese Daten ist eine hohe Anzahl von Beiträgen mit unterschiedlichen Kategorien. Wobei die Beiträge, bedingt durch ihre schiere Menge und ähnlicher Ei-genschaften, eher generisch als einzigartig sind. Ein Beitrag in den So-zia len Medien entspricht dabei einem Punkt mit einer bestimmten Katego-rie. Ein solcher Datensatz kann mit der neuen Methode der „micro diagrams“ in verschiedenen Maßstäben und Auflösungen visualisiert und analysiert werden. Dazu werden die Daten in kleine Gitterzellen aggregiert. Die Menge und Verteilung der über die Kategorien aggregierten Punkte wird durch kleine Diagramme dargestellt, wobei die Farben die verschiedenen Kategorien visualisieren. Durch die geringere Größe der einzelnen Diagramme verschmelzen die kleinen Diagramme visuell, je nach der Verteilung der Farben für die Kategorien. Bei genauerem Hinsehen ist die Schätzung der Menge der aggregierten Punkte über die Größe der Diagramme die Menge und die Verteilung über die Kategorien möglich. Für einzigartigere Punkte, die als Points of Interest (POI) angesehen werden, wird ein anderer Visualisierungsansatz vorgeschlagen, der auf einer Auswahlmethode basiert. Ziel ist es dabei lokal relevantere Punkte aus dem Datensatz zu identifizieren, die im Vergleich zu anderen Punkten in der Nachbarschaft des Punktes verglichen nach einem numerischen Attribut wichtiger sind. Die Methode ist von dem geographischen Prinzip der Dominanz von Bergen abgeleitet und wird „discrete isolation“ genannt. Es handelt sich dabei um die Distanz von einem Punkt zum nächsten mit einem höheren Attributwert. Durch die Verwendung dieses Maßes können lokal bedeutende Punkte leicht ausgewählt werden, indem ein minimaler Abstand gewählt und so räumlich gleichmäßig verteilte Punkte aus dem Datensatz ausgewählt werden. Die beiden neu vorgestellten Methoden werden in den Kontext der zoombaren Karten gestellt, indem exemplarische Arbeitsabläufe erstellt werden, die als Er-gebnis eine zoombare Karte liefern. Dazu werden die frei verfügbaren Beispiele zur Herstellung von weltweiten zoombaren Karten mit nutzergenerierten Geo-daten von OpenStreetMap, anhand der Kartenprojekte OpenMapTiles und O-penStreetMap Carto analysiert und in Arbeitsschritte gegliedert. Das Ergebnis ist ein wiederverwendbarer Arbeitsablauf zur Herstellung zoombarer Karten, ergänzt durch eine Auswahl von passender Software für die einzelnen Arbeits-schritte. Dabei wird insbesondere auf die Generalisierungsansätze in den Beispielprojekten eingegangen und diese anhand von Literatur in die kartographische Theorie eingeordnet. Zur Demonstration des Workflows wird je ein Raster Tiles Dienst für die „micro diagrams“ und ein Vektor Tiles Dienst für die „discrete isolation“ erstellt. Beide Dienste lassen sich mit einem aktuellen Webbrowser nutzen. Zusammenfassend ermöglichen diese neuen Visualisierungsansätze für Punkt-daten aus VGI und LBSM eine bessere qualitative Visualisierung der neuen Geodaten. Die Analyse riesiger globaler Datensätze ist immer noch eine Herausforderung, aber die Erforschung und Analyse verborgener Muster in den Daten ist lohnend. Die Erstellung solcher Visualisierungen und die Produktion von Karten in verschiedenen Maßstäben ist eine komplexe Aufgabe. Die in dieser Arbeit vorgestellten Arbeitsabläufe und Werkzeuge erleichtern die Erstellung von Karten in globalem Maßstab.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection visualization discussion .................................. 47 4 Selection of POIs for visualization 50 4.1 Approaches for point selection .......................................................... 50 4.2 Methods for point selection ................................................................ 51 4.2.1 Label grid approach .................................................................... 52 4.2.2 Functional importance approach .............................................. 53 4.2.3 Discrete isolation approach ....................................................... 54 4.3 Functional evaluation of selection methods .................................... 56 4.3.1 Runtime comparison .................................................................... 56 4.3.2 Use cases for discrete isolation ................................................ 57 4.4 Discussion of the selection approaches .......................................... 61 4.4.1 A critical view of the use cases ................................................. 61 4.4.2 Comparing the approaches ........................................................ 62 4.4.3 Conclusion ..................................................................................... 64 5 Creating multiscale maps 65 5.1 Examples of multiscale map production .......................................... 65 5.1.1 OpenStreetMap Infrastructure ................................................... 66 5.1.2 OpenStreetMap Carto ................................................................. 67 5.1.3 OpenMapTiles ............................................................................... 73 5.2 Methods of multiscale map production ............................................ 80 5.2.1 OpenStreetMap tools ................................................................... 80 5.2.2 Geoprocessing .............................................................................. 80 5.2.3 Database ........................................................................................ 80 5.2.4 Creating tiles ................................................................................. 82 5.2.5 Caching .......................................................................................... 82 5.2.6 Styling tiles .................................................................................... 82 5.2.7 Viewing tiles ................................................................................... 83 5.2.8 The stackless approach to tile creation ................................... 83 5.3 Example workflows for creating multiscale maps ........................... 84 5.3.1 Raster tiles: OGC services and micro diagrams .................... 84 5.3.2 Vector tiles: Slippy map and vector tiles ................................. 87 5.4 Discussion of approaches and workflows ....................................... 90 5.4.1 Map production as a rendering pipeline .................................. 90 5.4.2 Comparison of OpenStreetMap Carto and OpenMapTiles .. 92 5.4.3 Discussion of the implementations ........................................... 93 5.4.4 Generalization in map production workflows .......................... 95 5.4.5 Conclusions ................................................................................. 101 6 Discussion 103 6.1 Development for web mapping ........................................................ 103 6.1.1 The role of standards in map production .............................. 103 6.1.2 Technological development ..................................................... 103 6.2 New data, new mapping techniques? ............................................. 104 7 Conclusion 106 7.1 Visualization of point collections ..................................................... 106 7.2 Visualization of points of interest ................................................... 107 7.3 Production of multiscale maps ........................................................ 107 7.4 Synthesis of the research questions .............................................. 108 7.5 Contributions ....................................................................................... 109 7.6 Limitations ............................................................................................ 110 7.7 Outlook ................................................................................................. 111 8 References 113 9 Appendix 130 9.1 Zoom levels and Scale ...................................................................... 130 9.3 Full information about selected UGC papers ................................ 131 9.4 Timeline of mapping technologies .................................................. 133 9.5 Timeline of map providers ................................................................ 133 9.6 Code snippets from own map production workflows .................. 134 9.6.1 Vector tiles workflow ................................................................. 134 9.6.2 Raster tiles workflow.................................................................. 137
42

Map-aided localization for autonomous driving using a particle filter

Eriksson, Simon January 2020 (has links)
Vehicles losing their GPS signal is a considerable issue for autonomous vehicles and can be a danger to people in their vicinity. To circumvent this issue, a particle filter localization technique using pre-generated offline Open Street Map (OSM) maps was investigated in a software simulation of Scania’s heavy-duty trucks. The localization technique runs in real-time and provides a way to localize the vehicle safely if the starting position is known. Access to global localization was limited, and the particle filter still succeeded in localizing the vehicle in the vicinity of the correct road segment by creating a graph of the map information and matching the trajectory to the vehicle’s sensor data. The mean error of the Particle filter localization technique in optimal conditions is 16m, which is 20% less than an optimally tuned dead reckoning solution. The mean error is about 50% larger compared to a Global Positioning System. The final product shows potential for expansion but requires more investigation to allow for real-world deployment. / Att fordon kan mista sin GPS-signal är ett stort problem för autonoma fordon och kan vara en fara för människor i dess närhet. För att undvika detta problem föreslås en icke-global lokaliseringsteknik som använder Open Street Maps-kartor (OSM) och ett partikelfilter för att lokalisera fordonet i en mjukvarusimulation. Implementering körs i realtid och anger fordonets position med en tillräcklig träffsäkerhet för att det inte ska utgöra någon fara om dess startposition är känd. Globala lokaliseringsmöjligheter var begränsade, och partikelfiltret lyckades lokalisera fordonet till rätt vägsegment genom att konstruera en graf över den kartinformation den läst in och para ihop fordonets nuvarande färdväg med denna. Resultatet ger en lösning som optimalt har ett medelfel på 16m, vilket är 20% mindre än medelfelet jämfört med optimiserad dödräkning. Lösningen har ca 50% större medelfel än positionering med GPS. Slutresultatet visar en potential att användas i verkliga situationer, men kräver mer undersökningar.
43

Modelování charakteristik obyvatelstva z topografických dat / Modeling population with topographic data

Šimbera, Jan January 2016 (has links)
Accurate spatial population data are an important requirement in many applications. In this thesis, the problem of disaggregating the spatial distribution of population density and rent costs using a machine learning model is studied. An approach based on freely available ancillary data such as OpenStreetMap and Urban Atlas is proposed and implemented in the form of an automated Python toolbox for ArcGIS. The applications on the urban areas of Prague, Vienna and Ljubljana show promising results, overperforming the competing population disaggregation solutions in spatial resolution and displaying a satisfying degree of transferability. A number of further improvements is suggested. Powered by TCPDF (www.tcpdf.org)
44

Multi-Scale and Multi-Modal Streaming Data Aggregation and Processing for Decision Support during Natural Disasters

Kar, Shruti January 2018 (has links)
No description available.
45

Topographic building pattern recognition with geospatial OpenStreetMap data / Igenkänning av topografiska byggnadsmönster med geospatial data från OpenStreetMap

Amino, Robert January 2018 (has links)
This paper aims to explore the perceptual recognition of topographical building patterns from real-world OpenStreetMap data on virtual globes. An implementation was developed in which all geographical and contextual information was layered and, for the purpose of this study, what solely remained were building patterns as viewed from above. This was developed as a module for the planetarium visualization software Uniview. The aim was to determine how cities with different building patterns were perceived by participants in terms of size, scale, and building density. This was measured as the comparative difference between city pairs, that is, how much they differed in the percentage of the area that they covered. Two quantitative studies were conducted, one smaller controlled study with 19 participants and one larger online crowd-sourced study with 72 participants. The results show that participants are generally able to discern building patterns when the comparative difference is greater than a certain critical threshold. This critical threshold was determined to be at approximately 0.5% for both studies and for accuracy levels above 60%. Thus it was concluded that below this critical threshold users should be provided with visual feedback or other means of identifiers in order to allow for definite recognition, depending on what kind of information a certain type of visualization is trying to convey. / Den här rapporten avser att utforska den perpetuella igenkänningen av topografiska byggnadsmönster genom att använda geografisk data från OpenStreetMap som avbildas på virtuella sfärer. En implementation utvecklades där geografisk data samt kontextuell information ordnades i överlappande lager som filtrerades, och där endast byggnadsmönster sett från ovan kvarstod. Denna modul utvecklades för Uniview som är en mjukvara för visualisering i planetarier. Målet var att avgöra hur deltagare uppfattade städer med olika byggnadsmönster med hänsyn till storlek, skala, samt byggnadsdensitet. Detta mättes genom den procentuella skillnaden mellan städer, dvs. skillnaden i procent för varje stads geografiska utsträckning. Två kvantitativa studier utfördes, en mindre kontrollerad studie med 19 deltagare samt en större nätbaserad studie med 72 deltagare. Resultatet visar att deltagare generellt kunde bedöma den procentuella skillnaden i byggnadsmönster upp till en viss kritisk gräns. Denna kritiska gräns fastställdes till runt 0.5% för båda studier och för noggrannhetsnivåer över 60%. Slutsatsen från detta är att användare bör ges visuella indikatorer för nivåer under denna kritiska gräns för att säkerställa definitiv igenkänning beroende på vilken information som skall förmedlas i en viss typ av visualisering.
46

Open Innovation Strategy: Open platform-based digital mapping; as tools for value creation and value capture : Case study of OpenStreetMap and Google Maps

William, Jeffry Leonardo, Wijaya, Mochamad Rifky January 2017 (has links)
Open innovation has been rising in popularity as an alternative to traditional model for organizations to enhance innovation in their products or services. In the past, the innovation processes was time-consuming and costly. It has now become significantly efficient and effective, supported by the advancement of today’s IT such as Internet, Cloud Computing and Big Data. Open innovation has changed the aspect of the innovation source; from closed internal R&D to fully utilization of consumers’ collaboration. Decision to shift towards open innovation strategy has been lying on several areas including motivation, financial direction, and preference of the innovation strategies and business models that fitting the organizational core strategy. This research studied the relation of these areas and its effect; it determined the way IT-organization creates and captures value that were done by opening its product platform. This thesis was conducted to analyze the open innovation approach in an open digital navigation platform, featuring two platforms as case study: Google Maps and OpenStreetMap. The investigation emphasized the utilizing of the open innovation strategy to build its platform where crowdsourcing and open source software as objects highlighted in the research. The data was collected from secondary sources. Research findings suggested that crowdsourcing and open source software strategy are the main strategies of open innovation implemented in IT digital mapping platform to create and capture value. While these strategies have been practiced in both platforms, circumstances (motivation, financial direction, and business strategy) that hovering around the internal aspect of organizations affected the application of those strategies. The implementation results are differ according to preferred business model. The result of this research suggested that a non-profit based organization tends to utilize open innovation to improve the value of their product through consumer collaboration, while a profit based organization adopts open innovation to generate additional pool of revenue through customers’ feedback and input data. The open innovation leads to creation of a new business model as the foundation of innovation.
47

Integration von Generalisierungsfunktionalität für die automatische Ableitung verschiedener Levels of Detail von OpenStreetMap Webkarten / Integration of generalization functionality to derivate automatic different levels of detail in OpenStreetMap webmaps

Klammer, Ralf 16 June 2011 (has links) (PDF)
OpenStreetMap (OSM) konnte sich seit der Gründung 2004 sehr schnell etablieren und stellt mittlerweile eine konkrete Alternative gegenüber vergleichbaren kommerziellen Anwendungen dar. Dieser Erfolg ist eindeutig auf das revolutionäre Grundkonzept des Projektes zurückzuführen. Weltweit werden räumliche Daten durch Mitglieder erhoben und dem Projekt OSM zur Verfügung gestellt. Über die zugrunde liegenden Lizenzbestimmungen wird sichergestellt, dass OSM-Daten frei verfügbar und kostenfrei weiter verwendbar sind. Vor allem die Vorstellung der Unabhängigkeit von proprietären Daten hat zu starker, weiterhin zunehmender globaler Beteiligung geführt. Resultierend daraus erreichen die verfügbaren Daten inzwischen hohe Dichte sowie Genauigkeit. Visualisierungen in Form von interaktiven, frei skalierbaren Weltkarten, welche über die vollständig automatisierten Softwarelösungen Mapnik und Osmarender erstellt werden, sind am weitesten verbreitet. Infolgedessen müssen kartographische Grundsätze und Regeln formalisiert und implementiert werden. Insbesondere in Bezug auf kartographische Generalisierung treten teils erhebliche Mängel in den entsprechenden Umsetzungen auf. Dies bildet den Ausgangspunkt der Untersuchung. Ausgehend von einer Ist-Analyse werden vorhandene Defizite identifiziert und anschließend Möglichkeiten zur Integration von Generalisierungsfunktionalitäten untersucht. Aktuelle Entwicklungen streben die Anwendung interoperabler Systeme im Kontext kartographischer Generalisierung an, mit dem Ziel Generalisierungsfunktionalitäten über das Internet bereitzustellen. Grundlage hierfür bilden die vom Open Geospatial Consortium (OGC) spezifizierten Web Processing Services (WPS). Sie ermöglichen die Analyse und Verarbeitung räumlicher Daten. In diesem Zusammenhang werden Web Generalization Services (WebGen-WPS) auf mögliche Integration in die Softwarelösungen untersucht und bilden somit einen zentralen Untersuchungsgegenstand der vorliegenden Arbeit. Mapnik stellt, nicht zuletzt durch dessen offengelegten Quelltext („Open Source“), optimale Voraussetzungen für jene Implementierungen zur Verfügung. Zur Verarbeitung von OSM-Daten verwendet Mapnik die freie Geodatenbank PostGIS, welche ebenfalls Funktionalitäten zur Analyse und Verarbeitung räumlicher Daten liefert. In diesem Kontext wird zusätzlich untersucht, inwiefern PostGIS-Funktionen Potential zur Anwendung kartographischer Generalisierung aufweisen. / OpenStreetMap (OSM) has established very quickly since its founding in 2004 and has become a suitable alternative to similar commercial applications. This success is clearly due to the revolutionary concept of the project. Spatial data is collected by members world-wide and is provided to the project OSM. The underlying license aggreement ensures that OSM-Data is freely available and can be used free of charge. Primarily, the idea of independence from proprietary data has led to strong, still growing, global participation. Resulting from that, the available data is now achieving high density and accuracy. Visualizations in form of interactive, freely scalable maps of the world, which are constructed by the fully automated software solutions Mapnik and Osmarender are most common. In consequence cartographic principles and rules must be formalized and implemented. Particularly with respect to cartographic generalization, some serious faults appear in the corresponding implementations. This is the starting point of this diploma thesis. Based on an analysis of the current state, actual existing deficiencies are identified and then examined for possibilities to integrate generalization functionalities. Recent developments aim at the deployment of interoperable systems in the context of cartographic generalization, with the intention of providing generalization functionalities over the Internet. This is based on Web Processing Services (WPS) that where developed by the Open Geospatial Consortium (OGC). They enable the analysis and processing of spatial data. In this context, Web Generalization Services (Webgen-WPS) are examined for possible integration into the software solutions and represent therefore a central object of investigation within that examination. Mapnik provides, not least through its “open source” code, ideal conditions for those implementations. Mapnik uses the “open source” spatial database PostGIS for the processing of OSM-Data, which also provides capabilities to analyze and process spatial data. In this context is examined in addition, to what extent the features have potential for implementation of cartographic generalization.
48

Integration von Generalisierungsfunktionalität für die automatische Ableitung verschiedener Levels of Detail von OpenStreetMap Webkarten

Klammer, Ralf 01 June 2011 (has links)
OpenStreetMap (OSM) konnte sich seit der Gründung 2004 sehr schnell etablieren und stellt mittlerweile eine konkrete Alternative gegenüber vergleichbaren kommerziellen Anwendungen dar. Dieser Erfolg ist eindeutig auf das revolutionäre Grundkonzept des Projektes zurückzuführen. Weltweit werden räumliche Daten durch Mitglieder erhoben und dem Projekt OSM zur Verfügung gestellt. Über die zugrunde liegenden Lizenzbestimmungen wird sichergestellt, dass OSM-Daten frei verfügbar und kostenfrei weiter verwendbar sind. Vor allem die Vorstellung der Unabhängigkeit von proprietären Daten hat zu starker, weiterhin zunehmender globaler Beteiligung geführt. Resultierend daraus erreichen die verfügbaren Daten inzwischen hohe Dichte sowie Genauigkeit. Visualisierungen in Form von interaktiven, frei skalierbaren Weltkarten, welche über die vollständig automatisierten Softwarelösungen Mapnik und Osmarender erstellt werden, sind am weitesten verbreitet. Infolgedessen müssen kartographische Grundsätze und Regeln formalisiert und implementiert werden. Insbesondere in Bezug auf kartographische Generalisierung treten teils erhebliche Mängel in den entsprechenden Umsetzungen auf. Dies bildet den Ausgangspunkt der Untersuchung. Ausgehend von einer Ist-Analyse werden vorhandene Defizite identifiziert und anschließend Möglichkeiten zur Integration von Generalisierungsfunktionalitäten untersucht. Aktuelle Entwicklungen streben die Anwendung interoperabler Systeme im Kontext kartographischer Generalisierung an, mit dem Ziel Generalisierungsfunktionalitäten über das Internet bereitzustellen. Grundlage hierfür bilden die vom Open Geospatial Consortium (OGC) spezifizierten Web Processing Services (WPS). Sie ermöglichen die Analyse und Verarbeitung räumlicher Daten. In diesem Zusammenhang werden Web Generalization Services (WebGen-WPS) auf mögliche Integration in die Softwarelösungen untersucht und bilden somit einen zentralen Untersuchungsgegenstand der vorliegenden Arbeit. Mapnik stellt, nicht zuletzt durch dessen offengelegten Quelltext („Open Source“), optimale Voraussetzungen für jene Implementierungen zur Verfügung. Zur Verarbeitung von OSM-Daten verwendet Mapnik die freie Geodatenbank PostGIS, welche ebenfalls Funktionalitäten zur Analyse und Verarbeitung räumlicher Daten liefert. In diesem Kontext wird zusätzlich untersucht, inwiefern PostGIS-Funktionen Potential zur Anwendung kartographischer Generalisierung aufweisen.:Inhaltsverzeichnis Aufgabenstellung ii Zusammenfassung iii Abstract iv Abbildungsverzeichnis viii Tabellenverzeichnis ix Abkürzungsverzeichnis x 1 Einleitung 1 1.1 Motivation 1 1.2 Aufbau der Arbeit 4 2 Grundlagen 5 2.1 OpenStreetMap 5 2.1.1 Ablauf der Erstellung von OSM-Karten 6 2.1.2 Mapnik 9 2.2 Web Services 12 2.2.1 OGC Web Processing Services 12 2.2.2 Web Generalization Services 14 2.2.3 Verkettung von OGC Web Services 16 2.3 Kartographische Generalisierung 17 2.3.1 Konzeptionelle Modellvorstellungen 18 2.3.2 Generalisierungsoperatoren 22 3 OpenStreetMap & Generalisierung – aktueller Stand 24 3.1 Allgemeine Analyse und Kritik 25 3.2 OSM & konzeptionelle Modelle 28 4 Theoretische Überlegungen 31 4.1 Einbindung des WebGen-WPS 32 4.1.1 Direkteinbindung des WebGen-WPS 32 4.1.2 Einbindung von WebGen-WPS für „MRDB-OSM“ 34 4.2 PostGIS-Funktionen 36 4.3 OpenStreetMap - Generalisierungscommunity 38 5 Implementierungen & Ergebnisse 40 5.1 Technische Voraussetzungen 41 5.1.1 Systemvoraussetzungen 41 5.1.2 Testgebiet 41 5.2 Einbindung des WebGen-WPS in Mapnik 42 5.2.1 Einbindung in den automatischen Prozess 42 5.2.1.1 Allgemeiner Programmablauf 43 5.2.1.2 Implementierungsansätze 44 5.2.2 Praktische Umsetzung einer „MRDB-OSM“ 47 5.2.2.1 Verfahrensablauf 48 5.2.2.2 Polygonvereinfachung 51 5.2.2.3 Linienvereinfachung 57 5.3 Implementierung von PostGIS-Funktionen 59 5.3.1 Auswahl 59 5.3.2 Betonung 60 5.3.3 Linienvereinfachung 61 5.3.4 Polygonvereinfachung 61 6 Schlussfolgerungen und Ausblicke 65 6.1 Diskussion der Ergebnisse 65 6.2 Fazit 71 7 Quellennachweise 72 7.1 Literaturverzeichnis 72 7.2 Internetquellennachweis (ohne eindeutige Autoren) 77 8 Anhang 79 / OpenStreetMap (OSM) has established very quickly since its founding in 2004 and has become a suitable alternative to similar commercial applications. This success is clearly due to the revolutionary concept of the project. Spatial data is collected by members world-wide and is provided to the project OSM. The underlying license aggreement ensures that OSM-Data is freely available and can be used free of charge. Primarily, the idea of independence from proprietary data has led to strong, still growing, global participation. Resulting from that, the available data is now achieving high density and accuracy. Visualizations in form of interactive, freely scalable maps of the world, which are constructed by the fully automated software solutions Mapnik and Osmarender are most common. In consequence cartographic principles and rules must be formalized and implemented. Particularly with respect to cartographic generalization, some serious faults appear in the corresponding implementations. This is the starting point of this diploma thesis. Based on an analysis of the current state, actual existing deficiencies are identified and then examined for possibilities to integrate generalization functionalities. Recent developments aim at the deployment of interoperable systems in the context of cartographic generalization, with the intention of providing generalization functionalities over the Internet. This is based on Web Processing Services (WPS) that where developed by the Open Geospatial Consortium (OGC). They enable the analysis and processing of spatial data. In this context, Web Generalization Services (Webgen-WPS) are examined for possible integration into the software solutions and represent therefore a central object of investigation within that examination. Mapnik provides, not least through its “open source” code, ideal conditions for those implementations. Mapnik uses the “open source” spatial database PostGIS for the processing of OSM-Data, which also provides capabilities to analyze and process spatial data. In this context is examined in addition, to what extent the features have potential for implementation of cartographic generalization.:Inhaltsverzeichnis Aufgabenstellung ii Zusammenfassung iii Abstract iv Abbildungsverzeichnis viii Tabellenverzeichnis ix Abkürzungsverzeichnis x 1 Einleitung 1 1.1 Motivation 1 1.2 Aufbau der Arbeit 4 2 Grundlagen 5 2.1 OpenStreetMap 5 2.1.1 Ablauf der Erstellung von OSM-Karten 6 2.1.2 Mapnik 9 2.2 Web Services 12 2.2.1 OGC Web Processing Services 12 2.2.2 Web Generalization Services 14 2.2.3 Verkettung von OGC Web Services 16 2.3 Kartographische Generalisierung 17 2.3.1 Konzeptionelle Modellvorstellungen 18 2.3.2 Generalisierungsoperatoren 22 3 OpenStreetMap & Generalisierung – aktueller Stand 24 3.1 Allgemeine Analyse und Kritik 25 3.2 OSM & konzeptionelle Modelle 28 4 Theoretische Überlegungen 31 4.1 Einbindung des WebGen-WPS 32 4.1.1 Direkteinbindung des WebGen-WPS 32 4.1.2 Einbindung von WebGen-WPS für „MRDB-OSM“ 34 4.2 PostGIS-Funktionen 36 4.3 OpenStreetMap - Generalisierungscommunity 38 5 Implementierungen & Ergebnisse 40 5.1 Technische Voraussetzungen 41 5.1.1 Systemvoraussetzungen 41 5.1.2 Testgebiet 41 5.2 Einbindung des WebGen-WPS in Mapnik 42 5.2.1 Einbindung in den automatischen Prozess 42 5.2.1.1 Allgemeiner Programmablauf 43 5.2.1.2 Implementierungsansätze 44 5.2.2 Praktische Umsetzung einer „MRDB-OSM“ 47 5.2.2.1 Verfahrensablauf 48 5.2.2.2 Polygonvereinfachung 51 5.2.2.3 Linienvereinfachung 57 5.3 Implementierung von PostGIS-Funktionen 59 5.3.1 Auswahl 59 5.3.2 Betonung 60 5.3.3 Linienvereinfachung 61 5.3.4 Polygonvereinfachung 61 6 Schlussfolgerungen und Ausblicke 65 6.1 Diskussion der Ergebnisse 65 6.2 Fazit 71 7 Quellennachweise 72 7.1 Literaturverzeichnis 72 7.2 Internetquellennachweis (ohne eindeutige Autoren) 77 8 Anhang 79
49

Exploring geolocation governance perspectives through the study of appropriation and collective action

Michaux, Julien 09 1900 (has links)
No description available.
50

Zur Beziehung von Raum und Inhalt nutzergenerierter geographischer Informationen

Hahmann, Stefan 21 July 2014 (has links) (PDF)
In the last ten years there has been a significant progress of the World Wide Web, which evolved to become the so-called “Web 2.0”. The most important feature of this new quality of the WWW is the participation of the users in generating contents. This trend facilitates the formation of user communities which collaborate on diverse projects, where they collect and publish information. Prominent examples of such projects are the online-encyclopedia “Wikipedia”, the microblogging-platform “Twitter”, the photo-platform “Flickr” and the database of topographic information “OpenStreetMap”. User-generated content, which is directly or indirectly geospatially referenced, is of-ten termed more specifically as “volunteered geographic information”. The geospatial reference of this information is constituted either directly by coordinates that are given as meta-information or indirectly through georeferencing of toponyms or addresses that are contained in this information. Volunteered geographic information is particularly suited for research, as it can be accessed with low or even at no costs at all. Furthermore it reflects a variety of human decisions which are linked to geographic space. In this thesis, the relationship of space and content of volunteered geographic information is investigated from two different perspectives. The first part of this thesis addresses the question for which share of information there exists a relationship between space and content of the information, such that the information is locatable in geospace. In this context, the assumption that about 80% of all information has a reference to space has been well known within the community of geographic information system users. Since the 1980s it has served as a marketing tool within the whole geoinformation sector, although there has not been any empirical evidence. This thesis contributes to fill this research gap. For the validation of the ‘80%-hypothesis’ two approaches are presented. The first approach is based on a corpus of information that is as representative as possible for world knowledge. For this purpose the German language edition of Wikipedia has been selected. This corpus is modeled as a network of information where the articles are considered the nodes and the cross references are considered the edges of a directed graph. With the help of this network a graduated definition of geospatial references is possible. It is implemented by computing the distance of each article to its closest article within the network that is assigned with spatial coordinates. Parallel to this, a survey-based approach is developed where participants have the task to assign pieces of information to one of the categories “direct geospatial reference”, “indirect geospatial reference” and “no geospatial reference”. A synthesis of both approaches leads to an empirically justified figure for the “80%-assertion”. The result of the investigation is that for the corpus of Wikipedia 27% of the information may be categorized as directly geospatially referenced and 30% of the information may be categorized as indirectly geospatially referenced. In the second part of the thesis the question is investigated in how far volunteered geographic information that is produced on mobile devices is related to the locations where it is published. For this purpose, a collection of microblogging-texts produced on mobile devices serve as research corpus. Microblogging-texts are short texts that are published via the World Wide Web. For this type of information the relationship be-tween the content of the information and their position is less obvious than e.g. for topographic information or photo descriptions. The analysis of microblogging-texts offers new possibilities for market and opinion research, the monitoring of natural events and human activities as well as for decision support in disaster management. The spatial analysis of the texts may add extra value. In fact for some of the applications the spatial analysis is a necessary condition. For this reason, the investigation of the relationship of the published contents with the locations where they are generated is of interest. Within this thesis, methods are described that support the investigation of this relationship. In the presented approach, classified Points of Interest serve as a model for the environment. For the purpose of the investigation of the correlation between these points and the microblogging-texts, manual classification and natural language processing are used in order to classify these texts according to their relevance in regard to the respective feature classes. Subsequently, it is tested whether the share of relevant texts in the proximity of objects of the tested classes is above average. The results of the investigation show that the strength of the location-content-correlation depends on the tested feature class. While for the feature classes ‘train station’, ‘airport’ and ‘restaurant’ a significant dependency of the share of relevant texts on the distance to the respective objects may be observed, this is not confirmed for objects of other feature classes, such as ‘cinema’ and ‘supermarket’. However, as prior research that describes investigations on small cartographic scale has detected correlations between space and content of microblogging-texts, it can be concluded that the strength of the correlation between space and content of microblogging-texts depends on scale and topic. / Während der vergangenen zehn Jahre vollzog sich eine signifikante Veränderung des World Wide Webs, das sich zum sogenannten „Web 2.0“ entwickelte. Das wesentlichste Merkmal dieser neuen Qualität des WWW ist die Beteiligung der Nutzer bei der Erstellung der Inhalte. Diese Entwicklung fördert das Entstehen von Nutzergemeinschaften, die kollaborativ in unterschiedlichsten Projekten Informationen sammeln und veröffentlichen. Prominente Beispiele für solche Projekte sind die Online-Enzyklopädie „Wikipedia“, die Microblogging-Plattform „Twitter“, die Foto-Plattform „Flickr“ und die Sammlung topographischer Informationen „OpenStreetMap“. Nutzergenerierte Inhalte, die direkt oder indirekt raumbezogen sind, können spezifischer als „nutzergenerierte geographische Informationen“ bezeichnet werden. Der Raumbezug dieser Informationen entsteht entweder direkt durch die Angabe räumlicher Koordinaten als Metainformationen oder er kann indirekt durch die Georeferenzierung von in den Informationen enthaltenen Toponymen oder Adressen hergestellt werden. Nutzergenerierte geographische Informationen haben für die Forschung den besonderen Vorteil, dass sie einerseits häufig gänzlich ohne oder nur mit geringen Kosten verfügbar gemacht werden können und andererseits eine Vielzahl von menschlichen Entscheidungen widerspiegeln, die mit dem Raum verknüpft sind. In der vorliegenden Dissertation wird die Beziehung von Raum und Inhalt nutzergenerierter geographischer Informationen aus zwei Perspektiven untersucht. Im ersten Teil der Arbeit steht die Frage im Vordergrund, für welchen Anteil an Informationen eine Beziehung zwischen Raum und Informationsinhalt in der Art besteht, dass die Informationen im Georaum lokalisierbar sind. In diesem Zusammenhang existiert seit den 1980er Jahren die unter Nutzern von geographischen Informationssystemen weit verbreitete These, dass 80% aller Informationen einen Raumbezug haben. Diese These dient im gesamten Spektrum der Branche als Marketinginstrument, ist jedoch nicht empirisch belegt. Diese Arbeit trägt dazu bei, die bestehende Forschungslücke zu schließen. Für die Prüfung dieser These, die in der Arbeit als „Raumbezugshypothese“ bezeichnet wird, werden zwei Ansätze vorgestellt. Der erste Ansatz basiert auf der Analyse eines möglichst repräsentativen Informationskorpus, wofür die deutsche Sprachversion der Wikipedia ausgewählt wird. Diese wird als Informationsnetzwerk modelliert, indem deren Artikel als Knoten und deren interne Querverweise als Kanten eines gerichteten Graphen betrachtet werden. Mit Hilfe dieses Netzwerkes ist es möglich eine abgestufte Definition des Raumbezuges von Informationen einzuführen, indem die Entfernung jedes Artikels innerhalb des Netzwerkes zum jeweils nächstgelegenen Artikel, der mit räumlichen Koordinaten gekennzeichnet ist, berechnet wird. Parallel dazu wird ein Befragungsansatz entwickelt, bei dem Probanden die Aufgabe haben, Informationen in die Kategorien „Direkter Raumbezug“, „Indirekter Raumbezug“ und „Kein Raumbezug“ einzuordnen. Die Synthese beider Ansätze führt zu einer empirisch begründeten Zahl für die „Raumbezugsthese“. Das Ergebnis ist, dass für das Untersuchungskorpus Wikipedia 27% der Informationen als direkt raumbezogenen und 30% der Informationen als indirekt raumbezogen kategorisiert werden können. Im zweiten Teil der Arbeit wird die Forschungsfrage untersucht, inwiefern nutzergenerierte Informationen, die über mobile Geräte erzeugt werden, in Beziehung zu den Orten stehen, an denen sie veröffentlicht werden. Als Forschungskorpus dienen mobil verfasste Microblogging-Texte. Dies sind kurze Texte, die über das WWW veröffentlicht werden. Bei dieser Informationsart liegt im Gegensatz zu beispielsweise topographischen Information oder Fotobeschreibungen die Vermutung eines starken Zusammenhanges zwischen dem Inhalt der Informationen und deren Positionen nicht nahe. Die Analyse von Microblogging-Texten bietet unter anderem Potential für die Markt- und Meinungsforschung, die Beobachtung von Naturereignissen und menschlichen Aktivitäten sowie die Entscheidungsunterstützung in Katastrophenfällen. Aus der räumlichen Auswertung kann sich dabei ein Mehrwert ergeben, für einen Teil der Anwendungen ist die räumliche Auswertung sogar die notwendige Voraussetzung. Aus diesem Grund ist die Erforschung des Zusammenhanges der veröffentlichten Inhalte mit den Orten, an denen diese entstehen, von Interesse. In der Arbeit werden eine Methoden vorgestellt, mit deren Hilfe die Untersuchung dieser Korrelation am Beispiel von klassifizierten Points of Interest durchgeführt wird. Zu diesem Zweck werden die Texte mit Hilfe von manueller Klassifikation und maschineller Sprachverarbeitung entsprechend ihrer Relevanz für die getesteten Objektklassen klassifiziert. Anschließend wird geprüft, ob der Anteil der relevanten Texte in der Nähe von Objekten der getesteten Klassen überdurchschnittlich hoch ist. Die Ergebnisse der Untersuchungen zeigen, dass die Stärke der Raum-Inhalt-Korrelation von den getesteten Objektklassen abhängig ist. Während sich beispielsweise bei Bahnhöfen, Flughäfen und Restaurants eine deutliche Abhängigkeit des Anteils der relevanten Texte von der Entfernung zu den betreffenden Objekten zeigt, kann dies für andere Objektklassen, wie z.B. Kino oder Supermarkt nicht bestätigt werden. Da frühere Forschungsarbeiten bei der Analyse im kleinmaßstäbigen Bereich eine Korrelation der Informationsinhalte mit deren Entstehungsorten feststellten, kann geschlussfolgert werden, dass der Zusammenhang zwischen Raum und Inhalt bei Microblogging-Texten sowohl vom Maßstab als auch vom Thema abhängig ist.

Page generated in 0.2432 seconds