• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructure characterization of friction-stir processed nickel-aluminum bronze through orientation imaging microscopy

Cuevas, Assunta Mariela. 09 1900 (has links)
Approved for public release, distribution is unlimited / The effect of friction-stir processing (FSP) on the microstructure of a cast nickel-aluminum bronze (NAB) material has been characterized by various micro-analytical methods including orientation imaging microscopy (OIM). Cast NAB is widely utilized in the production of propellers for the surface ships and submarines of the U.S. Navy due to excellent corrosion-resistance. New applications require improved mechanical properties that may be attainable using FSP to achieve localized microstructure modification. Friction between a rotating tool and the surface of the material results in a *stirring* action that, in turn, produces adiabatic heating and local softening of the material. The tool rotation results in very large shear deformations in the softened regions and thus microstructure refinement and homogenization; in effect FSP may convert an as-cast microstructure to a wrought condition in the absence of macroscopic shape change. In as-cast material, results of optical and scanning electron microscopy (using energy dispersive analysis) show an ` (FCC) matrix containing globular and particulate dispersions that correspond to the *I, *II and *IV second phases; these represent various morphologies of the Fe3Al intermetallic compound, which has a D03 structure. Also present are lamellar particles of *III, which is NiAl and has a B2 structure. The grain size in the ` matrix is ~ 1 mm. In OIM, the microtexture and microstructure in the ` (FCC) matrix may be readily obtained and analyzed. However, interatom distances in the Fe3Al and NiAl phases differ by only about one percent and so these phases are not distinguishable from one another during OIM. Altogether, microstructure and microtexture analysis showed that there are several regions in the thermomechanically affected zone (TMAZ) of a material subjected to FSP. From base material inward toward the TMAZ, these include: annealing effects in undeformed base material; a region just inside the TMAZ in which grain deformation and C-type shear deformation textures are observed; regions of highly refined and recrystallized grains further inside the TMAZ, wherein the grain size is < 5æm; and, finally, regions of elongated, banded and twinned grain structures that suggest grain growth following recrystalliztion. / Lieutenant, United States Navy
2

Laminage asymétrique de l'alliage de magnésium AZ31 / Structural and textural design of metallic alloys rolled by non conventional way

Forget, Mathilde 08 February 2013 (has links)
L’alliage de magnésium AZ31 présente une très faible densité. Cette caractéristique en fait un matériau apprécié pour la conception de structures légères. La limitation principale de son utilisation industrielle est sa mauvaise formabilité et ce en raison de la texture cristallographique des tôles qui s’avère être peu adaptée aux procédés de mise en forme tel que l’emboutissage. Cette texture résultant du laminage initial, l’ambition de ce travail est de la modifier en utilisant la technique de laminage asymétrique et de mesurer l’impact de cette voie sur la formabilité de l’alliage. Il a été montré que l’asymétrie, produite par un différentiel de vitesses de rotation des cylindres du laminoir, induit systématiquement de fortes instabilités plastiques sous forme de bandes de cisaillement. Des techniques de cartographie sur microscope électronique en transmission (ACOM) et à balayage (EBSD) ainsi que des analyses de texture par DRX ont été utilisées pour analyser les mécanismes physiques concourant à l’émergence de cette instabilité. Il résulte de cette analyse que l’asymétrie du laminage provoque une forte activité du système de glissement basal que ne compense ni les autres systèmes ni le maclage. Ceci conduit à une localisation marquée de la déformation plastique et à la ruine du matériau. / The low density of the magnesium alloy AZ31 makes it valuable for low weight components. The main limitation for industrial applications is the poor formability of sheets during deep drawing type processing. This is linked to the fibre crystallographic texture resulting from rolling. The objective of the present work is to modify the sheet texture through asymmetrical rolling. It has appeared that the asymmetry promoted by monitoring the roll speeds separately induces plastic instabilities through shear banding. The physical mechanisms involved in the instability were analysed with the help of orientation imaging techniques on transmission electron (ACOM/TEM) and scanning electron (EBSD/SEM) microscopes as well as with X-ray measurements. It is concluded that the shear resulting from the asymmetry in roll speeds promotes a dramatic increase of basal slip that neither twinning nor the activities of other slip systems are able to compensate. Such activity induces strain localisation and premature failure of the material.
3

Solid Phase Crystallization of Vanadium Dioxide Thin Films and Characterization Through Scanning Electron Microscopy

Rivera, Felipe 07 December 2007 (has links) (PDF)
Crystalline films of vanadium dioxide were obtained through thermal annealing of amorphous vanadium dioxide thin films sputtered on silicon dioxide. An annealing process was found that yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. Orientation Imaging Microscopy (OIM) was used to characterize and study the phase and the orientation of the vanadium dioxide crystals obtained, as well as to diferentiate them from other vanadium oxide stoichiometries that may have formed during the annealing process. There was no evidence of any other vanadium oxides present in the prepared samples. Indexing of the crystals for the orientation study was performed with the Kikuchi patterns for the tetragonal phase of vanadium dioxide, since it was observed that the Kikuchi patterns for the monoclinic and tetragonal phases of vanadium dioxide are indistinguishable by OIM. It was found that a particle size of 100 nm was in the lower limit of particles that could be reliably characterized with this technique. It was also found that all VO2 crystals large enough to be indexed by OIM had a preferred orientation with the C axis of the tetragonal phase parallel to the plane of the specimen.
4

Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space / Imagerie de l'orientation en utilisant les rayons-X et illumination complète, grâce à la minimisation d'un fonctionnelle convexe et à une représentation échantillonné de l'espace sis-dimensionnel position-orientation

Vigano, Nicola Roberto 02 November 2015 (has links)
Cette thèse de doctorat introduit un modèle et un algorithme six-dimensions pour la reconstruction des orientations cristallines locales dans les matériaux polycristallins. Le modèle s’applique actuellement aux données obtenues avec un rayonnement synchrotron (faisceau parallèle et monochromatique), mais il est également possible d’envisager des extensions aux instruments et sources de laboratoire (polychromatique et divergent). Le travail présenté est principalement une extension de la technique connue sous le nom de “Diffraction Contrast Tomography” (DCT) qui permet la reconstruction de la forme et de l’orientation cristalline des grains dans des matériaux polycristallins (avec certaines restrictions concernant la taille et le nombre total de grains ainsi que la mosaicité intragranulaire). / This Ph.D. thesis is about the development and formalization of a six-dimensional tomography method, for the reconstruction of local orientation in poly-crystalline materials. This method is based on a technique known as diffraction contract tomography (DCT), mainly used in synchrotrons, with a monochromatic and parallel high energy X-ray beam. DCT exists since over a decade now, but it was always employed to analyze undeformed or nearly undeformed materials, described by “grains” with a certain average orientation. Because an orientation can be parametrized by the used of only three num- bers, the local orientation in the grains is modelled by a six-dimensional space X6 = R3 ⊗ O3, that is the outer product between a three-dimensional real- space and another three-dimensional orientation-space. This means that for each point of the real-space, there could be a full three-dimensional orientation- space, which however in practice is restricted to a smaller region of interest called “local orientation-space”. The reconstruction problem is then formulated as a global minimisation prob- lem, where the reconstruction of a single grain is the solution that minimizes a functional. There can be different choices for the functionals to use, and they depend on the type of reconstructions one is looking for, and on the type of a priori knowledge is available. All the functionals used include a data fidelity term which ensures that the reconstruction is consistent with the measured diffraction data, and then an additional regularization term is added, like the l1-norm minimization of the solution vector, that tries to limit the number of orientations per real-space voxel, or a Total Variation operator over the sum of the orientation part of the six-dimensional voxels, in order to enforce the homogeneity of the grain volume. When first published, the results on synthetic data from the third chapter high- lighted some key features of the proposed framework, and showed that it was in principle possible to extend DCT to the reconstruction of moderately de- formed materials, but it was unclear whether it could work in practice. The following chapters instead confirm that the proposed framework is viable for reconstructing moderately deformed materials, and that in conjunction with other techniques, it could also overcome the limitations imposed by the grain indexing, and be applied to more challenging textured materials.

Page generated in 0.1065 seconds