• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 18
  • 18
  • 12
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Robust Representation Learning for Out-of-Distribution Extrapolation in Relational Data

Yangze Zhou (18369795) 17 April 2024 (has links)
<p dir="ltr">Recent advancements in representation learning have significantly enhanced the analysis of relational data across various domains, including social networks, bioinformatics, and recommendation systems. In general, these methods assume that the training and test datasets come from the same distribution, an assumption that often fails in real-world scenarios due to evolving data, privacy constraints, and limited resources. The task of out-of-distribution (OOD) extrapolation emerges when the distribution of test data differs from that of the training data, presenting a significant, yet unresolved challenge within the field. This dissertation focuses on developing robust representations for effective OOD extrapolation, specifically targeting relational data types like graphs and sets. For successful OOD extrapolation, it's essential to first acquire a representation that is adequately expressive for tasks within the distribution. In the first work, we introduce Set Twister, a permutation-invariant set representation that generalizes and enhances the theoretical expressiveness of DeepSets, a simple and widely used permutation-invariant representation for set data, allowing it to capture higher-order dependencies. We showcase its implementation simplicity and computational efficiency, as well as its competitive performances with more complex state-of-the-art graph representations in several graph node classification tasks. Secondly, we address OOD scenarios in graph classification and link prediction tasks, particularly when faced with varying graph sizes. Under causal model assumptions, we derive approximately invariant graph representations that improve extrapolation in OOD graph classification task. Furthermore, we provide the first theoretical study of the capability of graph neural networks for inductive OOD link prediction and present a novel representation model that produces structural pairwise embeddings, maintaining predictive accuracy for OOD link prediction as the test graph size increases. Finally, we investigate the impact of environmental data as a confounder between input and target variables, proposing a novel approach utilizing an auxiliary dataset to mitigate distribution shifts. This comprehensive study not only advances our understanding of representation learning in OOD contexts but also highlights potential pathways for future research in enhancing model robustness across diverse applications.</p>
12

Dataset Drift in Radar Warning Receivers : Out-of-Distribution Detection for Radar Emitter Classification using an RNN-based Deep Ensemble

Coleman, Kevin January 2023 (has links)
Changes to the signal environment of a radar warning receiver (RWR) over time through dataset drift can negatively affect a machine learning (ML) model, deployed for radar emitter classification (REC). The training data comes from a simulator at Saab AB, in the form of pulsed radar in a time-series. In order to investigate this phenomenon on a neural network (NN), this study first implements an underlying classifier (UC) in the form of a deep ensemble (DE), where each ensemble member consists of an NN with two independently trained bidirectional LSTM channels for each of the signal features pulse repetition interval (PRI), pulse width (PW) and carrier frequency (CF). From tests, the UC performs best for REC when using all three features. Because dataset drift can be treated as detecting out-of-distribution (OOD) samples over time, the aim is to reduce NN overconfidence on data from unseen radar emitters in order to enable OOD detection. The method estimates uncertainty with predictive entropy and classifies samples reaching an entropy larger than a threshold as OOD. In the first set of tests, OOD is defined from holding out one feature modulation from the training dataset, and choosing this as the only modulation in the OOD dataset used during testing. With this definition, Stagger and Jitter are most difficult to detect as OOD. Moreover, using DEs with 6 ensemble members and implementing LogitNorm to the architecture improves the OOD detection performance. Furthermore, the OOD detection method performs well for up to 300 emitter classes and predictive entropy outperforms the baseline for almost all tests. Finally, the model performs worse when OOD is simply defined as signals from unseen emitters, because of a precision decrease. In conclusion, the implemented changes managed to reduce the overconfidence for this particular NN, and improve OOD detection for REC.
13

Re-weighted softmax cross-entropy to control forgetting in federated learning

Legate, Gwendolyne 12 1900 (has links)
Dans l’apprentissage fédéré, un modèle global est appris en agrégeant les mises à jour du modèle calculées à partir d’un ensemble de nœuds clients, un défi clé dans ce domaine est l’hétérogénéité des données entre les clients qui dégrade les performances du modèle. Les algorithmes d’apprentissage fédéré standard effectuent plusieurs étapes de gradient avant de synchroniser le modèle, ce qui peut amener les clients à minimiser exagérément leur propre objectif local et à s’écarter de la solution globale. Nous démontrons que dans un tel contexte, les modèles de clients individuels subissent un oubli catastrophique par rapport aux données d’autres clients et nous proposons une approche simple mais efficace qui modifie l’objectif d’entropie croisée sur une base par client en repondérant le softmax de les logits avant de calculer la perte. Cette approche protège les classes en dehors de l’ensemble d’étiquettes d’un client d’un changement de représentation brutal. Grâce à une évaluation empirique approfondie, nous démontrons que notre approche peut atténuer ce problème, en apportant une amélioration continue aux algorithmes d’apprentissage fédéré standard. Cette approche est particulièrement avantageux dans les contextes d’apprentissage fédéré difficiles les plus étroitement alignés sur les scénarios du monde réel où l’hétérogénéité des données est élevée et la participation des clients à chaque cycle est faible. Nous étudions également les effets de l’utilisation de la normalisation par lots et de la normalisation de groupe avec notre méthode et constatons que la normalisation par lots, qui était auparavant considérée comme préjudiciable à l’apprentissage fédéré, fonctionne exceptionnellement bien avec notre softmax repondéré, remettant en question certaines hypothèses antérieures sur la normalisation dans un système fédéré / In Federated Learning, a global model is learned by aggregating model updates computed from a set of client nodes, a key challenge in this domain is data heterogeneity across clients which degrades model performance. Standard federated learning algorithms perform multiple gradient steps before synchronizing the model which can lead to clients overly minimizing their own local objective and diverging from the global solution. We demonstrate that in such a setting, individual client models experience a catastrophic forgetting with respect to data from other clients and we propose a simple yet efficient approach that modifies the cross-entropy objective on a per-client basis by re-weighting the softmax of the logits prior to computing the loss. This approach shields classes outside a client’s label set from abrupt representation change. Through extensive empirical evaluation, we demonstrate our approach can alleviate this problem, providing consistent improvement to standard federated learning algorithms. It is particularly beneficial under the challenging federated learning settings most closely aligned with real world scenarios where data heterogeneity is high and client participation in each round is low. We also investigate the effects of using batch normalization and group normalization with our method and find that batch normalization which has previously been considered detrimental to federated learning performs particularly well with our re-weighted softmax, calling into question some prior assumptions about normalization in a federated setting
14

Overcoming generative likelihood bias for voxel-based out-of-distribution detection / Hanterande av generativ sannolikhetssnedvridning för voxelbaserad anomalidetektion

Lennelöv, Einar January 2021 (has links)
Deep learning-based dose prediction is a promising approach to automated radiotherapy planning but carries with it the risk of failing silently when the inputs are highly abnormal compared to the training data. One way to address this issue is to develop a dedicated outlier detector capable of detecting anomalous patient geometries. I examine the potential of so-called generative models to handle this task. These models are promising due to being able to model the distribution of the input data regardless of the downstream task, but they have also been shown to suffer from serious biases when applied to outlier detection. No consensus has been reached regarding the root cause of these biases, or how to address them. I investigate this by attempting to design a variational autoencoder-based outlier detector trained to detect anomalous samples of shapes represented in a binary voxel format. I find the standard procedure application to suffer from severe bias when encountering cropped shapes, leading to systematic misclassification of some outlier patient cases. I overcome this by adopting a segmentation metric as an out-of-distribution metric and show that this outperforms recently proposed general-purpose solutions to the likelihood bias issue. I then benchmark my proposed method on clinical samples and conclude that this approach achieves performance comparable to a one-class support vector machine model that uses handcrafted domain-specific features. / Djupinlärningsbaserad dosprediktion är en mycket lovande metod för att automatiskt generera behandlingsplaner för strålterapi. Djupinlärningsmodeller kan dock endast förväntas fungera på data som är tillräckligt lik träningsdatan, vilket skapar en säkerhetsrisk i kliniska miljöer. Ett möjlig lösning på detta problem är att använda en särskild detektor som klarar av att identifiera avvikande data. I denna uppsats undersöker jag om en generativa djupinlärningsmodell kan användas som en sådan detektor. Generativa modeller är särskilt intressanta för detta ändamål då de är både kraftfulla och flexibla. Dessvärre har generativa modeller visats kunna vilseledas av vissa typer av data. Orsakerna och de underliggande faktorerna till detta har ännu inte identifierats. Jag undersöker denna problematik genom att designa en detektor baserad på en variationell autokodare. Jag upptäcker att den en naiv applikation av denna modell inte är tillräcklig för den kliniska datan, då modellen systematiskt felvärderar beskärda former. Jag löser detta problem genom att nyttja ett modifierat segmenteringsmått som detektionsmått, och visar att denna metod fungerar bättre än mer allmänna lösningar på vilseledningsproblemet. Jag evaluerar metoderna på klinisk data och finner att min metod fungerar lika bra som en en-klass stödvektormaskin som använder sig av handgjorda domänspecifika features.
15

Towards causal federated learning : a federated approach to learning representations using causal invariance

Francis, Sreya 10 1900 (has links)
Federated Learning is an emerging privacy-preserving distributed machine learning approach to building a shared model by performing distributed training locally on participating devices (clients) and aggregating the local models into a global one. As this approach prevents data collection and aggregation, it helps in reducing associated privacy risks to a great extent. However, the data samples across all participating clients are usually not independent and identically distributed (non-i.i.d.), and Out of Distribution (OOD) generalization for the learned models can be poor. Besides this challenge, federated learning also remains vulnerable to various attacks on security wherein a few malicious participating entities work towards inserting backdoors, degrading the generated aggregated model as well as inferring the data owned by participating entities. In this work, we propose an approach for learning invariant (causal) features common to all participating clients in a federated learning setup and analyse empirically how it enhances the Out of Distribution (OOD) accuracy as well as the privacy of the final learned model. Although Federated Learning allows for participants to contribute their local data without revealing it, it faces issues in data security and in accurately paying participants for quality data contributions. In this report, we also propose an EOS Blockchain design and workflow to establish data security, a novel validation error based metric upon which we qualify gradient uploads for payment, and implement a small example of our Blockchain Causal Federated Learning model to analyze its performance with respect to robustness, privacy and fairness in incentivization. / L’apprentissage fédéré est une approche émergente d’apprentissage automatique distribué préservant la confidentialité pour créer un modèle partagé en effectuant une formation distribuée localement sur les appareils participants (clients) et en agrégeant les modèles locaux en un modèle global. Comme cette approche empêche la collecte et l’agrégation de données, elle contribue à réduire dans une large mesure les risques associés à la vie privée. Cependant, les échantillons de données de tous les clients participants sont généralement pas indépendante et distribuée de manière identique (non-i.i.d.), et la généralisation hors distribution (OOD) pour les modèles appris peut être médiocre. Outre ce défi, l’apprentissage fédéré reste également vulnérable à diverses attaques contre la sécurité dans lesquelles quelques entités participantes malveillantes s’efforcent d’insérer des portes dérobées, dégradant le modèle agrégé généré ainsi que d’inférer les données détenues par les entités participantes. Dans cet article, nous proposons une approche pour l’apprentissage des caractéristiques invariantes (causales) communes à tous les clients participants dans une configuration d’apprentissage fédérée et analysons empiriquement comment elle améliore la précision hors distribution (OOD) ainsi que la confidentialité du modèle appris final. Bien que l’apprentissage fédéré permette aux participants de contribuer leurs données locales sans les révéler, il se heurte à des problèmes de sécurité des données et de paiement précis des participants pour des contributions de données de qualité. Dans ce rapport, nous proposons également une conception et un flux de travail EOS Blockchain pour établir la sécurité des données, une nouvelle métrique basée sur les erreurs de validation sur laquelle nous qualifions les téléchargements de gradient pour le paiement, et implémentons un petit exemple de notre modèle d’apprentissage fédéré blockchain pour analyser ses performances.
16

Inductive biases for efficient information transfer in artificial networks

Kerg, Giancarlo 09 1900 (has links)
Malgré des progrès remarquables dans une grande variété de sujets, les réseaux de neurones éprouvent toujours des difficultés à exécuter certaines tâches simples pour lesquelles les humains excellent. Comme indiqué dans des travaux récents, nous émettons l'hypothèse que l'écart qualitatif entre l'apprentissage en profondeur actuel et l'intelligence humaine est le résultat de biais inductifs essentiels manquants. En d'autres termes, en identifiant certains de ces biais inductifs essentiels, nous améliorerons le transfert d'informations dans les réseaux artificiels, ainsi que certaines de leurs limitations actuelles les plus importantes sur un grand ensemble de tâches. Les limites sur lesquelles nous nous concentrerons dans cette thèse sont la généralisation systématique hors distribution et la capacité d'apprendre sur des échelles de temps extrêmement longues. Dans le premier article, nous nous concentrerons sur l'extension des réseaux de neurones récurrents (RNN) à contraintes spectrales et proposerons une nouvelle structure de connectivité basée sur la décomposition de Schur, en conservant les avantages de stabilité et la vitesse d'entraînement des RNN orthogonaux tout en améliorant l'expressivité pour les calculs complexes à court terme par des dynamiques transientes. Cela sert de première étape pour atténuer le problème du "exploding vanishing gradient" (EVGP). Dans le deuxième article, nous nous concentrerons sur les RNN avec une mémoire externe et un mécanisme d'auto-attention comme un moyen alternatif de résoudre le problème du EVGP. Ici, la contribution principale sera une analyse formelle sur la stabilité asymptotique du gradient, et nous identifierons la pertinence d'événements comme un ingrédient clé pour mettre à l'échelle les systèmes d'attention. Nous exploitons ensuite ces résultats théoriques pour fournir un nouveau mécanisme de dépistage de la pertinence, qui permet de concentrer l'auto-attention ainsi que de la mettre à l'échelle, tout en maintenant une bonne propagation du gradient sur de longues séquences. Enfin, dans le troisième article, nous distillons un ensemble minimal de biais inductifs pour les tâches cognitives purement relationnelles et identifions que la séparation des informations relationnelles des entrées sensorielles est un ingrédient inductif clé pour la généralisation OoD sur des entrées invisibles. Nous discutons en outre des extensions aux relations non-vues ainsi que des entrées avec des signaux parasites. / Despite remarkable advances in a wide variety of subjects, neural networks are still struggling on simple tasks humans excel at. As outlined in recent work, we hypothesize that the qualitative gap between current deep learning and human-level artificial intelligence is the result of missing essential inductive biases. In other words, by identifying some of these key inductive biases, we will improve information transfer in artificial networks, as well as improve on some of their current most important limitations on a wide range of tasks. The limitations we will focus on in this thesis are out-of-distribution systematic generalization and the ability to learn over extremely long-time scales. In the First Article, we will focus on extending spectrally constrained Recurrent Neural Networks (RNNs), and propose a novel connectivity structure based on the Schur decomposition, retaining the stability advantages and training speed of orthogonal RNNs while enhancing expressivity for short-term complex computations via transient dynamics. This serves as a first step in mitigating the Exploding Vanishing Gradient Problem (EVGP). In the Second Article, we will focus on memory augmented self-attention RNNs as an alternative way to tackling the Exploding Vanishing Gradient Problem (EVGP). Here the main contribution will be a formal analysis on asymptotic gradient stability, and we will identify event relevancy as a key ingredient to scale attention systems. We then leverage these theoretical results to provide a novel relevancy screening mechanism, which makes self-attention sparse and scalable, while maintaining good gradient propagation over long sequences. Finally, in the Third Article, we distill a minimal set of inductive biases for purely relational cognitive tasks, and identify that separating relational information from sensory input is a key inductive ingredient for OoD generalization on unseen inputs. We further discuss extensions to unseen relations as well as settings with spurious features.
17

Toward trustworthy deep learning : out-of-distribution generalization and few-shot learning

Gagnon-Audet, Jean-Christophe 04 1900 (has links)
L'intelligence artificielle est un domaine en pleine évolution. Au premier plan des percées récentes se retrouve des approches connues sous le nom d'apprentissage automatique. Cependant, bien que l'apprentissage automatique ait montré des performances remarquables dans des tâches telles que la reconnaissance et la génération d'images, la génération et la traduction de textes et le traitement de la parole, il est connu pour échouer silencieusement dans des conditions courantes. Cela est dû au fait que les algorithmes modernes héritent des biais des données utilisées pour les créer, ce qui conduit à des prédictions incorrectes lorsqu'ils rencontrent de nouvelles données différentes des données d'entraînement. Ce problème est connu sous le nom de défaillance hors-distribution. Cela rend l'intelligence artificielle moderne peu fiable et constitue un obstacle important à son déploiement sécuritaire et généralisé. Ignorer l'échec de généralisation hors-distribution de l'apprentissage automatique pourrait entraîner des situations mettant des vies en danger. Cette thèse vise à aborder cette question et propose des solutions pour assurer le déploiement sûr et fiable de modèles d'intelligence artificielle modernes. Nous présentons trois articles qui couvrent différentes directions pour résoudre l'échec de généralisation hors-distribution de l'apprentissage automatique. Le premier article propose une approche directe qui démontre une performance améliorée par rapport à l'état de l'art. Le deuxième article établie les bases de recherches futures en généralisation hors distribution dans les séries temporelles, tandis que le troisième article fournit une solution simple pour corriger les échecs de généralisation des grands modèles pré-entraînés lorsqu'entraîné sur tes tâches en aval. Ces articles apportent des contributions précieuses au domaine et fournissent des pistes prometteuses pour la recherche future en généralisation hors distribution. / Artificial Intelligence (AI) is a rapidly advancing field, with data-driven approaches known as machine learning, at the forefront of many recent breakthroughs. However, while machine learning have shown remarkable performance in tasks such as image recognition and generation, text generation and translation, and speech processing, they are known to silently fail under common conditions. This is because modern AI algorithms inherit biases from the data used to train them, leading to incorrect predictions when encountering new data that is different from the training data. This problem is known as distribution shift or out-of-distribution (OOD) failure. This causes modern AI to be untrustworthy and is a significant barrier to the safe widespread deployment of AI. Failing to address the OOD generalization failure of machine learning could result in situations that put lives in danger or make it impossible to deploy AI in any significant manner. This thesis aims to tackle this issue and proposes solutions to ensure the safe and reliable deployment of modern deep learning models. We present three papers that cover different directions in solving the OOD generalization failure of machine learning. The first paper proposes a direct approach that demonstrates improved performance over the state-of-the-art. The second paper lays the groundwork for future research in OOD generalization in time series, while the third paper provides a straightforward solution for fixing generalization failures of large pretrained models when finetuned on downstream tasks. These papers make valuable contributions to the field and provide promising avenues for future research in OOD generalization.
18

Toward causal representation and structure learning

Mansouri Tehrani, Sayed Mohammadamin 08 1900 (has links)
Dans les annales de l'Intelligence Artificielle (IA), la quête incessante pour émuler la cognition humaine dans les machines a sous-tendu l'évolution technologique, repoussant les limites du potentiel humain et des capacités de résolution de problèmes. L'intégration de l'IA a catalysé des progrès remarquables, pénétrant divers domaines et redéfinissant des industries. Cependant, un défi demeure imperturbable : l'obstacle de la généralisation hors de la distribution (OOD). Alors que l'IA triomphe avec des données familières, elle échoue avec des données en dehors de son domaine d'entraînement. En santé, en finance et au-delà, les limitations de l'IA entravent l'adaptation à des scénarios nouveaux. Cette lacune découle de l'écart entre les schémas appris et les caractéristiques causales et invariantes sous-jacentes, entravant l'adaptabilité à des scénarios inexplorés. Cette thèse franchit des étapes significatives pour aborder cette question en innovant et en exploitant des méthodes issues de l'apprentissage de structure causale et de représentation. Le parcours commence par un algorithme novateur d'apprentissage de structure, les ``Reusable Factor Graphs'', qui tire parti des biais inductifs issus de la causalité et de la cognition humaine pour une meilleure généralisation. Ensuite, en explorant l'apprentissage de représentation causale, nous découvrons des représentations désenchevêtrées centrées sur les objets en utilisant une supervision faible basée sur une connaissance partielle de la structure causale des données. Ces connaissances se conjuguent pour préconiser l'apprentissage conjoint de la structure causale et de la représentation. L'architecture proposée, les ``Reusable Slotwise Mechanisms'' (RSM), relie théorie et pratique, démontrant une promesse réelle à travers ses représentations centrées sur les objets et ses mécanismes causaux réutilisables. Cette fusion offre une solution potentielle pour surmonter les limitations de la généralisation OOD en IA. / In the annals of Artificial Intelligence (AI), an enduring quest to emulate human cognition in machines has underpinned technological evolution, driving the boundaries of human potential and problem-solving capabilities. The integration of AI has catalyzed remarkable progress, infiltrating various domains and redefining industries. Yet, a challenge remains unshaken: the hurdle of out-of-distribution (OOD) generalization. While AI triumphs with familiar data, it falters with data outside its training realm. In healthcare, finance, and beyond, AI's limitations hinder adaptation to novel scenarios. This deficiency arises from the gap between learned patterns and underlying causal and invariant features, hindering adaptability to uncharted scenarios. This thesis takes significant steps toward tackling this issue by innovating and leveraging methods from causal structure and representation learning. The journey begins with an innovative structure learning algorithm, Reusable Factor Graphs, leveraging inductive biases from causality and human cognition for improved generalization. Next, delving into causal representation learning, we uncover object-centric disentangled representations using weak supervision from partial knowledge of the causal structure of data. These insights synergize in advocating joint learning of causal structure and representation. The proposed Reusable Slotwise Mechanisms (RSM) architecture bridges theory and practice, demonstrating real-world promise through its object-centric representations and reusable causal mechanisms. This fusion offers a potential solution for tackling OOD generalization limitations in AI.

Page generated in 0.1194 seconds