• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 23
  • 9
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 71
  • 27
  • 22
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Estudo do receptor P2X7 nas classes neuronais do íleo de ratos submetidos à isquemia intestinal com reperfusão. / Study of the P2X7 receptor in neurons of the ileum of rats subjected to intestinal ischemia with reperfusion.

Kelly Palombit 28 June 2010 (has links)
Dor abdominal pode ser consequente a inúmeras causas, entre as várias possibilidades precisamos ficar atentos aos quadros de isquemia intestinal. No trato digestório a isquemia/reperfusão intestinal (I/R-i) acarreta alterações morfológicas nos neurônios entéricos. Este trabalho tem como objetivo analisar o comportamento das diferentes classes neuronais e do receptor P2X7 no plexo mioentérico do íleo de ratos Wistar submetidos à I/R-i. A isquemia intestinal foi obtida pela obstrução do fluxo sanguíneo das artérias ileais no período de 35 minutos, seguida pelos períodos de reperfusão de 6, 24, 72 horas e 1 semana. No grupo sham não houve a oclusão das artérias ileais. Os tecidos foram preparados por métodos imunohistoquímicos de duplas marcações do receptor P2X7 com a Óxido Nítrico Sintase neuronal (NOSn), calbindina (Calb), calretinina (Calr) e Acetilcolina Transferase (ChAT) e do receptor P2X7, da NOSn e da ChAT com o pan-neuronal anti-HuC/D. As análises qualitativas e quantitativas das contagens das duplas marcações, das densidades neuronais e da área dos perfis foram obtidas dos microscópios de fluorescência e de Confocal de Varredura à Laser. Os resultados qualitativos demonstraram diminuição da expressão do receptor P2X7 no grupo I/R-i de 24 horas e retorno da expressão nos grupos I/R-i de 72 horas e 1 semana. Os dados quantitativos demonstraram: a) os neurônios do plexo mioentérico foram imunorreativos ao receptor P2X7; b) não houve alterações significativas nas duplas marcações do receptor P2X7 com os neurônios NOSn-ir, Calr-ir, Calb-ir e ChAT-ir nos grupos sham e I/R-i; c) não houve alterações significativas nas duplas marcações do receptor P2X7, e dos neurônios NOSn-ir e ChAT-ir com o pan-neuronal anti-HuC/D nos grupos sham e I/R-i; d) houve diminuição nas densidades nos grupos I/R-i com 6, 24, 72 horas e 1 semana dos neurônios P2X7-ir, NOSn-ir, Calr-ir, Calb-ir, ChAT-ir e anti-HuC/D-ir quando comparados aos grupos sham; e) houve um aumento na área do perfil dos neurônios NOSn-ir nos grupos I/R-i de 6 e 24 horas, nos neurônios ChAT-ir houve um aumento no grupo I/R-i de 1 semana e nos neurônios Calr-ir houve uma diminuição no grupo I/R-i de 6 horas e um aumento no grupo I/R-i de 24 horas quando comparados aos grupos sham. O presente estudo demonstrou que a I/R-i está associada com a perda significativa de diferentes subpopulações de neurônios do plexo mioentérico acompanhada por diversas alterações morfológicas, o que pode acarretar problemas na motilidade intestinal. / Abdominal pain may be consequent to numerous causes, among the various possibilities need to be attentive to intestinal ischemia. In the digestive tract the intestinal ischemia-reperfusion (I/R-i) causes morphological changes in enteric neurons. The aim of the work was to analyze the behavior of different neurons and P2X7 receptor in the myenteric plexus of the ileum of rats subjected to I/R-i. Intestinal ischemia was obtained by the obstruction of blood flow in the ileal arteries period of 35 minutes followed by reperfusion periods of 6, 24, 72 hours and 1 week. In the sham group there was no occlusion of the ileal arteries. The tissues were prepared by immunohistochemical methods for double staining of P2X7 receptor with neuronal nitric oxide synthase (nNOS), calbindin, calretinin and acetylcholine transferase (ChAT) and P2X7 receptor, the nNOS and ChAT with pan-neuronal marker anti-HuC/D The qualitative and quantitative analysis of the counting of double staining, the neuronal density and the area of the cell body profile were obtained from fluorescence microscopy and confocal scanning laser. The qualitative results showed decreased expression of the P2X7 receptor in I/R-i for 24 hours group and return the expression in I/R-i for 72 hours and 1 week groups. The quantitative data showed: a) neurons in the myenteric plexus were immunoreactive for P2X7 receptor; b) no significant changes in the double staining of P2X7 receptor with nNOS, calretinin, calbindin and ChAT neurons in the sham and I/R-i groups; c) does not significant changes in the double staining of the P2X7 receptor, the nNOS and ChAT neurons with the pan-neuronal marker anti-HuC/D in sham and I/R-i groups; d) the densities of the P2X7 receptor, nNOS-IR, calretinin-IR, calbindin-IR, ChAT-IR and anti-HuC/D-IR neurons were decreased in I/R-i 6, 24, 72 hours and 1 week groups, when compared to sham group; e) the profile area was increased in nNOS-IR neurons in the I/R-i for 6 and 24 hours groups, ChAT-IR neurons in I/R-i 1 week group and in the calretinin-IR neurons there was a decrease in I/R-i 6 hours group and an increase in I/R-i for 24 hours group when compared to sham group. The present study demonstrated that I/R-i is associated with significant loss of different subpopulations of neurons in the myenteric plexus accompanied by several morphological changes, which can cause intestinal motility disorder.
62

Implication fonctionnelle du récepteur P2X7 dans les mécanismes neuroinflammatoires associés à la dépression : étude préclinique / Functional implication of PLX7 receptors in neuroinflammatory phenomena associates with depression : a preclinical study

Farooq, Rai Khalid 17 December 2012 (has links)
Le projet de cette thèse s'est attaché à caractériser le rôle de l'IL-1 beta et les récepteurs P2X7 dans la dépression. Les résultats suggèrent que chez les souris stressés et les perturbation comportementaux, l'activation microgliales et endocriniennes sont reversées par l'antagoniste des P2X7Rs. Ces résultats mettent en évidence que l'antagoniste des récepteurs P2X7 a des effets comportementaux et neuroendocriniens. / Research work of this thesis was aimed to characterize role of IL-1 beta and P2X7 receptors in depressive illness. Results suggest that i stressed mice the behavioral and neurobiochemical changes are reversed by use of P2X7R antagonist. It is an evidence of antidepressant of these compounds.
63

Caracterização dos receptores P2 em eosinófilos de ratos e do poro associado ao receptor P2X7

Alberto, Anael Viana Pinto January 2012 (has links)
Submitted by Alessandra Portugal (alessandradf@ioc.fiocruz.br) on 2013-09-20T15:33:03Z No. of bitstreams: 1 Anael Viana Pinto Alberto.pdf: 4150812 bytes, checksum: 9ce0a5d780533302dcc603ae65f510fe (MD5) / Made available in DSpace on 2013-09-20T15:33:03Z (GMT). No. of bitstreams: 1 Anael Viana Pinto Alberto.pdf: 4150812 bytes, checksum: 9ce0a5d780533302dcc603ae65f510fe (MD5) Previous issue date: 2012-10-31 / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil / ATP e outros nucleotídeos são liberados para o meio extracelular por vias reguladas ou pela perda da integridade de membrana. Uma vez fora da célula, esses compostos podem ativar receptores P2: P2X (receptores ionotrópicos) e P2Y (receptores acoplados a proteínas G). Além disso, O receptor P2X7 é um importante membro da família P2X, já que sua ativação pode levar a abertura de um poro membranar que permite a passagem de moléculas de até 900 Da. Os eosinófilos são as principais células efetoras em respostas alérgicas e estão associados com diversos processos fisiológicos e patológicos. Nesse trabalho investigamos a expressão de receptores P2 e suas funções em eosinófilos. Nesse contexto, nosso primeiro passo foi investigar a expressão e funcionalidade dos receptores P2X por patch clamping. Nossos resultados sugerem a presença de P2X1, de P2X2 e de P2X7. Em seguida, avaliamos por microfluorimetria a funcionalidade dos receptores P2Y, e verificamos com base na ordem de potência a possível presença de P2Y2, de P2Y4, de P2Y6 e de P2Y11. Além disso, confirmamos nossos dados por imunofluorescência. Realizamos também ensaios de migração in vitro e in vivo, para verificar se os nucleotídeos extracelulares poderiam atrair eosinófilos. O ATP foi capaz de induzir a migração dos eosinófilos, enquanto a suramina, um bloqueador P2, aboliu esse efeito, tanto in vitro, utilizando transwell, como in vivo, utilizando um modelo de pleurisia alérgica em ratos. Em seguida, avaliamos o possível papel da panexina-1 como poro associado ao receptor P2X7. Nesse trabalho utilizamos inibidores de hemicanais em experimentos de patch clamp e em ensaios de permeabilização de corante. Os resultados indicam que os inibidores de hemicanais não bloquearam a geração de corrente ou a captação de corante após a ativação do receptor P2X7 em macrófagos de ratos e camundongos. Demonstramos que eosinófilos de rato expressam receptores P2X e P2Y por imunofluorescência. Além disso, demonstramos que a ativação de receptores P2 pode aumentar a migração de eosinófilos in vitro e in vivo. Além disso, foi demonstrado que inibidores de panexina-1 não bloqueiam a captação do corante ou a corrente gerada pela ativação do receptor P2X7. Os nossos resultados demostraram que panexina-1 não é o poro associado ao receptor P2X7 em macrófagos / ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. . Additionally, P2X7 receptor is an important member of the P2X family of ionotropic receptor as its activation opens a non-selective pore allowing the passage of molecules up to 900 Da. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step were to investigate the expression and functionality of the P2X receptors by patch clamping, our results suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency suggests the presence of P2Y2, P2Y4, P2Y6 e P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did in vitro and in vivo migration assays to verify whether nucleotides could attract eosinophil. ATP increased migration of eosinophils, while suramin a P2 blocker abolished this effect in both in vitro, using trasnwell, and in vivo, using a model of rat allergic pleurisy. Next, we evaluated the putative role of pannexin-1 as the pore associated to the P2X7 receptor. We used hemichannels inhibitors in patch clamp and dye uptake experiments. The results indicate that they do not interfere with current generation or dye uptake after activation of P2X7R in rat and mouse macrophages. We have demonstrated that rat eosinophils express P2X and P2Y receptors by immunofluorescence. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo. Moreover, we demonstrated that specific inhibitors of pannexin-1 did not interfere with the dye uptake or current generated by the P2X7 activation. Our results showed that pannexin-1 is not the pore associated to the P2X7 receptor in macrophages.
64

Increasing Efficiency of Repetitive Electroacupuncture on Purine- and Acid-Induced Pain During a Three-Week Treatment Schedule

Li, Jie, Zhang, Ying, Illes, Peter, Tang, Yong, Rubini, Patrizia 30 March 2023 (has links)
Acupuncture (AP) is an important constituent of the therapeutic repertoire of traditional Chinese medicine and has been widely used to alleviate chronic painful conditions all over the world. We studied in rats the efficiency of electroacupuncture (EAP) applied to the Zusanli acupoint (ST36) as an analgesic treatment over a 3-week period of time on purine (α,β-methylene ATP, dibenzoyl-ATP)- and acid (pH 6.0 medium)-induced pain in the rat paw. The two ATP derivatives stimulated P2X3 and P2X7 receptors, respectively, while the slightly acidic medium stimulated the “acid-sensitive ion channel 3” (ASIC3). It was found that the P2X7 receptor and ASIC-mediated pain was counteracted by EAP with greater efficiency at the end than at the beginning of the treatment schedule, while the P2X3 receptor–mediated pain was not. Our findings have important clinical and theoretical consequences, among others, because they are difficult to reconcile with the assumption that AP is primarily due to the release of peripheral and central opioid peptides causing the well-known tolerance to their effects. In consequence, AP is a convenient therapeutic instrument to treat subacute and chronic pain.
65

Role of P2X7 Receptors in Immune Responses During Neurodegeneration

Oliveira-Giacomelli, Ágatha, Petiz, Lyvia Lintzmaier, Andrejew, Roberta, Turrini, Natalia, Silva, Jean Bezerra, Sack, Ulrich, Ulrich, Henning 27 March 2023 (has links)
P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson’s and Alzheimer’s disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases.
66

Contribution of Purinergic Receptors to Calcium Signaling in Salivary Gland

Bhattacharya, Sumit January 2012 (has links)
No description available.
67

Amyotrophic Lateral Sclerosis: mechanism behind mutant SOD toxicity and improving current therapeutic strategies

Dennys, Cassandra 01 January 2014 (has links)
Amyotrophic Lateral Sclerosis (ALS) is an always lethal motor neuron disease with unknown pathogenesis. Inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) have limited neuroprotection in some models of motor neuron degeneration. However the direct effect of Hsp90 inhibition on motor neurons is unknown. Here we show that Hsp90 inhibition induced motor neuron death through activation of the P2X7 receptor. Motor neuron death required phosphatase and tensein homolog (PTEN)-mediated inhibition of the PI3K/AKT pathway leading to Fas receptor activation and caspase dependent death. The relevance of Hsp90 for motor neuron survival was investigated in mutant Cu/Zn superoxide dismutase (SOD) transgenic animal models for ALS. Nitrated Hsp90, a posttranslational modification known to induce cell death (Franco, Ye et al. 2013), was present in motor neurons after intracellular release of zinc deficient (Zn, D83S) and the SOD in which copper binding site was genetically ablated (Q) but not after copper deficient (Cu) wild type SOD. Zn deficient and Q mutant SOD induced motor neuron death in a peroxynitrite mediated and copper dependent mechanism. Nitrated Hsp90 was not detected in the spinal cord of transgenic animals for ALS-mutant SOD animal models until disease onset. Increased nitrated Hsp90 concentrations correlated with disease progression. Addition of Zn or Q SOD to nontransgenic brain homogenate treated with peroxynitrite led to an increase level of nitrotyrosine in comparison to wild type controls. However, in the same samples there was a 2 to 10 time increase in Hsp90 nitration as compared to nitrotyrosine. The selective increase is likely due to the binding of Hsp90 to Zn deficient and Q SOD as oppose to wild type SOD. These results suggest that Hsp90 nitration facilitated by mutant SOD may cause motor neuron degeneration in ALS. Targeted inhibition of nitrated Hsp90 may be a novel therapeutic approach for ALS. An alternative therapeutic strategy is to target the production of survival factors by glial cells. Riluzole is the only FDA approved drug for the treatment of ALS and it shows a small but significant increase in patient lifespan. Our results show that acute riluzole treatment stimulated trophic factor production by astrocytes and Schwann cells. However long-term exposure reversed and even inhibited the production of trophic factors, an observation that may explain the modest increase in patient survival in clinical trials. Discontinuous riluzole treatment can maintain elevated trophic factor levels and prevent trophic factor reduction in spinal cords of nontransgenic animals. These results suggest that discontinuous riluzole administration may improve ALS patient survival. In summary, we demonstrated that Hsp90 has an essential function in the regulation of motor neuron survival. We have also shown that Hsp90 was nitrated in the presence of mutant SOD and was present during symptom onset and increases as disease progresses, which may explain the toxic gain of function of mutant SOD. Finally we demonstrate a biphasic effect of riluzole on trophic factor production and propose changes in administration to improve effects in ALS patients.
68

P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases

Illes, Peter 05 February 2024 (has links)
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
69

Regulation of Multiple Membrane Trafficking Pathways Stimulated by P2X7 Receptor Activation in Inflammatory Macrophages

Qu, Yan January 2009 (has links)
No description available.
70

Etude de nouveaux biomarqueurs de toxicité induite par des micropolluants (benzo(a)pyrène et phtalate de bis(2-ethylhexyle)) sur des modèles de placenta humain / New biomarkers of toxicity induced by micropollutants (benzo(a)pyrene and di(2-ethylhexyle)phthalate) on human placental models

Wakx, Anaïs 28 November 2014 (has links)
L’exposition prénatale à différents agents toxiques est généralement étudiée en considérant le placenta comme une barrière entre la mère et le fœtus ; nous le considérons en tant qu’organe cible des agents toxiques. Pour ce faire, nous avons sélectionné un modèle cellulaire de trophoblastes adapté aux études toxicologiques. En clinique, des pathologies de la grossesse sont associées à des modifications de la sécrétion de l’hormone placentaire lactogène hPL et de l’hormone gonadotrope chorionique hCG. Nos travaux in vitro ont permis de faire le lien entre une exposition à des micropolluants (le mono(2-ethylhexyl) phtalate, un perturbateur endocrinien, et le benzo(a)pyrene, un carcinogène) et ces observations cliniques. Les biomarqueurs de sécrétion hormonale (hPL et hCG hyperglycosylée) et de dégénérescence (activation du purinorécepteur P2X7) que nous avons identifiés permettent de détecter l’exposition et le risque suite à une exposition à des polluants. / Prenatal exposure to pollutants is commonly evaluated using placenta as a barrier between mother and fetus. Here, we consider placenta as a target organ for toxic agents. To achieve this, we selected a trophoblastic cell model, which is adapted to toxicological studies. In clinical studies, pregnancy pathologies are associated to changes in human placental lactogen (hPL) and human chorionic gonadotropin (hCG) secretions. Our in vitro work links exposure to micropollutants (mono(2-ethylhexyl)phthalate, an endocrine disruptor, and benzo(a)pyrene, a carcinogen) and clinical observations. We identified biomarkers of hormonal secretion (hPL and hyperglycosylated hCG) and degeneration (P2X7 receptor activation), which enable the evaluation of exposure and risk attached to exposure to pollutants.

Page generated in 0.0325 seconds