91 |
Simulations of one and two-phase flows in porous microstructures, from tomographic images of gas diffusion layers of proton exchange membrane fuel cells / Simulations des transports monophasiques et diphasiques dans des microstructures poreuses, à partir d’images tomographiques de couches de diffusion des gaz de piles à combustible à membrane échangeuse de protonsAgaesse, Tristan 10 November 2016 (has links)
L’hydrogène comme vecteur énergétique est une solution prometteuse pour réduire les émissions de gaz à effet de serre. En effet, l’hydrogène permet de stocker de grandes quantités d’énergie de façon totalement décarbonée. Pour favoriser l’utilisation à grande échelle de l’énergie hydrogène, il est essentiel de réduire le coût des piles à combustible et d‘augmenter leur durabilité et leurs performances. Les matériaux situés au coeur des piles à combustible ont un impact fort sur leurs performances et leur durabilité. Dans ce contexte, optimiser les matériaux est crucial. Nous développons dans cette thèse une démarche de modélisation des matériaux poreux des piles à combustible à membrane échangeuse de protons. Nous nous concentrons sur un matériau en particulier, celui intervenant dans les couches de diffusion des gaz (GDL). Les GDL ont de multiples fonctions, notamment de permettre en leur sein des transports simultanés de gaz, d’électrons, de chaleur et d’eau sous forme vapeur et liquide. Pour permettre ces transports, les GDL sont composées d’une phase fluide et d’une phase solide, elle-même constituée de plusieurs matériaux. La microstructure des GDL joue un rôle crucial sur les compromis entre les fonctions des GDL et l’efficacité des transports. Nous utilisons la tomographie aux rayons X pour imager la structure interne des GDL à l’échelle micrométrique, et développons des outils numériques pour simuler les transports sur les microstructures. Nous montrons que des simulations sur des images de grandes tailles sont réalisables en temps raisonnables. Nous validons les simulations de transports dans les GDL numériquement et expérimentalement. Le premier chapitre est consacré à la modélisation d’une expérience ex-situ d’injection d’eau dans les GDL. Nous développons un modèle réseau de pores extrait d’images tomographiques, pour simuler les écoulements d’eau dans les GDL en présence de forces capillaires. Nous validons les simulations réseaux de pores en utilisant des images tomographiques montrant l’eau liquide dans une GDL lors d’une expérience d’injection d’eau. Nous montrons que les courbes de pression capillaire peuvent être déterminées par simulations réseau de pores ou par simulations full morphology sur des images tomographiques. Le deuxième chapitre est consacré à la simulation des transports de gaz et d’électrons dans les GDL. Nous développons une méthode de simulation réseau de pores, consistant à décomposer l’image en régions de formes simples et à calibrer des modèles physiques sur ces régions. Cette approche à deux échelles est économe en temps de calcul. Nous comparons ces simulations à des simulations directes et à des formules analytiques. Une seconde partie concerne la comparaison des simulations directes à des mesures expérimentales. Nous montrons que les transports dans la phase fluide peuvent être déterminés avec fiabilité par simulation directe sur les images tomographiques, tandis que la simulation des transports dans la phase solide nécessite des informations non fournies par la tomographie aux rayons X. Le troisième chapitre est consacré à la modélisation de la condensation de l’eau dans les GDL. La vapeur d’eau produite par la réaction du dihydrogène avec le dioxygène traverse les GDL et condense dans les zones froides des GDL. Un modèle réseau de pores couplant diffusion de la vapeur d’eau, changement de phase et forces capillaires est développé. Nous étudions ce modèle sur des réseaux de pores générés virtuellement. Le dernier chapitre est consacré à l’étude de microstructures conçues virtuellement. Nous montrons qu’il est possible de produire virtuellement des microstructures proches de celles de matériaux réels, de chercher des microstructures optimales, et d’étudier des effets physiques par simulation sur matériaux virtuels. / Hydrogen as an energy carrier is a promising solution for reducing emissions of greenhouse gases. Indeed, hydrogen can be used to store large amounts of energy in a completely carbon-free way. To promote the widespread use of hydrogen energy, it is essential to reduce the cost of fuel cells and increase their durability and performance. The materials in the heart of fuel cells have a strong impact on their performance and durability. In this context, opti-mizing the materials is crucial. We develop in this thesis a modeling approach of porous materials in proton exchange membrane fuel cells. We focus on a specific material that takes part in the gas diffusion layers (GDL). The gas diffusion layers are crossed by gas, electron, heat and water fluxes. To allow such multiple transports, GDL are composed of a fluid phase and a solid phase, itself consisting of several materials. The microstructure of the GDL plays an essential role on the tradeoffs between transports. To model these tradeoffs, we use X-ray tomography to image the microstructure at micrometer scales, and develop digital tools to simulate the transport on tomographic images. We validate the simulations with experimental characterizations and tomographic images of GDL. Great care has been taken in the computer performance of the numerical tools, because tomographic images in three dimensions are a challenge because of the size of the data. The first chapter of this thesis is devoted to modeling of an ex-situ water injection experiment in a GDL. We develop a pore network model extracted from tomographic images, to simulate liquid water flows in GDL in the presence of ca-pillary forces. We validate pore networks simulations using tomographic images showing the liquid water in a GDL dur-ing a water injection experiment. We show that the capillary pressure curves can be determined reliably by pore net-work simulations or full morphology simulations on tomographic images. The second chapter is devoted to one-phase transport simulations in GDL. The first part of this chapter is devoted to the development of pore networks simulations for the diffusivity and the electrical conductivities of the GDL. We de-velop a two-scale simulation methodology, which consists of decomposing the image into elements having simple shapes, and to calibrate physical models on these elements. This method considers the effect of the microstructure on the physical transfers in an economical way, reducing the computing time. We compare the pore network simulations to direct simulation on microstructures and to analytical formulas. The second part is devoted to the comparison of transport simulations with experimental measurements. We show that the transports in the fluid phase can be deter-mined reliably by direct simulations on the tomographic images, while transports in the solid phase require additional information not provided by X-ray tomography. The third chapter is devoted to modeling of the condensation of water in the GDL. The steam produced by the reaction of the hydrogen with the oxygen passes through the GDL and condenses in the cold areas of the GDL. A pore network model coupling diffusion of steam, phase change and capillary forces is developed. We study this model on virtually generated pore networks. The last chapter is devoted to the study of virtually designed microstructures. Virtually exploring new materials designs has advantages over the experimental approach, in terms of speed, cost and control over the microstructures. We show that it is possible to virtually produce microstructures close to those of real materials, to seek optimal microstructures, and control the microstructure to better study some physical effects using simulation.
|
92 |
Modélisation mixte continue-réseau de pores des transferts diphasiques cathodiques d'une pile à combustible PEMFC / Mixed continuum-pore network modelling of the cathodic diphasic transfers of a fuel cell PEMFCBelgacem, Najib 14 April 2016 (has links)
Cette thèse présente une contribution à l’étude des transferts d’eau au sein des piles à combustible de type PEMFC, un aspect clé de cette technologie. Une approche de simulation numérique est développée en couplant un modèle de type réseau de pores dans la couche de diffusion (DM), une approche mixte continue –réseau de pore dans la couche microporeuse (MPL) et une modélisation par compartiments dans la couche active. L’approche développée prend en compte les transferts couplés de chaleur et d’eau via notamment la modélisation des phénomènes de changement de phase dans la DM et la MPL (évaporation et condensation). Dans une première partie, nous étudions le cas où l’eau migre dans l’assemblage MPL-DM directement en phase liquide. L’impact de la variation de pression dans la phase gazeuse sur la distribution de la phase liquide est étudié. L’épaisseur optimale de la MPL est également étudiée. Dans une seconde partie, nous étudions des situations où l’eau se forme par condensation dans la couche de diffusion. Nous étudions tout d’abord l’impact des propriétés de la couche de diffusion et de la MPL sur le diagramme de condensation. Ensuite nous analysons l’impact de la formation de l’eau liquide sur la distribution de courant locale. Enfin, l’impact de la mouillabilité sur les figures de condensation est étudié. Cette dernière étude est vue comme un premier pas vers l’étude des mécanismes de dégradation dans le régime de condensation. / This thesis is a contribution to the study water transfers within PEM fuel cell, a key element of this technology. A numerical simulation tool is developed coupling a pore network model in the gas diffusion layer (DM), a mixed continuum – pore network approach in the microporous layer (MPL) and a model by compartments in the catalyst layer. The developed approach takes into account the coupled heat and water transfers through the modeling of phase change phenomena (evaporation – condensation) in the DM and in the MPL. In the first part, we study the case where water migrates into the MPL-DM assembly directly in liquid phase. The impact of gas pressure variation on liquid phase distribution is studied. The optimal thickness of MPL is studied too. In the second part we study situations where liquid water essentially formed by condensation in the diffusion layer. We first study the impact of DM and MPL properties on the condensation diagram. Then we analyze the impact of liquid water formation on the local current density distribution. Finally the impact of wettability modifications on the liquid water patterns is studied. This last study is considered as a first step toward the study of degradation mechanisms in the condensation regime.
|
93 |
Propriedades físicas e hídricas de um latossolo em diferentes Sistemas de cultivo de longa duração / Physical and hydric properties of a rhodic eutrudox in Different long-term crop systemsOrtigara, Cícero 23 February 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The intensive use of agricultural soils caused a significant degradation of its chemical, physical,
biological and microbiological structure. Aiming to maintain or promote improvements in soil
quality, several techniques were developed, including the no-tillage system. The objective of
this study was to evaluate the effect of rotation plans and tillage system on physical and
hydraulic properties of a Rhodic Eutrudox in grain yield and development of soybean. The
study was carried out in a long-lived experiment, implemented in 1993, on a very clayey Rhodic
Eutrudox. The experiment presents a 2x3 factorial scheme (tillage system x rotation plans). The
tillage factor is composed of: I) conventional tillage; and II) no-tillage. The rotation plans factor
is composed of: I) soybean/wheat succession; II) rotation maize/lupine-soybean/oatssoybean/
wheat-soybean/wheat; and III) succession soybean/maize + brachiaria. Soil physical
and hydraulic parameters such as density, total porosity, macro and microporosity, infiltration
and hydraulic conductivity were evaluated. The plant parameters evaluated were root length
density, plant height, weight of one thousand grains and yield of soybean crop. The available
water fraction, hydraulic conductivity of unsaturated soil, frequency and volume of pores and
uniformity of distribution of pore classes were obtained from the fit of the Van Genuchten
model. The no-tillage compared to the conventional tillage provides greater stability in soybean
grain yield. The isolated assessment of basic soil physical attributes can provide limited and
erroneous information on the actual condition of its structure. Soil hydraulic conductivity, soil
water infiltration, and frequency of soil pore distribution were effective in explaining soybean
productivity more adequately. The soil pore continuity index proposed in this paper
corroborates the other soil attributes, measured and estimated, and can be used quickly and
efficiently to estimate soil pore continuity. / O uso intensivo dos solos agrícolas provocou acentuada degradação de sua estrutura química,
física, biológica e microbiológicas. Com o intuito de manter ou promover melhorias na
qualidade do solo diversas técnicas foram desenvolvidas, entre elas o sistema plantio direto. O
objetivo deste trabalho foi de avaliar o efeito de planos de rotação e do sistema de preparo do
solo nas propriedades físicas e hídricas de um Latossolo, na produtividade de grãos e no
desenvolvimento da cultura da soja. O estudo foi realizado em um experimento de longa
duração, implantado em 1993, em um Latossolo Vermelho Distroférrico muito argiloso. O
experimento apresenta esquema fatorial 2x3 (sistema de preparo do solo x planos de rotação).
O fator preparo do solo é composto por: I) Preparo convencional; e II) Plantio direto. O fator
planos de rotação é composto por: I) sucessão soja/trigo; II) rotação milho/tremoço-soja/aveiasoja/
trigo-soja/trigo; e III) sucessão soja/milho+brachiaria. Foram avaliados parâmetros físicos
e hídricos do solo como a densidade, porosidade total, macro e microporosidade, infiltração e
condutividade hidráulica. Os parâmetros de planta avaliados foram a densidade do
comprimento radicular, altura de plantas, peso de mil grãos e produtividade da cultura da soja.
A fração de água disponível, condutividade hidráulica de solo não saturado, a frequência e o
volume de poros e a uniformidade de distribuição de classes de poros foram obtidos do ajuste
do modelo de Van Genuchten. O sistema plantio direto em comparação ao sistema de preparo
convencional do solo proporciona maior estabilidade na produtividade de grãos de soja. A
avaliação isolada de atributos físicos básicos do solo pode fornecer informações limitadas e
errôneas da real condição de sua estrutura. A condutividade hidráulica do solo, infiltração de
água do solo, frequência e distribuição de poros do solo foram eficazes para explicar de forma
mais adequada a produtividade da soja. O índice de continuidade de poros do solo proposto
neste trabalho corrobora com os demais atributos do solo, medidos e estimados, podendo então
ser utilizado de forma rápida e eficiente para estimativa da continuidade de poros do solo.
|
94 |
Propriedades de vesículas unilamelares gigantes / Properties of Giant Unillamelar VesiclesDavid Domingues Pavanelli 01 September 2006 (has links)
A estabilidade de vesículas unilamelares gigantes (GUVs) foi monitorada através de microscopia de contraste de fase e de fluorescência, com o auxílio de gradientes de açúcares, do fluoróforo 1,3,6,8 pireno tetrasulfonato de sódio (PTS), do supressor de fluorescência cloreto de 1,1\'-dimetil-4,4\'-bipiridínio (MV) e do análogo lipídico fluorescente 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-il) amino) dodecanoil-1-hexadecanoil-sn-glicero-3-fosfocolina (NBD-PC). Uma grande variabilidade no comportamento individual das GUVs foi obtida no que tange a: (i) manutenção do meio interno; (ii) interações da bicamada lipídica com superfícies e; (iii) estruturas lipídicas conectadas à bicamada. Os resultados experimentais podem ser explicados pelo aparecimento de poros transientes formados pelo aumento da tensão da bicamada lipídica das GUVs. Após o processo de geração de tensão na bicamada, poros são abertos para relaxação desta tensão, com concomitante efluxo da solução internalizada pela GUV, devido a pressão de Laplace. Com a diminuição do volume interno, a tensão da bicamada é relaxada e o fechamento dos poros guiado pela tensão de linha, minimizando o componente energético de curvatura dos lipídios nas bordas do poro. O modelo de poros transientes explica resultados como troca de massa entre meios interno e externo das GUVs, possibilidade da existência de fluxos unilaterais em GUVs, transitoriedade dos poros, diâmetro limite dos poros e manutenção do meio interno em GUVs após abertura e fechamento de poros. / The stability of giant unilamellar vesicles (GUVs) has been monitored by phase contrast and fluorescence microscopy, using sugar gradients, sodium 1,3,6,8 pirene tetrasulfonate (PTS) as fluorescent probe, 1,1\'-dimethyl-4,4\'-bipiridinium chloride (MV) as fluorescence quencher and 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-il) amino) dodecanoyl-1-hexadecanoyl-sn-glicero-3-phosphocholine (NBD-PC) as fluorescent lipid analog. An accentuated variability in the individual behaviour of GUVs was observed as far as (i) stability of encapsulation; (ii) lipid bilayer-surface interactions and; (iii) lipid structures connected to GUVs are concerned. Experimental results can be explained by transient pores formation due to an increase in lipid bilayer tension. After processes of bilayer tension generation, pores are opened, while effluxes of GUVs internal solution are promoted by Laplace pressure. With the internal volume decrease, bilayer tension is relaxed and pores closure guided by line tension, minimizing the energetic component of lipid curvature in pore edges. Transient pores model explains experimental results such as mass exchange between internal and external GUVs media, GUVs effluxes, pores\' lifetime, pores diameter\'s limit and stability of GUV encapsulation after opening and closure of pores.
|
95 |
Multi-scale Modeling of Nanoparticle Transport in Porous Media : Pore Scale to Darcy ScaleSeetha, N January 2015 (has links) (PDF)
Accurate prediction of colloid deposition rates in porous media is essential in several applications. These include natural filtration of pathogenic microorganisms such as bacteria, viruses, and protozoa, transport and fate of colloid-associated transport of contaminants, deep bed and river bank filtration for water treatment, fate and transport of engineered nanoparticles released into the environment, and bioremediation of contaminated sites. Colloid transport in porous media is a multi-scale problem, with length scales spanning from the sub-pore scale, where the particle-soil interaction forces control the deposition, up to the Darcy scale, where the macroscopic equations governing particle transport are formulated. Colloid retention at the Darcy scale is due to the lumped effect of processes occurring at the pore scale. This requires the incorporation of the micro-scale physics into macroscopic models for a better understanding of colloid deposition in porous media. That can be achieved through pore-scale modeling and the subsequent upscaling to the Darcy scale. Colloid Filtration Theory (CFT), the most commonly used approach to describe colloid attachment onto the soil grains in the subsurface, is found to accurately predict the deposition rates of micron-sized particles under favorable conditions for deposition. But, CFT has been found to over predict particle deposition rates at low flow velocity conditions, typical of groundwater flow, and for nanoscale particles. Also, CFT is found to be inapplicable at typical environmental conditions, where conditions become unfavorable for deposition, due to factors not considered in CFT such as deposition in the secondary minimum of the interaction energy profile, grain surface roughness, surface charge heterogeneity of grains and colloids, and deposition at grain-to-grain contacts. To the best of our knowledge, mechanistic-based models for predicting colloid deposition rates under unfavorable conditions do not exist. Currently, fitting the colloid breakthrough curve (BTC), obtained from the laboratory column-or field-scale experiments, to the advection-dispersion-deposition model is used to estimate the values of deposition rate coefficients. Because of their small size (less than 100 nm), nanoparticles, a sub-class of colloids, may interact with the porous medium in a different way as compared to the larger colloids, resulting in different retention mechanisms for nanoparticles and micron-sized particles. This emphasizes the need to study nanoparticles separately from larger, micrometer-sized colloids to better understand nanoparticle retention mechanisms.
The work reported in this thesis contributes towards developing mathematical models to predict nanoparticle movement in porous media. A comprehensive mechanistic approach is employed by integrating pore-scale processes into Darcy-scale models through pore-network modeling to upscale nanoparticle transport in saturated porous media to the Darcy scale, and to develop correlation equations for the Darcy-scale deposition parameters in terms of various measurable parameters at Darcy scale. Further, a one-dimensional mathematical model to simulate the co-transport of viruses and colloids in partially saturated porous media is developed to understand the relative importance of various interactions on virus transport in porous media.
Pore-network modeling offers a valuable upscaling tool to express the macroscopic behavior by accounting for the relevant physics at the underlying pore scale. This is done by idealizing the pore space as an interconnected network of pore elements of different sizes and variably connected to each other, and simulating flow and transport through the network of pores, with the relevant physics implemented on a pore to pore basis (Raoof, 2011). By comparing the results of pore-network modeling with an appropriate mathematical model describing the macro-scale behavior, a relationship between the properties at the macro scale and those at the pore scale can be obtained. A three dimensional multi-directional pore-network model, PoreFlow, developed by Raoof et al. (2010, 2013) is employed in this thesis, which represents the porous medium as an interconnected network of cylindrical pore throats and spherical pore bodies, to upscale nanoparticle transport from pore scale to the Darcy scale. The first step in this procedure is to obtain relationships between adsorbed mass and aqueous mass for a single pore. A mathematical model is developed to simulate nanoparticle transport in a saturated cylindrical pore by solving the full transport equation, considering various processes such as advection, diffusion, hydrodynamic wall effects, and nanoparticle-collector surface interactions. The pore space is divided into three different regions: bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In both bulk and diffusion regions, nanoparticle transport is governed by advection and diffusion. However, in the diffusion region, the diffusion is significantly reduced due to hydrodynamic wall effects. Nanoparticle-collector interaction forces dominate the transport in the potential region where deposition occurs. A sensitivity analysis of the model indicates that nanoparticle transport and deposition in a pore is significantly affected by various pore-scale parameters such as the nanoparticle and collector surface potentials, ionic strength of the solution, flow velocity, pore radius, and nanoparticle radius. The model is found to be more sensitive to all parameters under favorable conditions. It is found that the secondary minimum plays an important role in the deposition of small as well as large nanoparticles, and its contribution is found to increase as the favorability of the surface for adsorption decreases.
Correlation equations for average deposition rate coefficients of nanoparticles in a saturated cylindrical pore under unfavorable conditions are developed as a function of nine pore-scale parameters: the pore radius, nanoparticle radius, mean flow velocity, solution ionic strength, viscosity, temperature, solution dielectric constant, and nanoparticle and collector surface potentials. Advection-diffusion equations for nanoparticle transport are prescribed for the bulk and diffusion regions, while the interaction between the diffusion and potential regions is included as a boundary condition. This interaction is modeled as a first-order reversible kinetic adsorption. The expressions for the mass transfer rate coefficients between the diffusion and the potential regions are derived in terms of the interaction energy profile between the nanoparticle and the collector. The resulting equations are solved numerically for a range of values of pore-scale parameters. The nanoparticle concentration profile obtained for the cylindrical pore is averaged over a moving averaging volume within the pore in order to get the 1-D concentration field. The latter is fitted to the 1-D advection-dispersion equation with an equilibrium or kinetic adsorption model to determine the values of the average deposition rate coefficients. Pore-scale simulations are performed for three values of Péclet number, Pe = 0.05, 5 and 50. It is found that under unfavorable conditions, the nanoparticle deposition at pore scale is best described by an equilibrium model at low Péclet numbers (Pe = 0.05), and by a kinetic model at high Péclet numbers (Pe = 50). But, at an intermediate Pe (e.g., near Pe = 5), both equilibrium and kinetic models fit the 1-D concentration field. Correlation equations for the pore-averaged nanoparticle deposition rate coefficients under unfavorable conditions are derived by performing a multiple-linear regression analysis between the estimated deposition rate coefficients for a single pore and various pore-scale parameters. The correlation equations, which follow a power law relationship with nine pore-scale parameters, are found to be consistent with the column-scale and pore-scale experimental results, and qualitatively agree with CFT.
Nanoparticle transport is upscaled from pore to the Darcy scale in saturated porous media by incorporating the correlations equations for the pore-averaged deposition rate coefficients of nanoparticles in a cylindrical pore into a multi-directional pore-network model, PoreFlow (Raoof et al., 2013). Pore-network model simulations are performed for a range of parameter values, and nanoparticle BTCs are obtained from the pore-network model. Those curves are then modeled using 1-D advection-dispersion equation with a two-site first-order reversible deposition, with terms accounting for both equilibrium and kinetic sorption. Kinetic sorption is found to become important as the favorability of the surface for deposition decreases. Correlation equations for the Darcy¬scale deposition rate coefficients under unfavorable conditions are developed as a function of various measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials on the nanoparticle and grain surface. The correlation equations are found to be consistent with the observed trends from the column experiments available in the literature, and are in agreement with CFT for all parameters, except for the mean pore water velocity and nanoparticle radius. The Darcy-scale correlation equations contain multipliers whose values for a given set of experimental conditions need to be determined by comparing the values of the deposition rate coefficients predicted by the correlation equations against the estimated values of Darcy-scale deposition parameters obtained by fitting the BTCs from column or field experiments with 1-D advection-dispersion-deposition model. They account for the effect of factors not considered in this study, such as the physical and chemical heterogeneity of the grain surface and nanoparticles, flow stagnation points, grain-to-grain contacts, etc.
Colloids are abundant in the subsurface and have been observed to interact with a variety of contaminants, including viruses, thereby significantly influencing their transport. A mathematical model is developed to simulate the co-transport of viruses and colloids in partially saturated porous media under steady state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. It is assumed that colloid transport is not affected by the presence of attached viruses on its surface, and hence, colloid transport is decoupled from virus transport. The governing equations are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Chrysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. The model results are found to be in good agreement with the observed BTCs under both saturated and unsaturated conditions.
Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids. The virus retention in porous media in the presence of colloids is greater under unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWI. A sensitivity analysis of the model to various parameters showed that virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses, and has a significant effect on all parts of the BTC. The free and the total mobile virus BTCs are mainly influenced by parameters describing virus attachment to the AWI, virus interactions with mobile and immobile colloids, virus attachment to solid-water interface (SWI), and colloid interactions with SWI and AWI. The virus BTC is relatively insensitive to parameters describing the maximum adsorption capacity of the AWI for colloids, inlet colloid concentration, virus detachment rate coefficient from the SWI, maximum adsorption capacity of the AWI for viruses, and inlet virus concentration.
|
96 |
Caractérisation des propriétés fluidiques des couches de diffusion des piles à combustible PEMFC par une approche numérique de type réseaux de pores et par une analyse d’images issues de la tomographie X / Study of transport properties and two-phase flow in the Gas Diffusion Layer of Fuel Cells (PEMFCs) using a pore network representation and numerical images obtained from tomography XCeballos, Loïc 25 January 2011 (has links)
Cette thèse est consacrée à l'étude des propriétés des transports diphasiques au sein des couches de diffusions (Gas Diffusion Layer = GDL) des piles à combustible PEMFC (Proton Exchange Membrane Fuel Cells). La GDL est faite d'une structure fibreuse (dont l'épaisseur est de quelques centaines de micromètres) traitée généralement avec une matière hydrophobe. Des images numériques de la GDL réelle obtenues par tomographie X sont d'abord analysées afin d'étudier des propriétés telles que la porosité, la perméabilité, ou le tenseur de diffusion. L'écrasement de la GDL est ensuite simulé en utilisant un algorithme comprimant les fibres dans un plan transversal. Les transports diphasiques (invasion quasi statique d'eau liquide) sont modélisés dans des réseaux de pores, milieux représentatifs de l'espace poreux de la GDL, en relation avec le problème de la gestion de l'eau dans les piles PEMFC. Deux algorithmes d'invasion, dénommés algorithmes séquentiel et cinétique, sont développés et comparés pour analyser les distributions de phases au sein des GDL. Un point clé est que l'eau rentre dans la couche poreuse par divers points d'injection indépendants, conduisant à la possibilité de multiples points de percée. Des expériences sur un système microfluidique sont conduites pour valider les algorithmes utilisés. Une étude statistique est menée pour caractériser le nombre de points de percée, les profils de saturation, l'accès au gaz, le transport diffusif, de même que l'influence du piégeage et de la mouillabilité mixte. / This thesis is devoted to the study of transport properties and two-phase flow in the Gas Diffusion Layer (GDL) of Proton Exchange Membrane Fuel Cells (PEMFC). A GDL is a thin fibrous structure (a few hundreds μm thick) treated generally with a hydrophobic agent. Numerical images obtained from X-ray computed tomography X are first exploited to study properties such as the porosity, permeability and diffusion tensors of a real GDL microstructure. The effect of GDL compression is also investigated using an algorithm mimicking the compression in GDL through plane direction. Then two phase flow (quasi-static water invasion) is studied in relation with the water management problem in PEMFC, using a structured pore network representation of the pore space. Two invasion algorithms, referred to as the sequential and the kinetic algorithm respectively, are developed and compared to study the fluid distributions within the GDL. A key point is that water enters the porous layer through multiple independent inlet injection points, leading to the possibility of many breakthrough points. Experiments are conducted on a microfluidic device to validate the algorithms. A numerical statistical study is performed to characterize the breakthrough point statistics, saturation profiles, gas access, diffusion transport as well as the influence of trapping and mixed wettability.
|
97 |
Implication of the Nup133 subunit of nuclear pores in cell division and differentiation : partners and mechanisms. / Implication de la nucléoporine Nup133 dans la division et la différentiation cellulaire : partenaires et mécanismes.Berto, Alessandro 11 December 2017 (has links)
Les complexes des pores nucléaires (NPCs) sont des assemblages protéiques ancrés dans l’enveloppe nucléaire (EN) qui permettent et régulent les échanges entre le cytoplasme et le noyau. Au-delà de leur fonction de transport, plusieurs sous unité des NPCs (les nucléoporines, Nups) jouent un rôle important dans d’autres processus cellulaire tels que la division cellulaire et la différenciation. Le complexe-Y, composé de 9 Nups distincte, dont Nup133, représente une sous unité structurale des NPCs. Cependant, une fraction de ce complexe est localisée aux kinétochores (KTs) durant la mitose, où il est requis pour la ségrégation des chromosomes. Cette localisation aux KTs dépend du complexe Ndc80 mais également de Cenp-F. Par ailleurs, l’interaction Nup133/Cenp-F s'effectue aussi au niveau de l'EN en prophase, ce qui permet le recrutement de la dynéine, étape requise pour l’ancrage des centrosomes à l’EN dans les cellules HeLa et pour la migration du noyau vers le centrosome dans les progéniteurs neuronaux de cerveau de rat. Des études développementales chez la souris ont précédemment identifié le mutant merm qui meurt en milieu de gestation (E10.5). Bien que la mutation merm entraine l’absence de Nup133, la prolifération des cellules souches embryonnaires (mESCs) dérivées de blastocystes merm (Nup133-/-) n’est pas altérée. Cependant l’absence de Nup133 altère la différenciation des mESCs, notamment en neurones post-mitotique. Ce projet de thèse visait à comprendre les mécanismes moléculaires par lesquels Nup133 contribue à la division et la différenciation cellulaire. Afin de caractériser le phénotype des mESCs Nup133-/-, nous avons utilisé deux protocoles de différenciation in vitro, vers une voie neuroectodermale ou mésoendodermale. Cette étude a montré que le nombre de cellules est fortement diminué chez le mutant Nup133-/- comparé aux cellules contrôles lors de la différenciation des mESCs. Cependant les mESCs Nup133-/- qui survivent montrent, comme les mESCs contrôles, une diminution de l’expression des marqueurs de pluripotence et une augmentation des marqueurs de différentiation. L’analyse par cytométrie de flux n’a pas révélé d'altération majeure dans la progression du cycle cellulaire mais à mis en évidence une augmentation de la mort cellulaire lors de la différenciation des mESCs Nup133-/-. Afin de déterminer les domaines de Nup133 requis pour la différenciation des mESCs, nous avons développé une stratégie de sauvetage en établissant des lignées mESCS Nup133-/- qui expriment de manière stable GFP-Nup133, différentes délétions de Nup133 qui n’altèrent pas sa localisation au NPCs (GFP-Nup133DN, DMid, et DC) ou la GFP seule comme contrôle. Des études fonctionnelles ont indiqué que le domaine N-ter (NTD) de Nup133 est requis pour la différenciation des mESCs.Le seul partenaire identifié de Nup133-NTD étant Cenp-F, j’ai décidé de déterminer si l’interaction Nup133/Cenp-F jouait un rôle dans la différenciation des mESCs. En collaboration avec l’équipe de R. Guerois, nous avons simulé in silico l’interaction de Nup133-NTD avec un peptide de Cenp-F que nous avions identifié dans des cribles en double hybride. Cette modélisaton nous a permis de concevoir des mutants affectant la surface d’interaction Nup133/Cenp-F. Nous avons montré que ces mutations empêchent la localisation de Cenp-F à l’EN sans altérer sa présence aux KTs. J’ai également utilisé la stratégie de sauvetage décrite plus haut, pour étudier un mutant de Nup133 qui empêche son interaction avec Cenp-F. Cette étude a montré que l’interaction Nup133/Cenp-F n'est pas requise pour la différenciation in vitro des mESCs. L’étude de Cenp-F a été complétée par la caractérisation d’une mutation de Cenp_F qui affecte sa localisation aux KTs. Nous avons montré que cette mutation altère l’interaction entre Cenp-F et Bub1 mais sans affecter celle avec Nup133. Cette étude a ainsi permis d'identifier Bub1 comme un partenaire direct de Cenp-F requis pour son ancrage aux KTs. / Nuclear pores complexes (NPCs) are macromolecular assemblies anchored in the nuclear envelope (NE) providing the gates that allow and regulate all exchanges between the nucleus and the cytoplasm. Beyond their function in transport, several NPC subunits, the nucleoporins (Nups), have been demonstrated to also play important roles in other cellular processes including cell division and differentiation.The Y-complex, composed of 9 distinct Nups, including Nup133, represents a major structural subunit stably bound to both the cytoplasmic and nuclear faces of the NPCs. Beyond its structural role at nuclear pores, the Y-complex localizes at kinetochores in mitosis, where it is required for chromosome segregation. This kinetochores localization relies on the Ndc80 complex, but also on Nup133/Cenp-F interaction. The Nup133/Cenp-F interaction also contributes to the recruitment of dynein to the NE, a process that is required for the correct centrosomes tethering at the NE in prophase HeLa and for the migration of the nucleus towards the centrosomes prior to mitotic entry in rat brain progenitor cells.Developmental studies previously identified the mouse merm mutant that dies in midgestation (E10.5). In collaboration with the team of E. Lacy, the team of V. Doye showed that the merm mutation leads to the absence of Nup133. Importantly this study further revealed that self-renewal is not impaired in embryonic stem cells (mESCs) derived from merm (Nup133-/-) blastocyst. However, the lack of Nup133 impairs mESC differentiation into postmitotic neurons. How Nup133 contributes to ESCs differentiation remains however unknown.This PhD project aimed at understanding the cellular mechanisms explaining Nup133 contribution to cell division and differentiation.To characterize Nup133-/- mESCs differentiation phenotype, we used two distinct in vitro differentiation protocols, towards either neuroectodermal or mesoendodermal fate. This study revealed that cell number was strongly decreased in Nup133-/- relative to WT in mESC differentiation. However, the few Nup133-/- mESCs that survived displayed, as WT mESCs, a decreased expression of pluripotency markers and acquired differentiated state based on marker expression. FACS analyses did not reveal any major alteration of cell cycle progression but showed increased cell death upon differentiation.To determine which domain of Nup133 is critical for mESC differentiation, we developed a “rescue strategy” using Nup133 alleles deleted for structurally defined domains. Therefore, we established Nup133-/- mESC lines stably expressing GFP-Nup133, GFP-Nup13-ΔN, different ΔC-ter domain (that did not impair the binding of Nup133 to the NPC) or GFP alone as control. Functional studies indicated that while full length and C-ter deleted Nup133 rescue Nup133-/- ESCs defect in differentiation, Nup133-ΔN does not.The only identified partner of Nup133-NTD is Cenp-F. In view of the role of Nup133-NTD in mESC differentiation, I decided to determine if Nup133/Cenp-F interaction contributes to mESC differentiation. In collaboration with R. Guerois' team we simulated in silico the interaction of Nup133-NTD with a short peptide of Cenp-F that we previously identified using yeast-2-hybrid (Y2H) screens. We could thereby design mutants affecting Nup133/Cenp-F contact and show that they prevent Cenp-F localization to the nuclear envelope without altering its kinetochore localization. I then used the “rescue strategy” described above to study a Nup133 mutant specifically impairing its interaction with Cenp-F. This analysis revealed that Nup133/Cenp-F interaction is dispensable for in vitro mESC differentiation. This study on Cenp-F was completed by the characterization of a mutation within an adjacent leucine zipper affecting Cenp-F targeting to kinetochores. We evidenced that this mutation impairs Cenp-F interaction with Bub1 but not with Nup133, identifying Bub1 as a direct kinetochore tether of Cenp-F.
|
98 |
Deciphering mRNP – nuclear pore interactions : study of basket protein dynamics in budding yeastBensidoun, Pierre 07 1900 (has links)
The export of mRNAs from the nucleus to the cytoplasm is one of many steps along the gene expression pathway and is fundamental for mRNAs to meet with ribosomes for translation in the cytoplasm. Exchanges between nucleus and cytoplasm occur through the nuclear pore complex (NPC), which is a large multi-protein complex embedded in the nuclear membrane and assembled by 30 different proteins the nucleoporins. The nucleoplasmic side of the pore is believed to orchestrate many fundamental nuclear processes. Indeed, a growing body of evidence suggests that the nuclear pore is involved in a broad range of activities including modulation of DNA topology, DNA repair, epigenetic regulation of gene expression, and selective access to exporting molecules. The structural component required for orchestrating those nucleoplasmic functions is the basket, a ∼60- to 80-nm-long structure protruding into the nucleoplasm. The consensus view depicts the basket as a structure assembled by filamentous proteins, TPR (Translocated Promoter Region protein) in humans and by its two paralogues Mlp1 and Mlp2 (myosin-like proteins) in yeast, converging into a distal ring.
In the first part of this thesis, we characterized the motion of specific mRNAs at the vicinity of the nuclear periphery. We observed that transcripts scan along the nuclear envelope, likely to find a nuclear pore to be exported. We also showed the scanning behavior was affected upon Mlp1 deletion or truncation as well as upon mutation of the nuclear poly(A) binding protein Nab2. These observations indicated that Mlp1 and hence baskets, as well as specific RNA binding proteins, facilitate the interaction of mRNA with the nuclear periphery.
While the canonical structure of the NPC is well established, our understanding of the conditions and factors contributing to the assembly of a basket, as well as the stoichiometry of its components, remains incomplete. Although basket proteins have been implicated in the regulation of gene expression through gene anchoring to the nuclear periphery and in mRNA scanning before export, how this is mediated by Mlp1/2 is poorly understood. Moreover, the dynamics of basket proteins in yeast seem to obey different rules than those of other nucleoporins as their turnover at the pore is faster than any other NPC components. Furthermore, it has been observed that during heat shock Mlp1 and Mlp2 dissociate from nuclear pores and form intra-nuclear granules,
sequestering mRNAs and RNA export factors. Yet the mechanism for the formation of these granules or their role during heat shock is poorly understood. In yeast, the nuclear baskets are not associated with all NPCs, as no baskets assemble on the pores adjacent to the nucleolus. Yet, how cells establish these basket-less pores and whether they represent specialized nuclear pores with different functions from basket-containing pores is still unknown.
To understand the dynamics of basket assembly and the biological relevance of establishing distinct sets of pores, we dissected the biological processes leading to the formation of baskets. In addition, to highlight potential functional differences between the two types of pores, we identified the interactors of nuclear basket-containing and nucleolar basket-less pores. We showed that assembling a basket is not a default mode for a pore in the nucleoplasm and that active mRNA processing is required to maintain baskets integrity. While mRNA can be found associated with both types of pores, our results suggest that export kinetics may be different on basket-containing and basket-less pores.
The eukaryotes organize their nucleus in discrete functional regions and the nuclear envelope has been envisioned as an organelle by and of itself. Our analyzes indicate that mRNAs and Mlp1 participate in an additional degree of nuclear compartmentalization by enabling the formation of a dynamic structure: the basket. Overall my project sheds new light on the nuclear organization and highlights the surprising entanglement between mRNA export and NPC plasticity. / L'exportation des ARN messagers du noyau vers le cytoplasme est l'une des nombreuses
étapes de la voie d'expression des gènes et est fondamentale pour que les ARNm rencontrent les
ribosomes pour être traduits dans le cytoplasme. Les échanges entre le noyau et le cytoplasme se
font par l'intermédiaire du complexe du pore nucléaire, qui est un grand complexe multiprotéique
enchâssé dans la membrane nucléaire et assemblé par 30 protéines différentes, les nucléoporines.
Le versant nucléoplasmique du pore orchestre de nombreux processus nucléaires fondamentaux.
En effet, un nombre croissant d’études suggère que le pore nucléaire est impliqué dans un large
éventail d'activités, notamment la modulation de la topologie de l'ADN, la réparation de l'ADN, la
régulation épigénétique de l'expression des gènes et l'accès sélectif aux molécules candidates à
l’export. Le composant structurel nécessaire pour orchestrer ces fonctions nucléoplasmiques est
appelé le panier une structure de ∼60 à 80 nm de long faisant saillie dans le nucléoplasme. Une
vision consensuelle dépeint le panier comme une structure assemblée par des protéines
filamenteuses convergeant en un anneau distal, TPR (Translocated Promoter Region protein) chez
l'homme et par ses deux paralogues Mlp1 et Mlp2 (myosin-like proteins) chez la levure.
Dans la première partie de cette thèse, nous avons caractérisé le mouvement d'ARNm
spécifiques au voisinage de la périphérie nucléaire. Nous avons observé que les transcrits scannent
l'enveloppe nucléaire, probablement pour trouver un pore nucléaire afin d'être exportés. Nous
avons également montré que ce comportement était affecté par la délétion ou la troncation de
Mlp1 ainsi que par la mutation de la protéine de liaison aux queues poly(A) Nab2. Ces observations
indiquent que Mlp1 et donc les paniers, ainsi que des protéines liant l’ARN, facilitent l'interaction
des ARNm avec la périphérie nucléaire.
Alors que la structure canonique du pore nucléaire est bien établie, notre compréhension
des conditions et des facteurs contribuant à l'assemblage du panier, ainsi que de la stoechiométrie
de ses composants, reste incomplète. Bien que les protéines du panier soient impliquées dans la
régulation de l'expression des gènes par l'ancrage des gènes à la périphérie nucléaire et dans le
recrutement des ARNm avant leur export, la manière dont le panier intervient dans ce processus
est mal comprise. De plus, la dynamique des protéines du panier chez la levure semble obéir à des
6
règles différentes de celles des autres nucléoporines, car leur renouvellement (turn over) au niveau
du pore est plus rapide que celui des autres composants du NPC. De plus, il a été observé que lors
d'un choc thermique, Mlp1 et Mlp2 se dissocient des pores nucléaires et forment des granules
intra-nucléaires, séquestrant les ARNm et les facteurs d'exportation d'ARN. Pourtant, le
mécanisme de formation de ces granules ou leur rôle pendant le choc thermique est mal compris.
Chez la levure, le panier nucléaire n'est pas associé à tous les pores nucléaires, et les paniers sont
absents des pores adjacents au nucléole. La manière dont les cellules établissent ces pores sans
paniers et s'ils représentent des pores nucléaires spécialisés ayant des fonctions différentes des
pores contenant des corbeilles n’est pas connue.
Pour comprendre la dynamique de l'assemblage des paniers et la pertinence biologique de
former de deux types de pores distincts, nous avons disséqué les processus biologiques menant à
la formation des paniers. De plus, afin de mettre en évidence les différences fonctionnelles
potentielles entre les deux types de pores nous avons étudié les protéines associées aux pores
contenant un panier nucléaire et des pores sans panier. Nous avons montré que l'assemblage d'un
panier n'est pas un mode par défaut pour un pore dans le nucléoplasme et que la formation et la
maturation des ARNm est nécessaire pour maintenir l'intégrité des paniers. Alors que l'ARNm peut
être trouvé associé aux deux types de pores, nos résultats suggèrent que la cinétique d’export peut
être différente sur les pores avec et sans panier.
Les eucaryotes organisent leur noyau en régions fonctionnelles discrètes et l'enveloppe
nucléaire a été envisagée comme pouvant être une organelle à part entière. Nos analyses
indiquent que les ARNm et Mlp1 participent à un degré supplémentaire de compartimentation
nucléaire en permettant la formation d'une structure dynamique : le panier. Mon projet apporte
un nouvel éclairage sur l'organisation des compartiments nucléaire et met en évidence l'intrication
surprenante entre l'export des ARNm et la plasticité des pores nucléaires.
|
99 |
Patterned Well-Ordered Mesoporous Silica Films for Device FabricationCrosby, Todd A 01 January 2009 (has links) (PDF)
Developing effective methods of generating thin metal oxide films are important for sensing and separations applications. An obstacle to device fabrication is controlling the size and spatial orientation of domain level pores while retaining the ability to generate arbitrary device level patterns. Well-ordered hexagonally packed cylindrical pores were created by taking advantage of block copolymer self-assembly followed by selective condensation of silica precursors using supercritical carbon dioxide as the solvent. It was possible to control the pore size by choosing PEO-PPO-PEO (Pluronic® series) triblock copolymers of differing molecular weights.
These processes were then incorporated with conventional lithographic techniques to generate patterns on the device scale. The first route involves replacement of the organic acid catalyst with a photoacid generator that restricts acid formation by masking pre-determined regions then exposing to UV light. The second route is similar except that addition of a cross-linking agent limits acid diffusion while reversing the tone of the final pattern. The third route avoids acid diffusion altogether and generates the pattern through reactive ion etching through a sacrificial photoresist. A completely different fourth route was taken and nanoimprint lithography was used to generate sub-micron patterns with alternate block copolymers.
The feasibility of the preliminary devices generated in this thesis has been examined through particle diffusion experiments. Samples were soaked in a fluorescent dye then exposed to multiple sizes of gold nanoparticles. Fluorescence quenching was then monitored to determine pore accessibility.
|
100 |
Microstructural and chemical behaviour of irradiated graphite waste under repository conditionsHagos, Bereket Abrha January 2013 (has links)
A procedure to evaluate the leaching properties of radionuclides from irradiated graphite waste has been developed by combining ANSI 16.1 (USA) and NEN 7345 (Netherlands) standardised diffusion leaching techniques. The ANSI 16.1 standard has been followed to the acquire the leachates and to determine the leach rate/ diffusion coefficient and NEN 7345 standard technique has been used to determine the diffusion mechanism of radionuclides. The investigation employs simulated Drigg groundwater as a leachant using semi-dynamic technique for the production of leachate specimens. From gamma spectroscopy analysis the principal radionuclides present in terms of activity were 60Co, 137Cs, 134Cs, 155Eu, 133Ba and 46Sc. The dominant radionuclides are 60Co, 134Cs and 133Ba which together account for about 91 % of the total activity. The 91 % can be broken down into 73.4 % 60Co, 9.1 % 134Cs and 8.1 % 133Ba. Analysis of total beta and total beta without tritium activity release from Magnox graphite was measured using liquid scintillating counting. Preliminary results show that there is an initial high release of activity and decreases when the leaching period increases. This may be due to the depletion of contaminants which were absorbed by the internal pore networks and the surface. During the leaching test approximately 275.33 ± 18.20 Bq of 3H and 106.26 ± 7.01 Bq of 14C was released into the leachant within 91 days. Irradiation induced damages to the nuclear graphite crystal structure have been shown to cause disruption of the bonding across the basal planes. Moreover, the closures of Mrozowski cracks have been observed in nuclear graphite, the bulk property are governed by the porosity, in particular, at the nanometre scale. Therefore, knowledge of the crystallite structure and porosity distribution is very important; as it will assist in understand the affects of irradiated damage and location and the mechanism of the leaching of radionuclides. The work reported herein contributed several key findings to the international work on graphite leaching to offer guidance leading toward obtaining leaching data in the future: (a) the effective diffusion coefficient for 14C from graphite waste has been determined. The diffusion process for 14C has two stages resulting two different values of diffusion coefficient, i.e., for the fast and slow components; (b) the controlling leaching mechanism for 3H radionuclide from graphite is shown to be surface wash–off; and for that of 14C radionuclide the initial controlling leaching mechanism is surface wash-off following by diffusion which is the major transport mechanism ; (c) The weight loss originates from the open pore structure which has been opened up by radiolytic oxidation; at the higher weight losses much of the closed porosity in the graphite has been opened. The investigation indicates that weigh loss has a major influence on the leaching of elements from the irradiated graphite; and (d) the analysis of the pores in nuclear graphite can be categorised into three types. These three types of pores are: (1) small pores narrow which are slit-shaped pores in the binder phase or matrix, (2) gas evolution pores or gas entrapment pores within the binder phase or matrix and (3) lenticular pores which are large cracks within the filler particles. It is shown in this thesis that by using tomography to study the morphology of the different pores coupled with the distribution of impurities an understanding of the role of porosity in leaching is possible.
|
Page generated in 0.0358 seconds