• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 811
  • 219
  • 74
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 1116
  • 522
  • 253
  • 164
  • 129
  • 122
  • 104
  • 101
  • 91
  • 88
  • 76
  • 69
  • 68
  • 67
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Study of the physical basis of pressure effects on proteins using model ankyrin repeat constructs / Etude des bases physiques des effets de la pression sur les protéines par l'utilisation de protéines modèles à répétitions de motifs Ankyrine

Rouget, Jean-Baptiste 13 December 2010 (has links)
Le dépliement thermique et chimique est raisonnablement compris, mais pas les effets déstabilisants de la pression. Dans une tentative de caractérisation des facteurs à la base des effets de la pression sur les protéines, nous avons étudié le dépliement sous pression d'une protéine modulaire, le domaine ankyrine du récepteur Notch (Nank1-7*), ainsi que plusieurs mutants en nombre de motifs. Nos expériences montrent un dépliement à deux états sous pression. La dépendance à la température des sauts de pression a montré qu'à faibles températures l'ensemble d'état de transition(TSE) est proche en volume de l'état replié alors que son énergie est proche de celle de l'état déplié,ce qui est significatif d'une déshydratation importante de la barrière énergétique, et a montré que l'augmentation de la température conduit à un TSE plus grand en volume que l'état replié. Ce comportement révèle une grande plasticité du TSE de Nank1-7*. L'étude des mutants (délétion demotifs) nous a montré que le ΔV n'est déterminé ni par l'hydratation des liaisons peptidiques ni par l'hydratation différentielle des acides aminés, mais par l'existence de vides internes exclus du solvant. Seule une petite fraction des cavités est déterminante pour le ΔV, celles qui ne sont pas significativement solvatées dans les coeurs hydrophobes. Finalement, nous avons déterminé que le TSE possède même des cavités plus grandes, et nous émettons l'hypothèse que l'énergétique et la dynamique contribuent aux effets de la pression sur les protéines. / Thermal and chemical unfolding of proteins are reasonably well understood, but the destabilizingeffects of pressure are not. In an attempt to characterize the factors at the basis of pressure effects,we investigated the pressure unfolding of a modular protein, the ankyrin domain of the Notch receptor(Nank17*) and several of its deletion constructs. All our experiments were consistent with a simpletwo-state folding/unfolding transition under pressure. The temperature dependence of pressure-jumpsdemonstrated that at low temperature, the transition state ensemble (TSE) lies close in volume to thefolded state despite its unfolded-like energetics, consistent with significant dehydration at the barrier,and that increasing temperature leads to a volume of the TSE larger than that of the folded state. Thisbehavior reveals a high degree of plasticity of the TSE of Nank17*. Studies of the deletion mutantsshowed us that ΔV is determined not by hydration of peptide bonds or by differential hydration ofresidues, but by the existence of internal solvent-excluded void volumes. Only a small fraction of theinternal cavities are relevant of the ΔV, those that are not significantly solvated in the hydrophobiccore. Finally, we determined that the transition state ensemble show even larger cavities, and wehypothesize both energetics and dynamics contribute to pressure effects on proteins.
152

Vascular and morphological changes of the optic nerve head following therapeutic intraocular pressure reduction in open angle glaucoma and ocular hypertension

Hafez, Ali S. January 2007 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
153

Désunis dans l'adversité : le lobbying des consommateurs américains pendant le conflit du bois d'oeuvre

Descôteaux, David January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
154

Cadrage et mise à l'agenda du projet de privatisation d'une partie du parc national du Mont-Orford

Montpetit, Nicolas January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
155

Spectroscopie sous pression de complexes plans carrés de palladium(II) et de platine(II) : effets intra- et intermoléculaires

Levasseur-Thériault, Geneviève January 2006 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
156

Les propriétés mécaniques du réseau cellulose/xyloglucanes dans la croissance apicale du tube pollinique

Aouar, Leila January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
157

Évaluation des aptitudes musculosquelettiques chez les patients coronariens

Guénette, Geneviève January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
158

Localisation d'un locus pour trait quantitatif pour l'hypertension sur le chromosome 18 du rat Dahl

Lambert, Raphaëlle January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
159

Étude par pressions, activité musculaire et imagerie du pied pathologique en charge

Buelna, Luis January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
160

High-pressure effects on proteins and the volume change upon unfolding / Les effets de la pression sur les protéines et le changement de volume associé au dépliement

Roche, Julien 29 June 2012 (has links)
Afin de lever le mystère centenaire qui entoure l'origine du changement de volume associé au dépliement des protéines globulaires, nous avons constitué une collection de 10 mutants du variant hyperstable de la SNase, ∆+PHS. Chacune de ces mutations a été conçue pour créer une nouvelle cavité ou agrandir une cavité existante au sein de la protéine. Dans un premier temps, nous avons analysé comment l'environnement structural local conditionne l'adaptation à la mutation. Les expériences de fluorescence sous haute pression ont montré un accroissement systématique de la différence de volume entre les états replié et déplié pour les 10 variants par rapport à ∆+PHS. Ce résultat majeur, qui s'ajoute à une étude récente démontrant que les effets d'hydratation ne contribuent pas de manière significative au changement de volume, démontre sans ambiguïté que la différence de volume entre les états replié et déplié est principalement due à la présence de cavités internes dans la structure native des protéines. Les mesures par RMN des changements de volume ont permis d'établir une cartographie des effets de la pression à l'échelle du résidu et d'identifier les intermédiaires de repliement peuplant le paysage énergétique. En analysant les cinétiques de dépliement, nous avons finalement pu caractériser les conséquences de ces mutations sur les états de transitions de la SNase. / To solve the century-old question of the origin of the volume change upon unfolding for globular proteins, we built up a collection of 10 mutants of the hyperstable variant of SNase, ∆+PHS. Each of these mutations was designed to create a cavity or to enlarge a naturally occurring cavity in the protein core. We first analyzed how the local structural environment determines the adaptation to the mutation. The high-pressure fluorescence experiments showed a systematic increase of the volume difference between the folded and unfolded states for the 10 variants, compared to ∆+PHS. This major result, in addition to a recent study demonstrating that the hydration effects do not provide any significant contribution to the volume changes, clearly demonstrates that the volume difference between the folded and unfolded states is predominantly due to the presence of internal cavities in the native structure. NMR measurements of the volume change allowed a mapping of the pressure effects on a residue scale and the identification of the folding intermediates populating the free-energy landscape. By analyzing the unfolding kinetics, we finally characterized the consequences of these mutations on the transition state ensembles of SNase.

Page generated in 0.0147 seconds