• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 13
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sistema Fotovoltaico de Pequeno Porte Interligado à Rede ElÃtrica / A Low Power, Grid-Connected Photovoltaic System

Eldin Mario Miranda TerÃn 02 March 2012 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / A necessidade de obter uma matriz energÃtica menos poluente e em harmonia com o meio ambiente à um tÃpico muito importante no sÃculo XXI. Este trabalho apresenta um conversor cc-ca de dois estÃgios para injetar a energia de um arranjo de painÃis fotovoltaicos à rede elÃtrica. O primeiro estÃgio à um conversor elevador, isolado, baseado na CÃlula de ComutaÃÃo de TrÃs Estados (CCTE), responsÃvel por elevar a tensÃo dos painÃis fotovoltaicos de 48 Vcc para 400 Vcc e de extrair a mÃxima potÃncia disponÃvel deles. O segundo estÃgio consiste em um conversor monofÃsico cc-ca, ponte completa, responsÃvel por injetar a energia na rede elÃtrica de baixa tensÃo (220 Vca, 60 Hz). SÃo apresentados estudos teÃricos e exemplos de projeto dos circuitos de potÃncia e controle para ambos os estÃgios e, com o objetivo de validar a anÃlise, sÃo apresentados resultados de simulaÃÃo computacional, complementados com resultados experimentais, correspondentes a um protÃtipo de laboratÃrio de 850 W. O rendimento global obtido experimentalmente à aproximadamente 86,5% enquanto que a distorÃÃo harmÃnica total da corrente entregue à rede elÃtrica obtida via simulaÃÃo computacional à 3,8% a plena carga. / In the 21st century, the need of a more clean and environment friendly power matrix has become a very important issue. Therefore this work presents a two stage cc-ac converter for connecting a photovoltaic array to the electrical grid. The 1st stage itâs an isolated boost converter, based in the Three Stage Switching Cell (TSSC), in charge of boosting the photovoltaic array voltage from 48 Vcc to 400 Vcc and to track its maximum power point. The 2nd stage is a single-phase cc-ac Full-Bridge converter responsible of injecting the photovoltaic power into the low voltage power grid (220 Vac, 60 Hz). Both, theoretical analysis and designs examples of power and control circuits are presented for the two stages and, in order to validate the analysis, simulation results complemented with experimental results from an 850 W laboratory prototype are presented. The overall efficiency obtained from the prototype was 86.5% while the total harmonic distortion of the current obtained via simulation was 3.8% at full load.
22

The potential for centralized photovoltaicsystems in Sweden

KARLSSON, REBECCA, NILSENG, EVA January 2016 (has links)
Considering the long term target set by the Swedish government of having an energy system basedexclusively on renewable sources, the potential for different renewable sources need to beinvestigated. When analyzing the sources used for electricity production in Sweden today, solarPV represents a very small share. This relatively small share also mainly consists of grid-connecteddistributed PV systems, and to analyze the possibilities of making solar energy a larger share inthe electricity production in Sweden this study will focus on grid-connected centralized PV farms.The main purpose of the study is to identify the potential for grid-connected centralized PVsystems for large scale production in Sweden. This will include an identification of the mostimportant key factors influencing the profitability, an investment calculation to be aware of theprofitability, a prediction of the future development of the PV industry in Sweden and lastly themain challenges that the PV industry is facing.To conduct this study a collaboration with Vattenfall Vind AB has been made, where a case studybased on three specific locations has been implemented when analyzing both the profitability andthe key factors. These three cases are based on places where Vattenfall has existing wind farms orhas assigned for upcoming ones. These areas could be seen as a potential benefit since the companyalready has started to inspect the land area, and that wind and PV farms might be able to sharenecessities such as infrastructure.The results of the study mainly indicate that the PV industry most likely will continue develop andgrow, but the profitability of investing in grid-connected centralized PV farms does not lookpromising today or in the next coming years. This mainly due to low prices for electricity anduncertainties in the future development of the financial support policy. The location is also veryimportant for this type of installation. There are places in southern Sweden with enough insolation,but these areas can be seen as limited. To make solar energy a larger share of the electricityproduction in Sweden in a profitable way today, more investments should be made in gridconnecteddistributed PV systems rather than grid-connected centralized PV farms. PV farms forlarge scale production might though be more profitable in the future when the prices for modulesand inverters will decrease further and when the spot price increases.
23

Temporal Change in the Power Production of Real-world Photovoltaic Systems Under Diverse Climatic Conditions

Hu, Yang 08 February 2017 (has links)
No description available.
24

Energy Provisioning in Stand-alone and Grid-Connected Solar Powered Networks

Sheikh, Zefreh Mohammad 04 1900 (has links)
<p>Solar energy is a clean and abundant renewable energy source which is currently used in many types of photovoltaic (PV) designs. In practical PV systems, solar panels are used to harvest solar energy and convert it into a usable form of electricity. Due to the intermittent nature of solar energy input however, battery storage, in combination with solar panels, must be used to provide an uninterrupted source of power.</p> <p>The process of assigning solar panel and battery configurations for a PV system is referred to as energy resource provisioning. Unfortunately, energy provisioning costs are still relatively high, and this is one of the main obstacles that inhibits the adoption of solar power for many applications. These costs however, can be substantially reduced through cost-efficient resource provisioning methods. The focus of this thesis is on the development of efficient algorithms and energy management methods that will reduce energy provisioning costs in solar powered systems.</p> <p>First, we consider resource provisioning in solar powered wireless mesh networks. In practical solar powered systems, there are usually restrictions in the way that the mesh nodes can be positioned, and this results in a time-varying and node-dependent attenuation of the available solar energy. Unfortunately, conventional resource provisioning methods cannot take this into account and therefore the deployed system may be unnecessarily expensive. In this part of the thesis, the resource provisioning problem is considered from this point of view. We first review conventional resource provisioning mechanisms and give an example which shows the value of introducing positional solar insolation awareness. A Position Aware Provisioning (PAP) algorithm is then introduced that takes known positional variations into consideration when performing the energy provisioning. Simulation results show that reductions in total network provisioning cost can be obtained using the proposed methodology compared to conventional algorithms.</p> <p>In the second part of the thesis, we consider communication infrastructure that is operated from the power grid with a solar powered addition. Resource provisioning and energy management algorithms are introduced to minimize the capital expenditure (CAPEX) and operating expenditure (OPEX) costs. We first derive lower bounds on the costs using a linear programming (LP) formulation where solar components are sized using solar insolation and projected loading data. A variety of different node configurations are considered. Three energy scheduling algorithms are then introduced to optimize online OPEX costs, namely, Grid Purchase Last (GPL), Solar Load Optimization (SLO) and Solar Load Simulation (SLS) algorithms. Simulation results show the extent to which a solar powered add-on can reduce total cost.</p> <p>Finally, we consider solar powered systems where part of their energy demands are deferrable, up to some maximum tolerable delay. The objective is to exploit the flexibility of deferrable energy demands in a way that decreases the total provisioning cost. A mixed integer linear optimization program is derived which gives a lower bound on the provisioning cost. A Delay Aware Provisioning (DAP) algorithm is then proposed to determine practical cost-efficient energy provisioning. The performance of DAP is compared to the provisioning bound and the conventional Stand-alone Node Provisioning (SNP) algorithm. Results are presented which show the significant provisioning cost savings that can be obtained.</p> / Doctor of Philosophy (PhD)
25

Návrh technického provedení FVE včetně systému řízení pro komerční objekt v souladu s platnými pravidly pro program ÚSPORY ENERGIE - FVE / Photovoltaic System Proposal for Commercial Building in Accordance with Applicable Rules for Energy Savings Program

Zeman, Daniel January 2018 (has links)
Main purpose of the thesis is to create proposal of the photovoltaic hybrid system for commercial building in accordance with applicable rules for energy savings program. The introductory part of the thesis describes the rules regarding the photovoltaic system parts. The next part of the thesis describes the available technical solution for realization of the photovoltaic system design and the possibilities of electric energy accumulation in these systems and how to deal with power overflows using the power flow controller and what is the negative impacts on the distribution network when switching the connected load. In the next part the design of the PV system is carried out according to the valid assumptions described in the theoretical part of the thesis. Verification of power flow controller and measurement results in UEEN laboratories. The last part of the thesis is an evaluation of the economic part of the proposed system.
26

Business Case Tools för distribuerade solcellsanläggningar : En Power BI-modell för investeringsmodellering och visualisering i Sverige / Business Case Tools for distributed solar PV systems

Hennings, Erik, Ingvarsson, Johan, Fält, Gustav January 2023 (has links)
The global climate and energy crisis has amplified the need for renewable energy sources, withsolar photovoltaic (PV) systems expected to play a significant role in the future energy mix. In this context, distributed energy systems (DES) are identified as part of the solution to address climate and energy challenges.With the increasing demand for photovoltaic energy sources, there is a growing requirement forefficient Business Case Tools (BCT) to analyze investments in distributed solar PV installations.A two-part model, consisting of a solar model and spot price data, was developed based onparameters such as solar radiation, location, angle, orientation, system losses, installedcapacity, and historical spot price data. The model was integrated with Power BI for investment calculations and visualization of results. The developed model provides approximations for solar PV system electricity production, which were validated against selected installations in allelectricity areas of Sweden. The validation revealed an average relative absolute error of 14.72 percent for the model. The conclusion drawn is that BCT can be utilized to analyze and visualize solar PV investments at specific locations in Sweden. The results indicate that Power BI, as a BCT, has limitations indynamic data collection but performs well in executing calculation of investments and visualizingthe results. Well-developed BCT can facilitate decision-making through real-time calculations and contribute to smoother implementation of distributed systems by providing detailed insightsinto their financial characteristics. Further research is needed to develop a model specificallytailored for distributed installations with storage capabilities. / Världen befinner sig i en global klimat- och energikris vilket ökat behovet av och efterfrågan på förnybara energikällor. Solceller förväntas utgöra en betydande del av den framtida energimixen. I kombination med detta identifieras distribuerade energisystem (DES) som endel av lösningen på klimat- och energifrågan. I takt med den ökade efterfrågan på fotovoltaiska energikällor ställs större krav på effektiva Business Case Tools (BCT) för att analysera investeringar i distribuerade solcellsanläggningar. En modell bestående av två delar, en solmodell och spotprisdata,utvecklades utifrån parametrarna solstrålning, plats, vinkel, riktning, systemförluster, installerad effekt samt historiska spotprisdata. Modellen sammankopplas med Power BI föratt utföra investeringskalkyler och visualisera resultatet. Den utvecklade modellen gerapproximationer för solcellsanläggningars elproduktion, vilket validerades mot utvaldaanläggningar i Sveriges samtliga elområden. Enligt valideringen uppgår modellens genomsnittliga relativa absoluta fel till 14,72 procent. Slutsatsen dras att BCT kan användas för att analysera och visualisera solcellsinvesteringar på specifika platser i Sverige. Resultatet visar att Power BI som BCT har brister när detkommer till dynamisk datainsamling, men genomför och visualiserar investerings kalkyler med enkelhet. Välutvecklade BCT kan användas för att underlätta beslutsfattande genomrealtidsberäkningar och kan bidra till en smidigare implementering av distribuerade systemgenom att belysa deras finansiella karaktär på ett detaljerat sätt. Fortsatt forskning krävs föratt ta fram en modell anpassad för distribuerade anläggningar med lagringsmöjligheter.
27

Experimental Assessment of Photovoltaic Irrigation System

Raza, Khalil 15 December 2014 (has links)
No description available.
28

Development of a Cost-Effective, Reliable and Versatile Monitoring System for Solar Power Installations in Developing Countries : A Minor Field Study as a Master Thesis of the Master Programme in Engineering Physics, Electrical Engineering

Trella, Fredrik, Paakkonen, Nils January 2016 (has links)
This report is the result of a conducted Minor Field Study (MFS), to the greatestextent funded by the Swedish International Development Cooperation Agency(SIDA), in an attempt to design a system for evaluating smaller solar power systems indeveloping countries. The study was to the greater part conducted in Nairobi, Kenyain close collaboration with the University of Nairobi. The aim was to develop asystem that would use easily available components and keep the costs to a minimum,yet deliver adequate performance. The system would measure certain parameters of asolar power system and also relevant environmental data in order to evaluate theperformance of the system. Due to the specific competence of the collaboratinggroup at the University of Nairobi, a Kinetis Freescale K64-microcontroller with anARM-Cortex processor was selected as the core of the design. Components wereselected, schematics were drawn, a circuit board was designed and manufactured andsoftware was written. After 12 weeks a somewhat satisfying proof-of-concept wasreached at the end of the field study in Kenya. The project however proved howdifficult it is to go from first idea to a functional proof-of-concept during a limitedtimeframe, and also in an East-African country. The final proof-of-concept was testedat Mpala Research Centre in Kenya and despite containing some flaws proved that itwould indeed be possible to design a working system on the principles discussed inthis report. The system is open-source, so anyone may use and modify it.

Page generated in 0.0411 seconds