• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 31
  • 21
  • 15
  • 12
  • 9
  • 9
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 282
  • 282
  • 33
  • 29
  • 28
  • 24
  • 24
  • 23
  • 23
  • 20
  • 18
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Gene silencing in cancer cells using siRNA : genetic and functional studies

Abdel Rahim, Ma'en Ahmad 30 September 2004 (has links)
Sequence-specific small interfering RNA (siRNA) duplexes can be used for gene silencing in mammalian cells and as mechanistic probes for determining gene function. Transfection of siRNA for specificity protein 1 (Sp1) in MCF-7 or ZR-75 cells decreased Sp1 protein in nuclear extracts, and immunohistochemical analysis showed that Sp1 protein in transfected MCF-7 cells was barely detectable. Decreased Sp1 protein in MCF-7 was accompanied by a decrease in basal and estrogen-induced transactivation and cell cycle progression. These results clearly demonstrate the key role of Sp1 protein in regulating growth and gene expression of breast cancer cells. The aryl hydrocarbon (AhR) is a ligand-activated nuclear transcription factor. siRNA for the AhR decreased TCDD-induced CYP1A1 protein, CYP1A1dependent activity, and luciferase activity in cells transfected with an Ah-responsive construct. 17β-Estradiol (E2) induces proliferation of MCF-7 cells, and this response is inhibited in cells cotreated with E2 plus TCDD. The effects of TCDD on E2-induced cell cycle progression were partially blocked in MCF-7 cells transfected with siRNA for AhR. The decrease in AhR protein in MCF-7 cells was also accompanied by increased G0/G1 → S phase progression. Surprisingly, TCDD alone induced G0/G1 → S phase progression and exhibited estrogenic activity in MCF-7 cells transfected with siRNA for the AhR. In contrast, degradation of the AhR in HepG2 liver cancer cells resulted in decreased G0/G1 → S phase progression, and this was accompanied by decreased expression of cyclin D1, cyclin E, cdk2 and cdk4. In the absence of ligand, the AhR exhibits growth inhibitory (MCF-7) and growth promoting (HepG2) activity that is cell context-dependent. Sp family proteins play a complex role in regulation of pancreatic cancer cells growth and expression of genes required for growth, angiogenesis and apoptosis. Sp1, Sp3 and Sp4 cooperatively activate VEGF promoter constructs in these cells; however, only Sp3 regulates cell proliferation. siRNA for Sp3 inhibits phosphorylation of retinoblastoma protein, blocks G0/G1 → S phase progression of Panc-1 cells, and upregulates p27 protein/promoter activity. Thus, Sp3 plays a critical role in angiogenesis (VEGF upregulation) and the proliferation of Panc-1 cells by a novel mechanism of Sp3-dependent suppression of the cyclin-dependent kinase inhibitor p27.
112

Kasos vėžio kombinuoto gydymo įtaka ligonių gyvenimo trukmei ir gyvenimo kokybei / Effect of combined treatment methods on survival and quality of life in patients with pancreatic cancer

Brasiūnienė, Birutė 30 January 2006 (has links)
Treatment of pancreatic cancer is an important medical problem. Most pancreatic cancer patients are diagnosed with advanced disease and their prognosis is poor. In Lithuania there were 440 new cases in year 2004. More than fifty percent of patients are diagnosed with stage IV disease [Kurtinaitis J et al., 2005]. Median survival of patients diagnosed with pancreatic cancer, depending on a stage of a disease, spread of the tumor, treatment method, functional status of a patient is from 6 to 20 months. Five-year survival is only 0–5 percent [Bramhall S et al., 1998; Oya N, 2004]. Today, pancreatic cancer is treated by combined methods: surgery combined with RT and/or chemotherapy. It is questionable if a patient diagnosed with pancreatic cancer in early stages must be treated by adjuvant treatment methods, or should patients diagnosed with unresectable cancer be treated with chemotherapy or ChRT; and what is more important for the patient: increased survival or better quality of life. Kaunas University of Medicine Clinic (KMUC) is a suitable hospital to treat patients diagnosed with pancreatic cancer. At the Clinic of Surgery pancreatic cancer patients are treated by radical and palliative surgery; and at the Clinic of Oncology patients with pancreatic cancer are treated applying contemporary methods of RT, chemotherapy and combined treatment methods. In this thesis treatment results of patients treated for resectable and unresectable pancreatic cancer from year 1987 to year... [to full text]
113

Validation of Candidate Biomarkers for the Development of a Multi-Parametric Panel for Early Detection of Pancreatic Ductal Adenocarcinoma (PDAC)

Chan, Alison Hui-Wai 21 November 2013 (has links)
High-throughput mass spectrometry has discovered a plethora of candidates in the biomarker field, however, subsequent verification and validation studies are urgently needed to assess the potential of novel biomarkers in the detection of pancreatic cancer. We have conducted extensive verification and validation studies on two of our most promising biomarkers CUZD1 and LAMC2 with a total of 715 blood samples. In our study, both markers demonstrated consistent diagnostic ability of early- and CA19.9 negative-PDAC cases. When used in combination with CA19.9, CUZD1 and LAMC2 were shown to significantly improve the performance of CA19.9 alone in the diagnosis of PDAC patients. We speculate that CUZD1 and LAMC2 may be good candidates to be used in a panel for monitoring PDAC patients who do not express CA19.9 levels as well as for an aid in screening high risk populations. Further validation of these two proteins is warranted.
114

Validation of Candidate Biomarkers for the Development of a Multi-Parametric Panel for Early Detection of Pancreatic Ductal Adenocarcinoma (PDAC)

Chan, Alison Hui-Wai 21 November 2013 (has links)
High-throughput mass spectrometry has discovered a plethora of candidates in the biomarker field, however, subsequent verification and validation studies are urgently needed to assess the potential of novel biomarkers in the detection of pancreatic cancer. We have conducted extensive verification and validation studies on two of our most promising biomarkers CUZD1 and LAMC2 with a total of 715 blood samples. In our study, both markers demonstrated consistent diagnostic ability of early- and CA19.9 negative-PDAC cases. When used in combination with CA19.9, CUZD1 and LAMC2 were shown to significantly improve the performance of CA19.9 alone in the diagnosis of PDAC patients. We speculate that CUZD1 and LAMC2 may be good candidates to be used in a panel for monitoring PDAC patients who do not express CA19.9 levels as well as for an aid in screening high risk populations. Further validation of these two proteins is warranted.
115

MOLECULAR AND FUNCTIONAL INVESTIGATION OF CANCER-TYPE AND LIVER-TYPE VARIANTS OF ORGANIC ANION TRANSPORTING POLYPEPTIDE 1B3

Thakkar, Nilay 01 January 2015 (has links)
OATP1B3 belongs to the OATP (organic anion transporting polypeptides) superfamily, responsible for mediating the transport of various endogenous and xenobiotic substrates. OATP1B3 was initially reported to be expressed exclusively in the hepatocytes where it mediates the uptake of numerous endogenous substrates (e.g. bile acids, steroid hormone conjugates) and several clinically relevant drugs including anticancer drugs. Later, a number of studies reported that OATP1B3 is also frequently expressed in multiple types of cancers and may be associated with differing clinical outcomes. However, a detailed investigation on the expression, localization and functions of OATP1B3 expressed in cancer has been lacking. In this thesis work, we confirmed that colon and pancreatic cancer cells express a cancer-specific OATP1B3 variant (csOATP1B3), different from OATP1B3 wild-type (WT) expressed in the normal liver. The csOATP1B3 utilizes an alternative transcription initiation site and the translated product of csOATP1B3 lacks the first 28 amino acids at the N-terminus of OATP1B3 WT. Our results show that csOATP1B3 has modest uptake transporter functions and reduced plasma membrane localization compared to OATP1B3 WT. In our efforts to investigate the regulatory mechanism underlying the expression of csOATP1B3, we found that hypoxia inducible factor-1α (HIF-1α) may play a key role in the regulation of csOATP1B3 in colon and pancreatic cancer cells. In a separate study, we tested whether the N-terminal sequence of OATP1B3 WT plays an important role in the membrane trafficking. This is based on the observation that csOATP1B3 lacking the first 28 amino acids at N-terminus of OATP1B3 WT displays a predominantly cytoplasmic localization pattern. Using the constructs with N-terminal truncations and point mutations, we verified that the N-terminus of OATP1B3 WT contains important motifs in its membrane trafficking. In particular, the amino acids within a putative β-turn-forming tetrapeptide appear to be important in regulating the membrane trafficking of OATP1B3 WT. The findings from this thesis work provide important insights into the functional and clinical significance of OATP1B3 in cancer and normal liver.
116

Integrative Preoteomic Analysis of Cell Line Conditioned Media and Pancreatic Juice for the Identification of Candidate Pancreatic Cancer Biomarkers

Makawita, Shalini 04 September 2012 (has links)
Novel serological biomarkers to aid in the detection and clinical management of pancreatic cancer patients are urgently needed. In the present study, we performed in-depth proteomic analysis of conditioned media from six pancreatic cancer cell lines (MIA-PaCa2, PANC1, BxPc3, CAPAN1, CFPAC1 and SU.86.86), the normal pancreatic ductal epithelial cell line HPDE, and pancreatic juice samples from cancer patients for identification of novel biomarker candidates. Using 2D-LC-MS/MS, a total of 3479 non-redundant proteins were identified with ≥2 peptides. Subsequent label-free protein quantification and integrative analysis of the biological fluids resulted in the generation of candidate biomarkers, of which five proteins were shown to be significantly elevated in plasma from pancreatic cancer patients in a preliminary assessment. Further verification of two of the proteins in ~200 serum samples demonstrated the ability of these proteins to significantly improve the area under the receiver operating characteristic curve of CA19.9 from 0.84 to 0.91.
117

Integrative Preoteomic Analysis of Cell Line Conditioned Media and Pancreatic Juice for the Identification of Candidate Pancreatic Cancer Biomarkers

Makawita, Shalini 04 September 2012 (has links)
Novel serological biomarkers to aid in the detection and clinical management of pancreatic cancer patients are urgently needed. In the present study, we performed in-depth proteomic analysis of conditioned media from six pancreatic cancer cell lines (MIA-PaCa2, PANC1, BxPc3, CAPAN1, CFPAC1 and SU.86.86), the normal pancreatic ductal epithelial cell line HPDE, and pancreatic juice samples from cancer patients for identification of novel biomarker candidates. Using 2D-LC-MS/MS, a total of 3479 non-redundant proteins were identified with ≥2 peptides. Subsequent label-free protein quantification and integrative analysis of the biological fluids resulted in the generation of candidate biomarkers, of which five proteins were shown to be significantly elevated in plasma from pancreatic cancer patients in a preliminary assessment. Further verification of two of the proteins in ~200 serum samples demonstrated the ability of these proteins to significantly improve the area under the receiver operating characteristic curve of CA19.9 from 0.84 to 0.91.
118

Phase I animal safety study of new second generation porphyrin based photosensitizers in the Syrian Golden hamster

Wittmann , Johannes , Clinical School - South Western Sydney, Faculty of Medicine, UNSW January 2007 (has links)
Pancreatic cancer kills over 1700 people each year in Australia. In 2000, there were 1908 new cases diagnosed and it remains one of the least treatable malignancies. In the USA, it was the fourth leading cause of cancer death in 2004, with 31,860 new cases and 31,270 recorded deaths. Photodynamic therapy (PDT) is a novel, potentially useful treatment for locally advanced pancreatic cancer with only limited research and clinical work addressing this until now. PDT induces non-thermal, cytotoxic and ischaemic injury to a targeted volume of tissue. During PDT, a photosensitizer is activated by non-thermal light in the presence of oxygen, generating cytotoxic oxygen species and inducing cellular injury and microvascular occlusion. The aim of this thesis was to conduct an animal safety study using two second generation photosensitizers, talaporfin sodium and verteporfin, to assess the risks of pancreatic PDT by looking at injury to organs adjacent to the pancreas and assessing recovery from PDT treatment of the pancreas. The Syrian Golden hamster animal model was used to compare the results of this research to previous work by other authors. The study design incorporated a number of additional experiments, including quantitative tissue fluorescence techniques, plasma level analysis and histopathology techniques. The methods for the animal safety study were similar to the approach used in the clinical setting and provided vital data on the likely risks and side effects of phototherapy in humans. The first study, looking at talaporfin sodium, found likely risks of duodenal injury, gastric injury and death with a limited effect on normal pancreas at photosensitizer doses likely to be employed for pancreatic cancer PDT. The second study, using verteporfin, found similar results with a more potent effect on the normal pancreas at studied drug doses. Both agents had short drug-light intervals, ranging from 15 minutes to 2 hours, reducing the need for pre-treatment hospitalization and short photosensitivity periods of about one to two weeks. Some animals suffered minor cutaneous photosensitivity injuries. A human pancreatic cancer PDT pilot study is feasible and the risks and complications should be acceptable.
119

THE ROLE OF PHLPP IN PANCREATIC CANCER

Smith, Alena J. 01 January 2015 (has links)
Medicine has come a long way in recent years with reliable treatments for many cancers. Pancreatic ductal adenocarcinoma (PDAC) has very few treatment options available. PDAC has a dismal 5 year survival rate of 4% and a median survival span of 6 months from point of diagnosis; with a high rate of chemotherapy and radiation resistance. A better understanding of the molecular events leading to cancer progression is needed in order to improve the treatment and prognosis of PDAC patients. We begin to elucidate the functional importance of PHLPP on suppressing progression and metastasis of PDAC. PHLPP belongs to a novel family of Ser/Thr protein phosphatases. Our previously published studies have demonstrated that PHLPP plays a tumor suppressor role in colon cancer by negatively regulating Akt and inhibiting cell proliferation. To determine the effect of PHLPP on cell migration and invasion, stable cells were generated to knock down or overexpress PHLPP in PDAC cells. The ability of cells to migrate and invade was examined using Transwell assays. We found that increased PHLPP expression significantly reduced the rate of migration and invasion in PDAC cells whereas knockdown of PHLPP had the opposite effect. To begin to elucidate the molecular mechanism underlying PHLPP-mediated inhibition of migration and invasion in PDAC cells, we discovered that the expression level of β4 Integrin was decreased in PHLPP overexpressing cells and increased in PHLPP knockdown cells. The increased expression of β4 Integrin has been shown to promote PDAC development and metastasis, although the mechanism leading to β4 Integrin upregulation is less clear. Interestingly, we found that the expression of β4 Integrin was highly sensitive to PI3K/Akt/mTOR activity in cells in which inhibition of PI3K/Akt/mTOR signaling significantly decreased the expression of β4 Integrin. Moreover, the quantitative real-time RT-PCR analysis revealed that the mRNA expression of β4 Integrin was not altered by changes in PHLPP expression or PI3K/Akt/mTOR activity, thus suggesting a post-transcriptional mechanism. Taken together, these results identify a tumor suppressor role of PHLPP in PDAC. Mechanistically, PHLPP suppresses PDAC cell migration and invasion by negatively controlling β4 Integrin expression through its ability to inhibit PI3K/Akt/mTOR signaling.
120

Ciblage du récepteur de la transferrine de type 1 (TfR1) et du métabolisme du Fer dans le cancer du pancréas / Targeting Transferrin Receptor 1 (TfR1) and iron metabolism in Pancreatic Cancer

Melhem, Rana 10 July 2017 (has links)
L'adénocarcinome canalaire pancréatique (PDAC) est une maladie agressive à pronostic sombre et à forte mortalité. Il est donc crucial de rechercher de nouvelles cibles thérapeutiques et de nouveaux traitements. Une option intéressante pourrait être le ciblage du métabolisme du Fer. En effet, la transformation cellulaire s'accompagne généralement d'un accroissement des besoins en fer et de l'augmentation du récepteur de la transferrine de type 1, TfR1, le récepteur majeur impliqué dans l'approvisionnement des cellules en Fer par l'internalisation de la transferrine plasmatique chargée en fer. Nous avons utilisé un anticorps monoclonal humain IgG1 anti-TfR1 (H7) pour cibler le TfR1 dans le PDAC. Le traitement in vitro de 3 lignées de PDAC, établies à partir de tumeurs primaires de patients (BxPC3 et HPAC) ou d'une métastase hépatique (CFPAC) par H7 inhibe la viabilité cellulaire en réduisant la prolifération et induisant l'apoptose. H7 bloque efficacement l'internalisation de la transferrine chargée en Fer avec pour conséquence une baisse du Fer libre intracellulaire, une augmentation du TfR1 et une diminution de la ferritine, protéine de stockage du fer. Le traitement par H7 induit également l'expression du suppresseur de tumeur NDRG1 (N-myc downstream regulated gene 1), une cible prometteuse dans le cancer du pancréas, et la formation de sphères par la lignée HPAC in vitro, montrant que la déprivation en fer inhibe aussi les cellules initiatrices de tumeur dans ce modèle. Enfin, H7 recrute les cellules Natural Killer in vitro et induit efficacement l’ADCC (cytotoxicité cellulaire dépendante des anticorps). In vivo, dans 2 modèles de PDAC chez la souris (greffe de la lignée BxPC3 ou d’une tumeur dérivée d’un patient (PDX)), H7 diminue la croissance tumorale et augmente l'activité anti-tumorale du traitement chimiothérapeutique standard (gemcitabine). Ces résultats suggèrent que le ciblage du TfR1 par l'anticorps H7, seul ou en combinaison avec le traitement chimiothérapeutique standard est une stratégie prometteuse pour le traitement du PDAC. / Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease associated with poor diagnosis and high mortality. It is therefore necessary to search for new therapeutic targets and treatments. One of the interesting options would be targeting iron metabolism. Indeed, cell transformation is generally accompanied with increased needs for iron together with increased expression of the transferrin receptor 1, TfR1, the major receptor involved in cellular iron supply via the internalization of plasma transferrin loaded with iron.We have used a fully human internalizing anti-TfR1 antibody (IgG1), namely H7, to target TfR1 in PDAC. On three PDAC cell lines, BxPC3, HPAC (established from primary tumor), and CFPAC (established from hepatic metastasis), H7 treatment decreased cellular viability in vitro as a result of combined proliferation inhibition and apoptosis induction. H7 blocked efficiently transferrin internalization, and, likely due to a decrease in the labile iron pool, induced the upregulation of TfR1 and the downregulation of the iron storage protein ferritin. Interestingly, H7 treatment also induced the expression of the metastasis suppressor N-myc downstream regulated gene 1 (NDRG1), a promising therapeutic target in pancreatic cancer. H7 also decreased the ability of HPAC cell line to form tumor sphere in vitro indicating its inhibitory effect tumor initiating cells. Finally, H7 was able to recruit Natural killer cells and mediate antibody-dependent cell cytotoxicity on PDAC cell lines in vitro. In vivo, both in a PDAC cell line (BxPC3) and a patient derived xenograft (PDX) mouse model, H7 treatment decreases tumor growth and increases the anti-tumor activity of the Gemcitabine standard treatment. These data provide evidence that targeting pancreatic cancer with the iron depriving anti-TfR1 antibody, alone or in combination with gemcitabine might be a promising strategy in PDAC.

Page generated in 0.0825 seconds